# Imperial College London 

## maths for Signals and Systems Linear Algebra in Engineering

## Lectures 12, Friday 7th November 2014

## DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

## Imperial College

## Mathematics for Signals and Systems

## Determinant of a $2 \times 2$ matrix

- The goal is to find the determinant of a $2 \times 2$ matrix $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ using the properties described previously.
- We know that $\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$ and $\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=-1$.
- $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=\left|\begin{array}{ll}a & 0 \\ c & d\end{array}\right|+\left|\begin{array}{ll}0 & b \\ c & d\end{array}\right|=\left|\begin{array}{ll}a & 0 \\ c & 0\end{array}\right|+\left|\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right|+\left|\begin{array}{ll}0 & b \\ c & 0\end{array}\right|+\left|\begin{array}{ll}0 & b \\ 0 & d\end{array}\right|=$ $0+\left|\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right|+\left|\begin{array}{ll}0 & b \\ c & 0\end{array}\right|+0=a d\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|+b c\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|=a d-b c$
- As you can see, I break the determinant of a $2 \times 2$ random matrix into 4 determinants of simpler (permutation) matrices.
- I can implement the above analysis for $3 \times 3$ matrices.
- In the case of a $3 \times 3$ matrix I break the matrix into 27 determinants.
- And so on...


## Mathematics for Signals and Systems

## Determinant of a $2 \times 2$ matrix

- For the case of a $2 \times 2$ matrix $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ we obtained:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=\left|\begin{array}{ll}
a & 0 \\
c & 0
\end{array}\right|+\left|\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right|+\left|\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right|+\left|\begin{array}{ll}
0 & b \\
0 & d
\end{array}\right|=0+\left|\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right|+\left|\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right|+0
$$

- The determinants which survived have strictly one entry from each row and each column.
- The above is a universal conclusion!


## Imperial College

## Mathematics for Signals and Systems

## Determinant of a $3 \times 3$ matrix

- For the case of a $3 \times 3$ matrix $A=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ we obtain:

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right|+\left|\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & 0 & a_{23} \\
0 & a_{32} & 0
\end{array}\right|+\cdots= \\
& a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}+a_{12} a_{23} a_{31}+ \\
& a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}
\end{aligned}
$$

- As mentioned the determinants which survive have strictly one entry from each row and each column.


## Imperial College

## Mathematics for Signals and Systems

## The "Big Formula" for the determinant

- For the case of a $2 \times 2$ matrix the determinant has 2 terms.
- For the case of a $3 \times 3$ matrix the determinant has 6 terms.
- For the case of a $4 \times 4$ matrix the determinant has 24 terms.
- For the case of a $n \times n$ matrix the determinant has $n!$ terms.
$>$ The elements from the first row can be chosen in $n$ different ways.
$>$ The elements from the second row can be chosen in $(n-1)$ different ways
> and so on...
- Problem: Find the determinant of the following matrix:
$\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$


## Mathematics for Signals and Systems

## The "Big Formula" for the determinant

- For the case of a $n \times n$ matrix the determinant has $n!$ terms.

$$
\operatorname{det}(A)=\sum_{n!\text { terms }} \pm a_{1 a} a_{2 b} a_{3 c} \ldots a_{n z}
$$

$>a, b, c, \ldots, z$ are different columns
$>$ In the above summation, half of the terms have a plus and half of them have a minus sign.

## Imperial College

## Mathematics for Signals and Systems

## The "Big Formula" for the determinant

- For the case of an $n \times n$ matrix, cofactors consist of a method which helps us to connect a determinant to determinants of smaller matrices.

$$
\operatorname{det}(A)=\sum_{n!\text { terms }} \pm a_{1 a} a_{2 b} a_{3 c} \ldots a_{n z}
$$

- Cofactors $3 \times 3$. Consider

$$
\begin{aligned}
& \operatorname{det}(A)=a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right) \\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{aligned}
$$

$\left(a_{22} a_{33}-a_{23} a_{32}\right)$ is the determinant of a $2 \times 2$ matrix which is a submatrix of the original matrix. We denote $C_{11}=a_{22} a_{33}-a_{23} a_{32}$.

## Imperial College

## Mathematics for Signals and Systems

## Cofactors

- The cofactor of element $a_{i j}$ is defined as follows:

$$
C_{i j}= \pm \operatorname{det}\left[(n-1) \times(n-1) \text { matrix } A_{i j}\right]
$$

$>A_{i j}$ is the $(n-1) \times(n-1)$ matrix that is obtained from the original matrix $A$ if row $i$ and column $j$ are eliminated.
$>$ We keep the + if $(i+j)$ is even.
$>$ We keep the - if $(i+j)$ is odd.

- Cofactor formula along row 1 :

$$
\operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

- Cofactor formula along any row or column can be used for the final estimation of the determinant.
- We define a matrix $C$ with elements $C_{i j}$.


## Mathematics for Signals and Systems

## Estimation of the inverse $A^{-1}$ using cofactors

- For a $2 \times 2$ matrix it is quite easy to show that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- Big formula for $A^{-1}$

$$
\begin{aligned}
& A^{-1}=\frac{1}{\operatorname{det}(A)} C^{T} \\
& A C^{T}=\operatorname{det}(A) \cdot I
\end{aligned}
$$

- $C_{i j}$ is the cofactor of $a_{i j}$. For a matrix $A$ of size $n \times n, C_{i j}$ is always a product of $(n-1)$ entries.
- In general

$$
\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{ccc}
C_{11} & \ldots & C_{n 1} \\
\vdots & & \vdots \\
C_{1 n} & \ldots & C_{n n}
\end{array}\right]=\operatorname{det}(A) \cdot I
$$

## Imperial College

## Mathematics for Signals and Systems

## Solve $A x=b$

- The solution can be now obtained from

$$
x=A^{-1} b=\frac{1}{\operatorname{det}(A)} C^{T} b
$$

- Cramer's rule:
- First component of the answer $x_{1}=\frac{\operatorname{det}\left(B_{1}\right)}{\operatorname{det}(A)}$. Then $x_{2}=\frac{\operatorname{det}\left(B_{2}\right)}{\operatorname{det}(A)}$ and so on.
- What are these matrices $B_{i}$ ?

$$
B_{1}=[b: \quad \text { last }(n-1) \text { columns of } A]
$$

- $B_{1}$ is obtained by $A$ if we replace the first column with $b . B_{i}$ is obtained by $A$ if we replace the $i$ column with $b$.
- Is this rule "good" in practice? We must find $(n+1)$ determinants. This will take forever! But...
- Having a formula allows you to have algebra instead of algorithms!


## Imperial College

## London

## Mathematics for Signals and Systems

## $\operatorname{det}(A)=$ volume of a box

- Take $A$ to be a matrix of size $3 \times 3$.
- Then we can prove that $\operatorname{det}(A)$ is the volume of a 3D box.
- Look at the three-dimensional box (parallelepiped) formed from the three rows of $A$.
- It is proven that abs $(|A|)=$ volume of the box!


