Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Lecture 16

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Mathematics for Signals and Systems

In this set of lectures we will talk about...

- an application of linear system theory: graphs and networks
- orthogonal spaces

Imperial College

Mathematics for Signals and Systems

Graphs and networks: incidence matrix

- A graph is a set of nodes and edges denoted as

$$
\text { graph }=\{\text { nodes, edges }\}
$$

- The graph can be represented by a matrix (incidence matrix) where each row corresponds to an edge and each column corresponds to a node.
- The element $A_{i j}=1$ if current flows towards node j accross edge i.
- The element $A_{i j}=-1$ if current flows away from node j accross edge i.

$$
A=\left[\begin{array}{rccc|c}
-1 & 1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 & 2 \\
-1 & 0 & 1 & 0 & 2 \\
-1 & 0 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right] \begin{aligned}
& 4 \\
& 5
\end{aligned} \text { 1-2-3 loop }
$$

- A subgraph is formed by edges $1,2,3$. This is a loop.
- Note that loops always correspond to linearly dependent rows.

Graphs and networks: null space of incidence matrix

- The null space of matrix A is zero if the columns are independent. For the given example we have:

$$
A x=0 \Rightarrow\left[\begin{array}{rccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{2}-x_{1} \\
x_{3}-x_{2} \\
x_{3}-x_{1} \\
x_{4}-x_{1} \\
x_{4}-x_{3}
\end{array}\right]=0
$$

- The vector x represents potentials at nodes (e.g. voltages).
- $x_{i}-x_{j}$ represents the difference in potential across certain edges.
- We see that the a solution of the above system is $x=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$.
- The null space is formed by vectors $c\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ and $\operatorname{dim}(N(A))=1$.
- The solution to the above system is obtained subject to a scalar c.
- Since $n=4$ and and $\operatorname{dim}(N(A))=1$, we get $\operatorname{rank}(A)=3$.

Imperial College

Mathematics for Signals and Systems

Graphs and networks: null space of transpose of incidence matrix

- By fixing the potential at node one to 0 we remove a column and we solve for the remaining potentials.
- Let us consider the equation

$$
A^{T} y=0 \Rightarrow\left[\begin{array}{ccccc}
-1 & 0 & -1 & -1 & 0 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]=0
$$

- The vector y represents currents across the edges.
- The equation $A^{T} y=0$ represents Kirchoff's law.
- (Note that there is a matrix C that connects potential differences and current at the edges, and represent Ohm's law: $y=C e$).

Mathematics for Signals and Systems

Graphs and networks: Kirchoff's law

- The equation $A^{T} y=0$ is Kirchoff's law.

$$
\left[\begin{array}{ccccc}
-1 & 0 & -1 & -1 & 0 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]=0
$$

- The first equation refers to node one and indicates that the net current flow is zero. Similarly we get:

$$
\begin{aligned}
-y_{1}-y_{3}-y_{4} & =0 \\
y_{1}-y_{2} & =0 \\
y_{2}+y_{3}-y_{5} & =0 \\
y_{4}+y_{5} & =0
\end{aligned}
$$

Imperial College

Mathematics for Signals and Systems

Graphs and networks: Kirchoff's law

- Three solution vectors that satisfy Kirchoff's law represent total current running across the three possible loops.

$$
\left[\begin{array}{c}
1 \\
1 \\
-1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

$$
\begin{array}{r}
-y_{1}-y_{3}-y_{4}=0 \\
y_{1}-y_{2}=0 \\
y_{2}+y_{3}-y_{5}=0 \\
y_{4}+y_{5}=0
\end{array}
$$

- We can see the third solution (current running across loop 3) is not independent from the first two solutions.
- The null space of A^{T} is two dimensional, which is the same as the number of loops.

$$
\operatorname{dim}\left(N\left(A^{T}\right)\right)=2
$$

Mathematics for Signals and Systems

Graphs and networks: row space of incidence matrix

- Consider the columns space of A^{T} which is the row space of A.

$$
A^{T}=\left[\begin{array}{ccccc}
-1 & 0 & -1 & -1 & 0 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

- The pivot columns of A^{T} are the first, second and the fourth, that form a graph without loops. This graph is called a tree.

$$
\begin{gathered}
\operatorname{dim}\left(N\left(A^{T}\right)\right)=m-r \\
\text { \#loops }=\text { \#edges }-(\text { \#nodes }-1) \\
\text { \#nodes - \#edges }+ \text { \#loops }=1 \quad \text { (Euler's formula) }
\end{gathered}
$$

Mathematics for Signals and Systems

Graphs and networks

- Summarizing all the equation

Potential differences: $e=A x$
Ohm's Law: $y=C e$
Kirchoff's Current Law: $A^{T} y=0$

- The above three equations can be merged in a single equation as follows:

$$
A^{T} C A x=0
$$

Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Lecture 17

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Imperial College

Mathematics for Signals and Systems

Linear transformations

- Consider the parameters/functions/vectors/other mathematical quantities denoted by u and v.
- A transformation is an operator applied on the above quantities, i.e., $T(u), T(v)$.
- A linear transformation possesses the following two properties:
$>T(u+v)=T(u)+T(v)$
$>T(c v)=c T(v)$ where c is a scalar.
- By grouping the above two conditions we get

$$
T\left(c_{1} u+c_{2} v\right)=c_{1} T(u)+c_{2} T(v)
$$

- The zero vector in a linear transformation is always mapped to zero.

Imperial College

Mathematics for Signals and Systems`

Examples of transformations

- Is the transformation $T: R^{2} \rightarrow R^{2}$, which carries out projection of any vector of the 2-D plane on a specific straight line, a linear transformation?
- Is the transformation $T: R^{2} \rightarrow R^{2}$, which shifts the entire plane by a vector v_{0}, a linear transformation?
- Is the transformation $T: R^{3} \rightarrow R$, which takes as input a vector and produces as output its length, a linear transformation?
- Is the transformation $T: R^{2} \rightarrow R^{2}$, which rotates a vector by 45° a linear transformation?
- Is the transformation $T(v)=A v$, where A is a matrix, a linear transformation?

Imperial College

Mathematics for Signals and Systems`

Examples of transformations

- Consider a transformation $T: R^{3} \rightarrow R^{2}$.
- In case $T(v)=A v$, then A is a matrix of size 2×3.
- If we know the outputs of the transformation if applied on a set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ which form a basis of some space, then we know the output to any vector that belongs to that space.
- Recall: The coordinates of a system are based on its basis!
- Most of the time when we talk about coordinates we think about the "standard" basis, which consists of the rows (columns) of the identity matrix.
- Another popular basis consists of the eigenvectors of a matrix.

Imperial College

Mathematics for Signals and Systems`

Examples of transformations: Projection

- Consider the matrix A that represents a linear transformation T.
- Most of the times the required transformation is of the form $T: R^{n} \rightarrow R^{m}$.
- I need to choose two bases, one for R^{n}, denoted by $v_{1}, v_{2}, \ldots, v_{n}$ and one for R^{m} denoted by $w_{1}, w_{2}, \ldots, w_{m}$.
- I am looking for a transformation that if applied on a vector described with the input coordinates produces the output co-ordinates.
- Consider R^{2} and the transformation which projects any vector on the line shown on the figure below.
- I consider as basis for R^{2} the vectors shown with red below and not the "standard" vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
- On of the basis vectors lies on the required line and the other is perpendicular to the former.

Imperial College

London

Mathematics for Signals and Systems`

Examples of transformations: Projection (cont)

- I consider as basis for R^{2} the vectors shown with red below both before and after the transformation.
- Any vector v in R^{2} can be written as $v=c_{1} v_{1}+c_{1} v_{2}$.
- We are looking for $T(\cdot)$ such that $T\left(v_{1}\right)=v_{1}$ and $T\left(v_{2}\right)=0$.
Furthermore,

$$
\begin{aligned}
& T(v)=c_{1} T\left(v_{1}\right)+c_{1} T\left(v_{2}\right)=c_{1} v_{1} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
0
\end{array}\right]}
\end{aligned}
$$

- The matrix in that case is Λ. This is the "good" matrix.

Mathematics for Signals and Systems`

Examples of transformations: Projection (cont)

- I now consider as basis for R^{2} the "standard" basis.
- $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
- Consider projections on to 45° line.
- In this example the required matrix is

$$
P=\frac{a a^{T}}{a^{T} a}=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

- Here we didn't choose the "best" basis, we chose the "handiest" basis.

Imperial College

London

Mathematics for Signals and Systems

Rule for finding matrix A

- Suppose we are given the bases $v_{1}, v_{2}, \ldots, v_{n}$ and $w_{1}, w_{2}, \ldots, w_{m}$.
- How do I find the first column of A ? The first column of A should tell me what happens to the first basis vector. Therefore, we apply $T\left(v_{1}\right)$. This should give

$$
T\left(v_{1}\right)=a_{11} w_{1}+a_{21} w_{2} \ldots a_{m 1} w_{m}=\sum_{i=1}^{m} a_{i 1} w_{i}
$$

- We observe that $\left\{a_{i 1}\right\}$ form the first column of the matrix A.
- In general $T\left(v_{j}\right)=a_{1 j} w_{1}+a_{2 j} w_{2} \ldots a_{m j} w_{m}=\sum_{i=1}^{m} a_{i j} w_{i}$

Mathematics for Signals and Systems`

Examples of transformations: Derivative of a function

- Consider a linear transformation that takes the derivative of a function. (The derivative is a linear transformation!)
- $T=\frac{d(\cdot)}{d x}$
- Consider input $c_{1}+c_{2} x+c_{3} x^{2}$. Basis consists of the functions $1, x, x^{2}$.
- The output should be $c_{2}+2 c_{3} x$. Basis consists of the functions $1, x$.
- I am looking for a matrix A such that $A\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{c}c_{2} \\ 2 c_{3}\end{array}\right]$.

This is $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$.

Imperial College

Mathematics for Signals and Systems

Types of matrix inverses

- 2-sided inverse (or simply inverse)
$r=m=n$
(full rank)

$$
A A^{-1}=I=A^{-1} A
$$

- Left inverse. (Note that a rectangular matrix cannot have a 2-sided inverse!)
$r=n<m$
(full column rank)
independent columns nullspace $=\{0\}$
0 or 1 solutions to $A x=b$

invertible

- Right inverse
$r=m<n$
$n-m$ free variables independent rows

$$
N\left(A^{T}\right)=\{0\}
$$

∞ solutions to $A x=b$
$A A^{T}$
$m x m$ invertible

$A A_{\text {right }}^{-1}=I$ $m x n \cap x m$

Imperial College

London

Mathematics for Signals and Systems

Pseudo-inverse. The case for $r<m, r<n$

- The multiplication of a vector from the row space x with a matrix A gives a vector $A x$ in the column space (1)
- The multiplication of a vector from the column space $A x$ with the pseudo inverse of A (i.e. A^{+}) gives the vector $x=A^{+} A x$ (2)

Imperial College

Mathematics for Signals and Systems

Pseudo-inverse

- If $x \neq y$ are different vectors in the row space then the vectors $A x, A y$ are vectors in the column space. We can show that $A x \neq A y$.

Proof

Suppose $A x=A y$.
Then $A(x-y)=0$ is in the null space.
But we know x, y and $x-y$ are in the row space.
Therefore $x-y$ is the zero vector and $x=y$ so $A x=A y$.

- Therefore a matrix A is a mapping from row space to column space and viceversa. For that particular mapping the inverse of A is denoted by A^{+}and is called pseudo-inverse.

Imperial College

London

Mathematics for Signals and Systems

Find the Pseudo-inverse

-How can we find the pseudo-inverse A^{+}

- Starting from SVD, $A=U \Sigma \mathrm{~V}^{T}$ with $\Sigma=\left[\begin{array}{ccc}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{r} & 0 \\ 0 & 0 & 0\end{array}\right]$ of size $m \times n$ and rank r.
-The pseudo-inverse is $A^{+}=\mathrm{V} \Sigma^{+} \mathrm{U}^{T}, \Sigma^{+}=\left[\begin{array}{ccc}1 / \sigma_{1} & 0 & 0 \\ 0 & 1 / \sigma_{r} & 0 \\ 0 & 0 & 0\end{array}\right]$ of size $n \times m$ and rank r.
- Note that $\Sigma \Sigma^{+}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ of size $m x m$ and is a projection matrix onto the column space.
- Note also that $\Sigma^{+} \Sigma=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ of size $n x n$ is a projection matrix onto the row space. - $\Sigma \Sigma^{+} \neq I \neq \Sigma^{+} \Sigma$.

