Imperial College London

Waths for Signals and Systems Linear Algebra in Engineering

Lecture 15, Friday 14 ${ }^{\text {th }}$ November 2014

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Imperial College

London

Mathematics for Signals and Systems

Definition of Markov matrices and their properties

- Consider a matrix A with the following properties:
$>$ All entries are ≥ 0
$>$ The elements of each column add up to 1 .
- This is called a Markov matrix.
- An example is

$$
A=\left[\begin{array}{ccc}
0.1 & 0.01 & 0.3 \\
0.2 & 0.99 & 0.3 \\
0.7 & 0 & 04
\end{array}\right]
$$

- When I square the matrix the above properties are still valid!
- The powers of the matrix are all Markov matrices.
- I am interested in the eigenvalues and eigenvectors of a Markov matrix.

Imperial College

Mathematics for Signals and Systems

Markov matrices and their eigenvalues

- $\lambda=1$ is always an eigenvalue of a Markov matrix.
- The rest of the eigenvalues have magnitude $\left|\lambda_{i}\right|<1$.
- Remember the system described by an equation of the form $u_{k}=A^{k} u_{0}$.
- We managed to write $u_{k}=A^{k} u_{0}=c_{1} \lambda_{1}{ }^{k} x_{1}+c_{2} \lambda_{2}{ }^{k} x_{2}+\cdots$ where λ_{i} and x_{i} are the eigenvalues and eigenvectors of matrix A respectively.
- Note that the above relationship requires a complete set of eigenvectors.
- If $\lambda_{1}=1$ and $\left|\lambda_{i}\right|<1, i>1$ then the steady state of the system is $c_{1} x_{1}$ (which is part of the initial condition u_{0}).
- Furthermore, the components of x_{1} are positive or zero, i.e., the steady state is positive.

Imperial College

Mathematics for Signals and Systems

Markov matrices and their eigenvalues

- I would like to prove that $\lambda=1$ is always an eigenvalue of a Markov matrix.
- Consider again the Markov matrix A.
- Since the elements of each column of A add up to 1 , the elements of each column of $A-I$ should add up to zero.
- Therefore, the rows of $A-I$ should add up to zero.
- Therefore, matrix $A-I$ is singular, which yields $\operatorname{det}(A-I)=0$.
- From the above analysis, it is shown that $\lambda=1$ is always an eigenvalue of a Markov matrix.
- Since $A-I$ is singular there is a vector x for which

$$
(A-I) x=0 \Rightarrow A x=x
$$

- A vector of the null space of $A-I$ is the eigenvector of A that corresponds to eigenvalue $\lambda=1$.

Imperial College

Mathematics for Signals and Systems

Application of Markov matrices

- Consider again the system described by an equation of the form $u_{k}=A^{k} u_{0}$, where A is now a Markov matrix.
- I will use an example where A is a 2×2 matrix. Generally, an $n \times n$ Markov matrix is related to n "states". This is a concept that we will develop shortly.
- Assume that A is a 2×2 matrix, and the 2 "states" are 2 UK cities.
- I take London and Oxford. I am interested in the population of the two cities and how it evolves.
- I assume that people who inhabit these two cities move between them only.
- $\left[\begin{array}{l}u_{\mathrm{ox}} \\ u_{\text {lon }}\end{array}\right]_{t=k+1}=\left[\begin{array}{ll}0.9 & 0.2 \\ 0.1 & 0.8\end{array}\right]\left[\begin{array}{l}u_{\mathrm{ox}} \\ u_{\text {lon }}\end{array}\right]_{t=k}$
- It is now obvious that the column elements are positive and also add up to 1 because they represent probabilities.

Imperial College

Mathematics for Signals and Systems

Application of Markov matrices (cont.)

- I assume that $\left[\begin{array}{l}u_{\mathrm{ox}} \\ u_{\text {lon }}\end{array}\right]_{t=k=0}=\left[\begin{array}{c}0 \\ 1000\end{array}\right]$
- $\left[\begin{array}{l}u_{\mathrm{ox}} \\ u_{\text {lon }}\end{array}\right]_{k=1}=\left[\begin{array}{ll}0.9 & 0.2 \\ 0.1 & 0.8\end{array}\right]\left[\begin{array}{c}0 \\ 1000\end{array}\right]=\left[\begin{array}{c}200 \\ 800\end{array}\right]$
- Question: What is the population of the two cities after a long time?
- Consider the matrix $\left[\begin{array}{ll}0.9 & 0.2 \\ 0.1 & 0.8\end{array}\right]$. The eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=0.7$.
(Notice that the second eigenvalue is found by the trace of the matrix.)
- The eigenvectors of this matrix are $x_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $x_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- $\left[\begin{array}{l}u_{\mathrm{ox}} \\ u_{\mathrm{lon}}\end{array}\right]_{k}=c_{1} \lambda_{1}{ }^{k}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2} \lambda_{2}{ }^{k}\left[\begin{array}{c}-1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2} 0.7^{k}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Mathematics for Signals and Systems

Application of Markov matrices (cont.)

- I find c_{1}, c_{2} from the initial condition $\left[\begin{array}{l}u_{\mathrm{ox}} \\ u_{\mathrm{lon}}\end{array}\right]_{t=k=0}=\left[\begin{array}{c}0 \\ 1000\end{array}\right]$

$$
\left[\begin{array}{c}
0 \\
1000
\end{array}\right]=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \text { and therefore, } c_{1}=\frac{1000}{3} \text { and } c_{2}=\frac{2000}{3}
$$

- Markov models facilitate the modeling of various real life engineering applications.
- An example is the modeling of the movement of people without gain or loss: total number of people is conserved!

Imperial College

Mathematics for Signals and Systems

Expansion with orthonormal basis

- Consider a set of orthonormal vectors q_{1}, \ldots, q_{n} which form a basis of the n-th dimensional space.
- Every vector v can be written as $v=x_{1} q_{1}+\cdots+x_{n} q_{n}$.
- The problem is to find x_{i}, for every i.
- The inner product $q_{1}{ }^{T} \cdot v$ is given by

$$
q_{1}{ }^{T} \cdot v=q_{1}{ }^{T} \cdot\left(x_{1} q_{1}+\cdots+x_{n} q_{n}\right)=x_{1}
$$

- The matrix Q contains the column vectors $q_{i}, i=1, \ldots, n$.

$$
Q x=v \Rightarrow x=Q^{-1} v \text { with } Q^{-1}=Q^{T}
$$

Imperial College

Mathematics for Signals and Systems

Fourier Series

- The goal is to write a function $f(x)$ as follows:

$$
f(x)=a_{0}+a_{1} \cos (x)+b_{1} \sin (x)+a_{2} \cos (2 x)+b_{2} \sin (2 x)+\cdots
$$

- The cosine and sine signals are orthogonal signals.
- The difference of the above relationship to the previous one with vectors, is that this is infinite.
- The above relationship is the so called Fourier Series expansion.
- For the first time the vectors are replaced by functions.
- Orthogonal vectors v, w imply that $v^{T} w=v_{1} w_{1}+\cdots+v_{n} w_{n}=0$.
- Orthogonal continuous functions f and g imply that

$$
f^{T} g=\int f(x) g(x) d x
$$

- In the case of Fourier Series above I have $f^{T} g=\int_{0}^{2 \pi} f(x) g(x) d x$.
- Problem: Find a_{0}, a_{i}, b_{i}

