Imperial College London

Maths for Signals and Systems Linear Algebra in Engineering

Lecture 15, Friday 14th November 2014

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Definition of Markov matrices and their properties

• Consider a matrix *A* with the following properties:

 \succ All entries are ≥ 0

 \succ The elements of each column add up to 1.

- This is called a Markov matrix.
- An example is

$$A = \begin{bmatrix} 0.1 & 0.01 & 0.3 \\ 0.2 & 0.99 & 0.3 \\ 0.7 & 0 & 04 \end{bmatrix}$$

- When I square the matrix the above properties are still valid!
- The powers of the matrix are all Markov matrices.
- I am interested in the eigenvalues and eigenvectors of a Markov matrix.

Markov matrices and their eigenvalues

- $\lambda = 1$ is always an eigenvalue of a Markov matrix.
- The rest of the eigenvalues have magnitude $|\lambda_i| < 1$.
- Remember the system described by an equation of the form $u_k = A^k u_0$.
- We managed to write $u_k = A^k u_0 = c_1 \lambda_1^k x_1 + c_2 \lambda_2^k x_2 + \cdots$ where λ_i and x_i are the eigenvalues and eigenvectors of matrix A respectively.
- Note that the above relationship requires a complete set of eigenvectors.
- If $\lambda_1 = 1$ and $|\lambda_i| < 1$, i > 1 then the steady state of the system is $c_1 x_1$ (which is part of the initial condition u_0).
- Furthermore, the components of x_1 are positive or zero, i.e., the steady state is positive.

Markov matrices and their eigenvalues

- I would like to prove that $\lambda = 1$ is always an eigenvalue of a Markov matrix.
- Consider again the Markov matrix *A*.
- Since the elements of each column of A add up to 1, the elements of each column of A I should add up to zero.
- Therefore, the rows of A I should add up to zero.
- Therefore, matrix A I is singular, which yields det(A I) = 0.
- From the above analysis, it is shown that $\lambda = 1$ is always an eigenvalue of a Markov matrix.
- Since A I is singular there is a vector x for which

$$(A-I)x = 0 \Rightarrow Ax = x$$

• A vector of the null space of A - I is the eigenvector of A that corresponds to eigenvalue $\lambda = 1$.

Application of Markov matrices

- Consider again the system described by an equation of the form $u_k = A^k u_0$, where A is now a Markov matrix.
- I will use an example where A is a 2 × 2 matrix. Generally, an n × n Markov matrix is related to n "states". This is a concept that we will develop shortly.
- Assume that A is a 2×2 matrix, and the 2 "states" are 2 UK cities.
- I take London and Oxford. I am interested in the population of the two cities and how it evolves.
- I assume that people who inhabit these two cities move between them only.

• $\begin{bmatrix} u_{\text{ox}} \\ u_{\text{lon}} \end{bmatrix}_{t=k+1} = \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix} \begin{bmatrix} u_{\text{ox}} \\ u_{\text{lon}} \end{bmatrix}_{t=k}$

 It is now obvious that the column elements are positive and also add up to 1 because they represent probabilities.

Application of Markov matrices (cont.)

- I assume that $\begin{bmatrix} u_{\text{ox}} \\ u_{\text{lon}} \end{bmatrix}_{t=k=0} = \begin{bmatrix} 0 \\ 1000 \end{bmatrix}$
- $\begin{bmatrix} u_{\text{ox}} \\ u_{\text{lon}} \end{bmatrix}_{k=1} = \begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix} \begin{bmatrix} 0 \\ 1000 \end{bmatrix} = \begin{bmatrix} 200 \\ 800 \end{bmatrix}$
- **Question:** What is the population of the two cities after a long time?
- Consider the matrix $\begin{bmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{bmatrix}$. The eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 0.7$.

(Notice that the second eigenvalue is found by the trace of the matrix.)

• The eigenvectors of this matrix are $x_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $x_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

•
$$\begin{bmatrix} u_{\text{ox}} \\ u_{\text{lon}} \end{bmatrix}_k = c_1 \lambda_1^{\ k} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \lambda_2^{\ k} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 0.7^k \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Application of Markov matrices (cont.)

- I find c_1 , c_2 from the initial condition $\begin{bmatrix} u_{\text{ox}} \\ u_{\text{lon}} \end{bmatrix}_{t=k=0} = \begin{bmatrix} 0 \\ 1000 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1000 \end{bmatrix} = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and therefore, $c_1 = \frac{1000}{3}$ and $c_2 = \frac{2000}{3}$
- Markov models facilitate the modeling of various real life engineering applications.
- An example is the modeling of the movement of people without gain or loss: total number of people is conserved!

Expansion with orthonormal basis

- Consider a set of orthonormal vectors q_1, \ldots, q_n which form a basis of the n -th dimensional space.
- Every vector v can be written as $v = x_1q_1 + \dots + x_nq_n$.
- The problem is to find x_i , for every *i*.
- The inner product $q_1^T \cdot v$ is given by $q_1^T \cdot v = q_1^T \cdot (x_1q_1 + \dots + x_nq_n) = x_1$
- The matrix Q contains the column vectors q_i , i = 1, ..., n.

$$Qx = v \Rightarrow x = Q^{-1}v$$
 with $Q^{-1} = Q^T$

Fourier Series

- The goal is to write a function f(x) as follows: $f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \cdots$
- The cosine and sine signals are orthogonal signals.
- The difference of the above relationship to the previous one with vectors, is that this is infinite.
- The above relationship is the so called Fourier Series expansion.
- For the first time the vectors are replaced by functions.
- Orthogonal vectors v, w imply that $v^T w = v_1 w_1 + \dots + v_n w_n = 0$.
- Orthogonal **continuous** functions *f* and *g* imply that

$$f^T g = \int f(x)g(x)dx$$

- In the case of Fourier Series above I have $f^T g = \int_0^{2\pi} f(x)g(x)dx$.
- **Problem:** Find a_0, a_i, b_i