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Determinant of a 2 X 2 matrix

 The goal is to find the determinant of a 2 X 2 matrix ‘CCL Z‘ using the
properties described previously.

. Weknowthat‘é (1)=1and‘(1) (1)=—1.
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0+|¢ 2\+|(c’ g+0=ad|(1) (1)‘+bc‘(1) (1)‘=ad—bc

« As you can see, | break the determinant of a 2 X 2 random matrix into 4
determinants of simpler (permutation) matrices.

« | can implement the above analysis for 3 X 3 matrices.
 Inthe case of a 3 x 3 matrix | break the matrix into 27 determinants.
« Andsoon...
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Determinant of a 2 X 2 matrix

 For the case of a 2 X 2 matrix ‘Z Z‘ we obtained:
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« The determinants which survived have strictly one entry from each row
and each column.

* The above is a universal conclusion!
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Determinant of a 3 X 3 matrix

a;; @412 i3
* Forthecaseofa3 x3 matrix A = [A21 azz az3| we obtain:
d3z; dzz dAz3
a1 a2 a3 a1 0O O a1 0O O
A1 Az A3|=[0 az;, O [+(0 0 ay3|+--=
31 Qzz dszs 0 0 as; 0 az, O

A11032033 — A11033 A3 — A12021033 + A12073 A31 T
13021037 — A13022 A3q

As mentioned the determinants which survive have strictly one entry from
each row and each column.
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The "Big Formula” for the determinant

« Forthe case of a 2 X 2 matrix the determinant has 2 terms.
« For the case of a 3 x 3 matrix the determinant has 6 terms.
« For the case of a 4 X 4 matrix the determinant has 24 terms.
« For the case of a n X n matrix the determinant has n! terms.
» The elements from the first row can be chosen in n different ways.
» The elements from the second row can be chosen in (n — 1) different

ways
» and soon...
 Problem: Find the determinant of the following matrix:
0 0 1 1]
0 1 1 0
1 1 0 O
1 0 0 1]
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The “Big Formula” for the determinant

 For the case of a n X n matrix the determinant has n! terms.

det(A) = z ta g a,p0350 ... Ay

n'terms
> a,b,c, ...,z are different columns

» In the above summation, half of the terms have a plus and half of them
have a minus sign.
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The “Big Formula” for the determinant

« For the case of an n X n matrix, cofactors consist of a method which
helps us to connect a determinant to determinants of smaller matrices.

det(A) = 2 ta g a,p0350 ... Ay

n'terms

 (Cofactors 3 x 3. Consider
det(A) = a;1(azzasz — a3 aszz) — a12(az1a33 — az3 azq)
+ay3(az az; — az; azq)

(a,,a33 — a,3 as,) Is the determinant of a 2 X 2 matrix which is a sub-
matrix of the original matrix. We denote C;; = a,,a33 — a,3 as, .
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Cofactors

 The cofactor of element a;; is defined as follows:
Cij = idet[(n — 1) X (n — 1) matrix Aij]
> A;jisthe (n — 1) X (n — 1) matrix that is obtained from the original
matrix A if row i and column j are eliminated.
» We keep the + if (i +j) is even.
» We keep the — if (i +)) Is odd.

« Cofactor formula along row 1.:
det(4) = a11C11 + 412012 + - + a1y, Cigg
« Cofactor formula along any row or column can be used for the final
estimation of the determinant.

*  We define a matrix C with elements C;;.
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Estimation of the inverse A1 using cofactors
 Fora 2 x 2 matrix it is quite easy to show that
[a bt _ 1 [d —b]
c d ad —bcl—c a

 Big formula for A™1
-1 1 CT
det(A)
ACT =det(A) -1
* (;; Is the cofactor of a;; . For a matrix A of size n X n, C;; is always a

product of (n — 1) entries.
* Ingeneral

= det(A) - I
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Solve Ax = b
The solution can be now obtained from
=A"1ph = CTh
* det(A)
Cramer’s rule:
First component of the answer x; = 28D Then x, = 2482) 504 50 on.
det(A) det(A)

What are these matrices B;?
By =1[b: last(n— 1) columns of A]

B, is obtained by A if we replace the first column with b. B; is obtained
by A if we replace the i column with b.

Is this rule “good” in practice? We must find (n + 1) determinants. This
will take forever! But...

Having a formula allows you to have algebra instead of algorithms!
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det(4) = volume of a box

« Take A to be a matrix of size 3 x 3.
« Then we can prove that det(A) is the volume of a 3D box.

« Look at the three-dimensional box (parallelepiped) formed from the three
rows of A.

 Itis proven that abs(|4|)=volume of the box!

.4
(as1,asz, ass)

volume of box
=|determinant|

({I“,au,alg,) . (az1,a22,a23)
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