Maths for Signals and Systems Linear Algebra in Engineering

Lecture 15, Friday 13 November 2015

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Positive definite matrices cont.

- If a matrix A is positive-definite, its inverse A⁻¹ it also positive definite. This comes from the fact that the eigenvalues of the inverse of a matrix are equal to the inverses of the eigenvalues of the original matrix.
- If matrices *A* and *B* are positive definite, then their sum is positive definite. This comes from the fact $x^T(A + B)x = x^TAx + x^T Bx > 0$. The same comment holds for positive semi-definiteness.
- Consider the matrix A of size $m \times n$ (rectangular, not square). In that case we are interested in the matrix $A^T A$ which is square.
- Is $A^T A$ positive definite?

Positive definite matrices

- Is $A^T A$ positive definite?
- $x^T A^T A x = (Ax)^T A x = ||Ax||^2$
- In order for $||Ax||^2 > 0$ for every $x \neq 0$, the null space of A must be zero.
- In case of A being a rectangular matrix of size m × n with m > n, the rank of A must be n.

Similar matrices

- Consider two square matrices A and B.
- Suppose that for some invertible matrix *M* the relationship $B = M^{-1}AM$ holds. In that case we say that *A* and *B* are similar matrices.
- **Example:** Consider a matrix *A* which has a full set of eigenvectors. In that case $S^{-1}AS = \Lambda$. Based on the above *A* is similar to Λ .
- Similar matrices have the same eigenvalues.
- Matrices with identical eigenvalues are not necessarily similar.
- There are different families of matrices with the same eigenvalues.
- Consider the matrix A with eigenvalues λ and corresponding eigenvectors x and the matrix $B = M^{-1}AM$.

We have
$$Ax = \lambda x \Rightarrow AMM^{-1}x = \lambda x \Rightarrow M^{-1}AMM^{-1}x = \lambda M^{-1}x$$

 $BM^{-1}x = \lambda M^{-1}x$

Therefore, λ is also an eigenvalue of B with corresponding eigenvector $M^{-1}x$.

Matrices with identical eigenvalues with some repeated

- Consider the families of matrices with repeated eigenvalues.
- **Example:** Lets take the 2 × 2 size matrices with eigenvalues $\lambda_1 = \lambda_2 = 4$.
 - The following two matrices

$$\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = 4I \text{ and } \begin{bmatrix} 4 & 1 \\ 0 & 4 \end{bmatrix}$$

have eigenvalues 4,4 but they belong to different families.

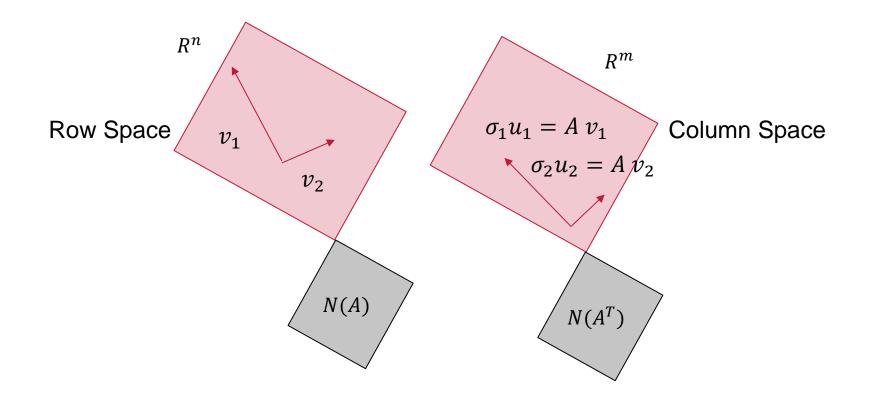
- There are **two** families of matrices with eigenvalues 4,4.
- The matrix $\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$ has no "relatives". The only matrix similar to it, is itself.
- The big family includes $\begin{bmatrix} 4 & 1 \\ 0 & 4 \end{bmatrix}$ and any matrix of the form $\begin{bmatrix} 4 & a \\ 0 & 4 \end{bmatrix}$, $a \neq 0$. These matrices are not diagonalizable since they only have one non-zero eigenvector.

Matrices with identical eigenvalues with some repeated

- Lets find more matrices of the family of $\begin{bmatrix} 4 & 1 \\ 0 & 4 \end{bmatrix}$.
- Any matrix with trace 8 and determinant 16 belongs to that family.
- Examples are $\begin{bmatrix} 5 & 1 \\ -1 & 3 \end{bmatrix}$ and $\begin{bmatrix} 4 & 0 \\ 17 & 4 \end{bmatrix}$.
- Similar matrices with repeated eigenvalues have identical eigenvalues and same number of independent eigenvectors. The reverse is not true.

- In linear algebra, the Singular Value Decomposition (SVD) is a factorization of any real or complex matrix A of dimension m × n as A = UΣV^T
- It has many useful applications in signal processing and statistics.
 - *U* is a unitary matrix with columns u, of dimension $m \times m$.
 - Σ is an $m \times n$ rectangular diagonal matrix with non-negative real numbers on the diagonal.
 - *V* is a unitary matrix with columns *v*, of dimension $n \times n$.
- *U* is in general different to *V*.
- When *A* is a square invertible matrix then $A = S\Lambda S^{-1}$.
- When A is a symmetric matrix, the eigenvectors of S are orthogonal, so $A = Q\Lambda Q^T$.
- Therefore, for symmetric matrices SVD is effectively an eigenvector decomposition U = Q = V and $\Lambda = \Sigma$.

• With SVD an orthogonal basis in the row space, which is given by the columns of v, is mapped by matrix A to an orthogonal basis in the column space given by the columns of u. This comes from $AV = U\Sigma$.



• In matrix form the mapping between the row and column space that the SVD achieves can be written as: $A \begin{bmatrix} v_1 & \dots & v_r \end{bmatrix} = \begin{bmatrix} u_1 & \dots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r \end{bmatrix}$ or

 $AV = U\Sigma.$

- So the goal is to find an orthonormal basis (V) of the row space and an orthonormal basis (U) of the column space that diagonalize the matrix A to Σ.
- In the generic case the basis of *V* would be different to the basis of *U*.

• The following relationships hold:

$$AV = U\Sigma$$
$$A = U\Sigma V^{-1} = U\Sigma V^{T}$$

• The matrix $A^T A$ is therefore

$$A^{T}A = V\Sigma U^{T}U\Sigma V^{T} = V\Sigma^{2}V^{T} \text{ with}$$
$$\Sigma = \begin{bmatrix} \sigma_{1}^{2} & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \sigma_{n}^{2} \end{bmatrix}$$

- Therefore, the above expression is the eigenvector decomposition of $A^{T}A$.
- Similarly, the eigenvector decomposition of AA^T is: $AA^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$
- So we can determine all the factors of SVD by the eigenvalue decompositions of matrices A^TA and AA^T.

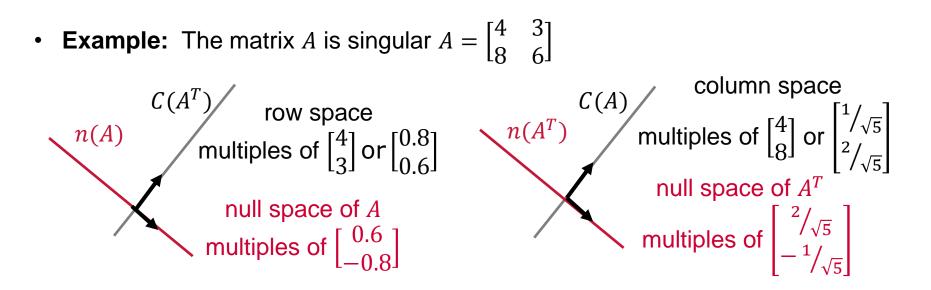
• Example: $A = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$ and $A^T A = \begin{bmatrix} 4 & -3 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix} = \begin{bmatrix} 25 & 7 \\ 7 & 25 \end{bmatrix}$

• The eigenvalues of $A^T A$ are 32 and 18.

- The eigenvectors of $A^T A$ are $v_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ and $A^T A = V \Sigma^2 V^T$
- Similarly $AA^T = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 32 & 0 \\ 0 & 18 \end{bmatrix}$
- Therefore, the eigenvectors of AA^T are $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $AA^T = U\Sigma^2 U^T$.
- Note that: eig(AB) = eig(BA)

Mathematics for Signals and Systems

• Therefore, the SVD of $A = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$ is: $A = U\Sigma V^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{32} & 0 \\ 0 & \sqrt{18} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ -3 & 3 \end{bmatrix}$



• The eigenvalues of $A^T A = \begin{bmatrix} 4 & 8 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix} = \begin{bmatrix} 80 & 60 \\ 60 & 45 \end{bmatrix}$ are 0 and 125. $A = U \Sigma V^T = \begin{bmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ 2/\sqrt{5} & -1/\sqrt{5} \end{bmatrix} \begin{bmatrix} \sqrt{125} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.6 \\ 0.6 & -0.8 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 8 & 6 \end{bmatrix}$

- Orthonormal basis for row space: $v_1 \dots v_r$
- Orthonormal basis for column space: $u_1 \quad \dots \quad u_r$
- Orthonormal basis for null space: v_{r+1} ... v_n
- Orthonormal basis for null space of A^T : u_{r+1} ... u_n

These bases make matrix A diagonal $Av_i = \sigma_i u_i$