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Determinant of a 2 × 2 matrix 
 

• The goal is to find the determinant of a 2 × 2 matrix 
𝑎 𝑏
𝑐 𝑑

 using the 

properties described previously. 

• We know that 
1 0
0 1

= 1 and 
0 1
1 0

= −1. 

•
𝑎 𝑏
𝑐 𝑑

=
𝑎 0
𝑐 𝑑

+ 
0 𝑏
𝑐 𝑑

=
𝑎 0
𝑐 0
+
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0
+
0 𝑏
0 𝑑

= 

0 +
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0
+ 0 = 𝑎𝑑

1 0
0 1

+ 𝑏𝑐
0 1
1 0

= 𝑎𝑑 − 𝑏𝑐 

• As you can see, I break the determinant of a 2 × 2 random matrix into 4 

determinants of simpler (permutation) matrices. 

• I can implement the above analysis for 3 × 3 matrices. 

• In the case of a 3 × 3 matrix I break the matrix into 27 determinants. 

• And so on… 
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Determinant of a 2 × 2 matrix 
 

• For the case of a 2 × 2 matrix 
𝑎 𝑏
𝑐 𝑑
 we obtained: 

 
𝑎 𝑏
𝑐 𝑑

=
𝑎 0
𝑐 0
+
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0
+
0 𝑏
0 𝑑

= 0 +
𝑎 0
0 𝑑

+
0 𝑏
𝑐 0
+ 0 

 

• The determinants which survived have strictly one entry from each row 

and each column. 

 

• The above is a universal conclusion! 
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Determinant of a 3 × 3 matrix 
 

• For the case of a 3 × 3 matrix 𝐴 =
𝑎11 𝑎12 𝑎13
𝑎21
𝑎31

𝑎22 𝑎23
𝑎32 𝑎33

 we obtain: 

 
𝑎11 𝑎12 𝑎13
𝑎21
𝑎31

𝑎22 𝑎23
𝑎32 𝑎33

=

𝑎11 0 0

0
0

𝑎22 0
0 𝑎33

+

𝑎11 0 0

0
0

0 𝑎23
𝑎32 0

+⋯ = 

𝑎11𝑎22𝑎33 − 𝑎11𝑎23 𝑎32 − 𝑎12𝑎21𝑎33 + 𝑎12𝑎23 𝑎31 + 

𝑎13𝑎21𝑎32 − 𝑎13𝑎22 𝑎31 

 

• As mentioned the determinants which survive have strictly one entry from 

each row and each column. 
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The “Big Formula” for the determinant 
 

• For the case of a 2 × 2 matrix the determinant has 2 terms. 

• For the case of a 3 × 3 matrix the determinant has 6 terms. 

• For the case of a 4 × 4 matrix the determinant has 24 terms. 

• For the case of a 𝑛 × 𝑛 matrix the determinant has 𝑛! terms. 

 The elements from the first row can be chosen in 𝑛 different ways. 

 The elements from the second row can be chosen in (𝑛 − 1) different 

ways 

 and so on… 

• Problem: Find the determinant of the following matrix: 
0 0
0 1

1 1
1 0

1 1
1 0

0 0
0 1
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The “Big Formula” for the determinant 
 

• For the case of a 𝑛 × 𝑛 matrix the determinant has 𝑛! terms. 

𝑑𝑒𝑡 𝐴 =  ±𝑎1𝑎𝑎2𝑏𝑎3𝑐…𝑎𝑛𝑧
𝑛!terms

 

 𝑎, 𝑏, 𝑐, … , 𝑧 are different columns 

 In the above summation, half of the terms have a plus and half of them 

have a minus sign. 
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The “Big Formula” for the determinant 
 

• For the case of an 𝑛 × 𝑛 matrix, cofactors consist of a method which 

helps us to connect a determinant to determinants of smaller matrices. 

 

𝑑𝑒𝑡 𝐴 =  ±𝑎1𝑎𝑎2𝑏𝑎3𝑐…𝑎𝑛𝑧
𝑛!terms

 

 

• Cofactors 3 × 3. Consider  

det 𝐴 = 𝑎11(𝑎22𝑎33 − 𝑎23 𝑎32) − 𝑎12(𝑎21𝑎33 − 𝑎23 𝑎31) 
+𝑎13(𝑎21𝑎32 − 𝑎22 𝑎31) 

 

(𝑎22𝑎33 − 𝑎23 𝑎32) is the determinant of a 2 × 2 matrix which is a sub-

matrix of the original matrix. We denote 𝐶11 = 𝑎22𝑎33 − 𝑎23 𝑎32 . 
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Cofactors 
 

• The cofactor of element 𝑎𝑖𝑗 is defined as follows: 

𝐶𝑖𝑗 = ±det 𝑛 − 1 × 𝑛 − 1  matrix 𝐴𝑖𝑗  

 𝐴𝑖𝑗 is the 𝑛 − 1 × 𝑛 − 1  matrix that is obtained from the original 

matrix 𝐴 if row 𝑖 and column 𝑗 are eliminated. 

 We keep the + if (𝑖 + 𝑗) is even. 

 We keep the − if (𝑖 + 𝑗) is odd. 

 

• Cofactor formula along row 1: 

det 𝐴 = 𝑎11𝐶11 + 𝑎12𝐶12 +⋯+ 𝑎1𝑛 𝐶1𝑛 

• Cofactor formula along any row or column can be used for the final 

estimation of the determinant. 

• We define a matrix 𝐶 with elements 𝐶𝑖𝑗 . 
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Estimation of the inverse 𝐴−1 using cofactors 
 

• For a 2 × 2 matrix it is quite easy to show that  

𝑎 𝑏
𝑐 𝑑

−1

=
1

𝑎𝑑 − 𝑏𝑐
𝑑 −𝑏
−𝑐 𝑎

 

• Big formula for 𝐴−1 

𝐴−1 =
1

𝑑𝑒𝑡 (𝐴)
𝐶𝑇 

𝐴𝐶𝑇 = 𝑑𝑒𝑡 (𝐴) ⋅ 𝐼 

• 𝐶𝑖𝑗 is the cofactor of 𝑎𝑖𝑗 . For a matrix 𝐴 of size 𝑛 × 𝑛, 𝐶𝑖𝑗 is always a 

product of 𝑛 − 1  entries. 

• In general 
𝑎11 … 𝑎1𝑛
⋮ ⋮
𝑎𝑛1 … 𝑎𝑛𝑛

𝐶11 … 𝐶𝑛1
⋮ ⋮
𝐶1𝑛 … 𝐶𝑛𝑛

= det (𝐴) ⋅ 𝐼 
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Solve 𝐴𝑥 = 𝑏 
 

• The solution can be now obtained from 

𝑥 = 𝐴−1𝑏 =
1

𝑑𝑒𝑡 (𝐴)
𝐶𝑇𝑏 

• Cramer’s rule: 

o First component of the answer 𝑥1 =
det (𝐵1)

𝑑𝑒𝑡 (𝐴)
. Then 𝑥2 =

det (𝐵2)

𝑑𝑒𝑡 (𝐴)
 and so on. 

o What are these matrices 𝐵𝑖? 

𝐵1 = 𝑏 ⋮ last 𝑛 − 1  columns of 𝐴  

o 𝐵1 is obtained by 𝐴 if we replace the first column with 𝑏. 𝐵𝑖 is obtained 

by 𝐴 if we replace the 𝑖 column with 𝑏. 

o Is this rule “good” in practice? We must find (𝑛 + 1) determinants. This 

will take forever! But… 

o Having a formula allows you to have algebra instead of algorithms!  
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det 𝐴 = volume of a box 
 

• Take 𝐴 to be a matrix of size 3 × 3. 

• Then we can prove that det (𝐴) is the volume of a 3D box. 

• Look at the three-dimensional box (parallelepiped) formed from the three 

rows of 𝐴. 

• It is proven that abs( 𝐴 )=volume of the box! 

 

 

 

 


