Imperial College London

Maths for Signals and Systems Linear Algebra in Engineering

Lectures 12, Friday 7th November 2014

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Determinant of a 2×2 matrix

- The goal is to find the determinant of a 2 × 2 matrix $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ using the properties described previously.
- We know that $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$ and $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1$. • $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix} =$
- As you can see, I break the determinant of a 2×2 random matrix into 4 determinants of simpler (permutation) matrices.
- I can implement the above analysis for 3×3 matrices.
- In the case of a 3×3 matrix I break the matrix into 27 determinants.
- And so on...

Determinant of a 2×2 matrix

• For the case of a 2 × 2 matrix $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ we obtained:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & 0 \end{vmatrix} + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 & d \end{vmatrix} = 0 + \begin{vmatrix} a & 0 \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & 0 \end{vmatrix} + 0$$

- The determinants which survived have strictly one entry from each row and each column.
- The above is a universal conclusion!

Determinant of a 3×3 matrix

• For the case of a 3 × 3 matrix
$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 we obtain:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & 0 & 0 \\ 0 & 0 & a_{23} \\ 0 & a_{32} & 0 \end{vmatrix} + \dots = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$

• As mentioned the determinants which survive have strictly one entry from each row and each column.

The "Big Formula" for the determinant

- For the case of a 2×2 matrix the determinant has 2 terms.
- For the case of a 3×3 matrix the determinant has 6 terms.
- For the case of a 4×4 matrix the determinant has 24 terms.
- For the case of a $n \times n$ matrix the determinant has n! terms.
 - \succ The elements from the first row can be chosen in *n* different ways.
 - ➤ The elements from the second row can be chosen in (n 1) different ways
 - \succ and so on...
- **Problem:** Find the determinant of the following matrix:

$$\begin{array}{cccccccc} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{array}$$

The "Big Formula" for the determinant

• For the case of a $n \times n$ matrix the determinant has n! terms.

$$det(A) = \sum_{n!\text{terms}} \pm a_{1a}a_{2b}a_{3c} \dots a_{nz}$$

- \succ a, b, c, ..., z are different columns
- In the above summation, half of the terms have a plus and half of them have a minus sign.

The "Big Formula" for the determinant

• For the case of an $n \times n$ matrix, **cofactors** consist of a method which helps us to connect a determinant to determinants of smaller matrices.

$$det(A) = \sum_{n!\text{terms}} \pm a_{1a}a_{2b}a_{3c} \dots a_{nz}$$

• Cofactors 3 × 3. Consider $det(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$

 $(a_{22}a_{33} - a_{23} a_{32})$ is the determinant of a 2 × 2 matrix which is a submatrix of the original matrix. We denote $C_{11} = a_{22}a_{33} - a_{23}a_{32}$.

Cofactors

• The cofactor of element a_{ij} is defined as follows:

 $C_{ij} = \pm \det[(n-1) \times (n-1) \operatorname{matrix} A_{ij}]$

- ➤ A_{ij} is the $(n-1) \times (n-1)$ matrix that is obtained from the original matrix A if row i and column j are eliminated.
- > We keep the + if (i + j) is even.
- ➤ We keep the if (i + j) is odd.
- Cofactor formula along row 1:

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$

- Cofactor formula along any row or column can be used for the final estimation of the determinant.
- We define a matrix C with elements C_{ij} .

Estimation of the inverse A^{-1} using cofactors

• For a 2 × 2 matrix it is quite easy to show that $\begin{bmatrix} a & b \end{bmatrix}^{-1} = \begin{bmatrix} 1 & c & d \\ & -b \end{bmatrix}$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} a & -b \\ -c & a \end{bmatrix}$$

• Big formula for A^{-1}

$$A^{-1} = \frac{1}{det(A)}C^{T}$$
$$AC^{T} = det(A) \cdot I$$

- C_{ij} is the cofactor of a_{ij} . For a matrix A of size $n \times n$, C_{ij} is always a product of (n 1) entries.
- In general

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} C_{11} & \dots & C_{n1} \\ \vdots & & \vdots \\ C_{1n} & \dots & C_{nn} \end{bmatrix} = \det(A) \cdot I$$

Solve Ax = b

• The solution can be now obtained from

$$x = A^{-1}b = \frac{1}{\det(A)}C^{T}b$$

- Cramer's rule:
 - First component of the answer $x_1 = \frac{\det(B_1)}{\det(A)}$. Then $x_2 = \frac{\det(B_2)}{\det(A)}$ and so on.
 - What are these matrices B_i ?

 $B_1 = [b : last (n - 1) columns of A]$

- B_1 is obtained by A if we replace the first column with $b_i B_i$ is obtained by A if we replace the *i* column with b.
- Is this rule "good" in practice? We must find (n + 1) determinants. This will take forever! But...
- o Having a formula allows you to have algebra instead of algorithms!

det(A) = volume of a box

- Take A to be a matrix of size 3×3 .
- Then we can prove that det(A) is the volume of a 3D box.
- Look at the three-dimensional box (parallelepiped) formed from the three rows of *A*.
- It is proven that abs(|A|)=volume of the box!

