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In this set of lectures we will talk about… 
 

• an application of linear system theory: graphs and networks 

• orthogonal spaces 
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Graphs and networks: incidence matrix 
 

• A graph is a set of nodes and edges denoted as 

 

 

• The graph can be represented by a matrix (incidence matrix) where each row 

corresponds to an edge and each column corresponds to a node. 

• The element 𝐴𝑖𝑗 = 1 if current flows towards node 𝑗 accross edge 𝑖. 

• The element 𝐴𝑖𝑗 = −1 if current flows away from node 𝑗 accross edge 𝑖. 

 

 

 

 
 

• A subgraph is formed by edges 1,2,3. This is a loop. 

• Note that loops always correspond to linearly dependent rows. 
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Graphs and networks: null space of incidence matrix 
 

• The null space of matrix 𝐴 is zero if the columns are independent. For the given 

example we have: 

 

 

 

 

 

• The vector 𝑥 represents potentials at nodes (e.g. voltages). 

•  𝑥𝑖 − 𝑥𝑗 represents the difference in potential across certain edges. 

• We see that the a solution of the above system is 𝑥 = 1 1 1 1 𝑇. 

• The null space is formed by vectors 𝑐 1 1 1 1 𝑇 and dim 𝑁 𝐴 = 1 . 

• The solution to the above system is obtained subject to a scalar 𝑐. 

• Since 𝑛 = 4 and and dim 𝑁 𝐴 = 1, we get rank 𝐴 = 3 . 
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Graphs and networks: null space of transpose of incidence matrix 
 

• By fixing the potential at node one to 0 we remove a column and we solve for the 

remaining potentials. 

• Let us consider the equation 

 

 

 

 

 

• The vector 𝑦 represents currents across the edges. 

• The equation 𝐴𝑇𝑦 = 0 represents Kirchoff’s law. 

• (Note that there is a matrix 𝐶 that connects potential differences and current at the 

edges, and represent Ohm’s law: 𝑦 = 𝐶𝑒). 
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Graphs and networks: Kirchoff’s law 
 

• The equation 𝐴𝑇𝑦 = 0 is Kirchoff’s law. 

 

 

 

 

 

• The first equation refers to node one and indicates that the net current flow is 

zero. Similarly we get: 
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Graphs and networks: Kirchoff’s law 
 

• Three solution vectors that satisfy Kirchoff’s law 

represent total current running across 

the three possible loops. 

 

 

 

 

 

• We can see the third solution (current running across loop 3) is not independent 

from the first two solutions. 

• The null space of 𝐴𝑇 is two dimensional, which is the same as the number of 

loops. 
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Graphs and networks: row space of incidence matrix 
 

• Consider the columns space of 𝐴𝑇   which is the row space of 𝐴. 

 

 

 

 

 

• The pivot columns of 𝐴𝑇 are the first, second and the fourth, that form a graph 

without loops. This graph is called a tree. 
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dim(𝑁(𝐴𝑇)) = 𝑚 − 𝑟 

#loops = #edges − (#nodes − 1) 

#nodes − #edges + #loops = 1 (Euler's formula) 
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Graphs and networks 
 

• Summarizing all the equation 

 

 

 

 

 

 

•  The above three equations can be merged in a single equation as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

2 

3 

4 𝑦1 
𝑦4 

𝑦2 

𝑦3 
𝑦5 

Potential differences: 𝑒 = 𝐴𝑥 
Ohm’s Law: 𝑦 = 𝐶𝑒 
Kirchoff’s Current Law: 𝐴𝑇𝑦 = 0 

𝐴𝑇𝐶𝐴𝑥 = 0 
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Linear transformations 
 

• Consider the parameters/functions/vectors/other mathematical 

quantities denoted by 𝑢 and 𝑣. 
 

• A transformation is an operator applied on the above quantities, i.e., 

𝑇 𝑢 , 𝑇(𝑣). 
 

• A linear transformation possesses the following two properties: 

 𝑇 𝑢 + 𝑣 = 𝑇 𝑢 + 𝑇(𝑣) 

 𝑇 𝑐𝑣 = 𝑐𝑇(𝑣) where 𝑐 is a scalar. 
 

• By grouping the above two conditions we get 

𝑇 𝑐1𝑢 + 𝑐2𝑣 = 𝑐1𝑇 𝑢 + 𝑐2𝑇(𝑣) 
 

• The zero vector in a linear transformation is always mapped to zero. 
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Examples of transformations 
 

• Is the transformation 𝑇: 𝑅2 → 𝑅2 , which carries out projection of any 

vector of the 2-D plane on a specific straight line, a linear 

transformation? 
 

• Is the transformation 𝑇: 𝑅2 → 𝑅2, which shifts the entire plane by a 

vector 𝑣0, a linear transformation? 
 

• Is the transformation 𝑇: 𝑅3 → 𝑅, which takes as input a vector and 

produces as output its length, a linear transformation? 
 

• Is the transformation 𝑇: 𝑅2 → 𝑅2 , which rotates a vector by 45o a linear 

transformation? 
 

• Is the transformation 𝑇 𝑣 = 𝐴𝑣, where 𝐴 is a matrix, a linear 

transformation? 

 
 

 

 

 



Mathematics for Signals and Systems` 

Examples of transformations 
 

• Consider a transformation 𝑇: 𝑅3 → 𝑅2 . 
 

• In case 𝑇 𝑣 = 𝐴𝑣, then 𝐴 is a matrix of size 2 × 3. 
 

• If we know the outputs of the transformation if applied on a set of vectors 

𝑣1, 𝑣2 , … , 𝑣𝑛 which form a basis of some space, then we know the output 

to any vector that belongs to that space. 
 

• Recall: The coordinates of a system are based on its basis! 
 

• Most of the time when we talk about coordinates we think about the 

“standard” basis, which consists of the rows (columns) of the identity 

matrix. 
 

• Another popular basis consists of the eigenvectors of a matrix.  
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Examples of transformations: Projection 
 

• Consider the matrix 𝐴 that represents a linear transformation 𝑇. 

• Most of the times the required transformation is of the form 𝑇: 𝑅𝑛 → 𝑅𝑚. 

• I need to choose two bases, one for 𝑅𝑛, denoted by 𝑣1, 𝑣2 , … , 𝑣𝑛 and 

one for 𝑅𝑚 denoted by 𝑤1, 𝑤2 , … , 𝑤𝑚. 

• I am looking for a transformation that if applied on a vector described 

with the input coordinates produces the output co-ordinates. 

• Consider 𝑅2 and the transformation which projects any vector on the 

line shown on the figure below. 

• I consider as basis for 𝑅2 the vectors shown with red below and not the 

“standard” vectors 
1
0

 and 
0
1

. 

• On of the basis vectors lies on the required 

line and the other is perpendicular to the former. 
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Examples of transformations: Projection (cont) 
 

 

• I consider as basis for 𝑅2 the vectors shown with red below both before 

and after the transformation. 

• Any vector 𝑣 in 𝑅2 can be written as 𝑣 = 𝑐1𝑣1 +𝑐1 𝑣2. 

• We are looking for 𝑇(∙) such that 

𝑇 𝑣1 = 𝑣1 and 𝑇 𝑣2 = 0.  

Furthermore, 

𝑇 𝑣 = 𝑐1𝑇 𝑣1 +𝑐1 𝑇 𝑣2 = 𝑐1𝑣1 
1 0
0 0

𝑐1
𝑐2
=
𝑐1
0

 

• The matrix in that case is Λ. This is the “good” matrix. 

 

 
 

 

 

 

𝑣1 = 𝑤1 

𝑣2 = 𝑤2 



Examples of transformations: Projection (cont) 
 

 

• I now consider as basis for 𝑅2 the “standard” basis. 

• 𝑣1 =
1
0

 and 𝑣2 =
0
1

. 

• Consider projections on to 45o line. 

• In this example the required matrix is 

𝑃 =
𝑎𝑎𝑇

𝑎𝑇𝑎
=
1/2 1/2
1/2 1/2

 

• Here we didn’t choose the “best” basis, we chose the “handiest” basis. 

 
 

 

 

 

𝑣2 = 𝑤2 
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𝑣1 = 𝑤1 



Rule for finding matrix 𝐴 
 

 

• Suppose we are given the bases 𝑣1, 𝑣2 , … , 𝑣𝑛 and 𝑤1, 𝑤2 , … , 𝑤𝑚. 

• How do I find the first column of 𝐴? The first column of 𝐴 should tell me 

what happens to the first basis vector. Therefore, we apply 𝑇 𝑣1 . This 

should give 

𝑇 𝑣1 = 𝑎11𝑤1 +𝑎21 𝑤2…𝑎𝑚1𝑤𝑚 = 𝑎𝑖1𝑤𝑖

𝑚

𝑖=1

 

• We observe that {𝑎𝑖1} form the first column of the matrix 𝐴. 

• In general 𝑇 𝑣𝑗 = 𝑎1𝑗𝑤1 +𝑎2𝑗 𝑤2…𝑎𝑚𝑗 𝑤𝑚 =  𝑎𝑖𝑗𝑤𝑖
𝑚
𝑖=1  
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Examples of transformations: Derivative of a function 
 

 

• Consider a linear transformation that takes the derivative of a function. 

(The derivative is a linear transformation!) 

• 𝑇 =
𝑑(∙)

𝑑𝑥
 

• Consider input 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥
2. Basis consists of the functions 1, 𝑥, 𝑥2. 

• The output should be 𝑐2 + 2𝑐3𝑥. Basis consists of the functions 1, 𝑥. 

• I am looking for a matrix 𝐴 such that 𝐴

𝑐1
𝑐2
𝑐3
=
𝑐2
2𝑐3
. 

This is 𝐴 =
0 1 0
0 0 2

. 

 

 

 

 

 
 

 

 

 

Mathematics for Signals and Systems` 



Mathematics for Signals and Systems 

Types of matrix inverses 
 

• 2-sided inverse (or simply inverse) 

 
 

• Left inverse. (Note that a rectangular matrix cannot have a 2-sided inverse!) 

 

 

 

 

• Right inverse 

 

𝐴𝐴−1 = 𝐼 = 𝐴−1𝐴 𝑟 = 𝑚 = 𝑛 (full rank) 

(full column rank) 
independent columns 
nullspace = 0  
0 or 1 solutions to 𝐴𝑥 = 𝑏 
 
 

𝑟 = 𝑛 < 𝑚 𝐴𝑇𝐴 −1𝐴𝑇𝐴 = 𝐼 𝐴𝑇𝐴 
𝑛 𝑥 𝑛 

invertible 
 
 

𝐴𝑙𝑒𝑓𝑡
−1   𝐴  =   𝐼 

𝑛 𝑥 𝑚 𝑚 𝑥 𝑛 

(full row rank) 
independent rows 
𝑁(𝐴𝑇) = 0  
∞  solutions to 𝐴𝑥 = 𝑏 
 
 
 

𝑟 = 𝑚 < 𝑛 
𝑛 − 𝑚 free variables 
 

𝐴𝐴𝑇 𝐴𝐴𝑇 −1 = 𝐼 𝐴𝐴𝑇 
𝑚 𝑥 𝑚 

invertible 
 

𝐴  𝐴𝑟𝑖𝑔ℎ𝑡
−1  =   𝐼 

𝑚 𝑥 𝑛 𝑛 𝑥 𝑚 
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Pseudo-inverse. The case for 𝑟 < 𝑚, 𝑟 < 𝑛 
• The multiplication of a vector from the row space 𝑥 with a matrix 𝐴 gives a 

vector 𝐴𝑥 in the column space (1) 

• The multiplication of a vector from the column space 𝐴𝑥 with the pseudo 

inverse of 𝐴 (i.e. 𝐴+) gives the vector 𝑥 =  𝐴+𝐴𝑥  (2) 

 

𝑅𝑛 

𝑁(𝐴)  

𝑅𝑚 

𝑁(𝐴𝑇)  

row space column space 

Nulls pace 
Nulls pace of 𝐴𝑇  

𝐴𝑥 𝑥 

𝑛 − 𝑟 𝑚 − 𝑟 

rank 𝑟 rank 𝑟 
𝐴 

𝐴 𝑦 𝐴𝑦 
𝐴+ 

𝐴+ 

(1) 

(2) 

(2) 

(1) 
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Pseudo-inverse 
 

• If 𝑥 ≠ 𝑦 are different vectors in the row space then the vectors 𝐴𝑥, 𝐴𝑦 are 

vectors in the column space. We can show that 𝐴𝑥 ≠ 𝐴𝑦. 

 

Proof 

Suppose 𝐴𝑥 = 𝐴𝑦. 

Then 𝐴 𝑥 − 𝑦 = 0 is in the null space. 

But we know 𝑥, 𝑦 and 𝑥 − 𝑦 are in the row space. 

Therefore 𝑥 − 𝑦 is the zero vector and 𝑥 = 𝑦  so 𝐴𝑥 = 𝐴𝑦.  

 

• Therefore a matrix 𝐴 is a mapping from row space to column space and vice-

versa. For that particular mapping the inverse of 𝐴 is denoted by 𝐴+ and is 

called pseudo-inverse. 
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Find the Pseudo-inverse 
•How can we find the pseudo-inverse 𝐴+ 

•Starting from SVD, 𝐴 = 𝑈 Σ V𝑇 with Σ =
𝜎1 0 0
0 𝜎𝑟 0
0 0 0

 of size 𝑚 × 𝑛 and rank 𝑟. 

•The pseudo-inverse is 𝐴+ = V Σ+ U𝑇 , Σ+ =

1
𝜎1 0 0

0 1
𝜎𝑟 0

0 0 0

 of size 𝑛 ×𝑚 and rank 𝑟. 

•Note that Σ Σ+ =
1 0 0
0 1 0
0 0 0

 of size 𝑚 𝑥 𝑚 and is a projection matrix onto the column 

space. 

•Note also that Σ+Σ =
1 0 0
0 1 0
0 0 0

 of size 𝑛 𝑥 𝑛 is a projection matrix onto the row space. 

• Σ Σ+ ≠ 𝐼 ≠  Σ+ Σ. 


