Imperial College London

maths for Signals and Systems Linear Algebra in Engineering

Lecture 12, Friday $6^{\text {th }}$ Novemher 2015

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Stochastic matrices

- Consider a matrix A with the following properties:
$>$ All entries are positive and real.
$>$ The elements of each column or each row or both each column and each row add up to 1.
$>$ Based on the above a matrix that exhibits the above properties will have all entries ≤ 1.
$>$ It is square.
- This is called a stochastic matrix.
- Stochastic matrices are also called Markov, probability, transition, or substitution matrices.
- The entries of a stochastic matrix usually represent a probability.
- Stochastic matrices are widely used in probability theory, statistics, mathematical finance and linear algebra, as well as computer science and population genetics.

Stochastic matrices. Types.

- There are several types of stochastic matrices:
- A right stochastic matrix is a matrix of nonnegative real entries, with each row's elements summing to 1 .
- A left stochastic matrix is a matrix of nonnegative real entries, with each column's elements summing to 1 .
- A doubly stochastic matrix is a matrix of nonnegative real entries with each row's and each column's elements summing to 1 .
- A stochastic matrix often describes a so called Markov chain X_{t} over a finite state space S.
- Generally, an $n \times n$ stochastic matrix is related to n "states".
- If the probability of moving from state i to state j in one time step is $P_{r}(j / i)=\left[p_{i j}\right]$, the stochastic matrix P is given by using $p_{i j}$ as the $i^{\text {th }}$ row and $j^{\text {th }}$ column element:

$$
P=\left[\begin{array}{cccc}
p_{11} & p_{12} & \ldots & p_{1 n} \\
p_{21} & p_{22} & \ldots & p_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n 1} & p_{n 2} & \ldots & p_{n n}
\end{array}\right]
$$

- Depending on the particular problem the above matrix can be formulated in such a way so that is either right or left stochastic.

Imperial College

Products of stochastic matrices. Stochastic vectors.

- An example of a left stochastic matrix is the following:

$$
A=\left[\begin{array}{ccc}
0.1 & 0.01 & 0.3 \\
0.2 & 0.99 & 0.3 \\
0.7 & 0 & 04
\end{array}\right]
$$

- You can prove that if A and B are stochastic matrices of any type then $A B$ is also a stochastic matrix of the same type.
- Consider two left stochastic matrices A and B with elements $a_{i j}$ and $b_{i j}$ respectively, and $C=A B$ with elements $c_{i j}$.
- Let us find the sum of the elements of the $j^{\text {th }}$ column of C : $\sum_{i=1}^{n} c_{i j}=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k j}=\sum_{k=1}^{n} \sum_{i=1}^{n} a_{i k} b_{k j}=\sum_{k=1}^{n} b_{k j} \sum_{i=1}^{n} a_{i k}=1 \cdot 1=1$
- Based on the above the power of a stochastic matrix is a stochastic matrix.
- I am interested in the eigenvalues and eigenvectors of a stochastic matrix.
- Let's call a vector with real, nonnegative entries p_{k}, for which all the p_{k} add up to 1 , a stochastic vector. For a stochastic matrix, every column or row or both is a stochastic vector.

Stochastic matrices and their eigenvalues

- I would like to prove that $\lambda=1$ is always an eigenvalue of a stochastic matrix.
- Consider again a left stochastic matrix A.
- Since the elements of each column of A add up to 1 , the elements of each row of A^{T} should add up to 1 . Therefore:

$$
A^{T}\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]=1 \cdot\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

- Therefore, 1 is an eigenvalue of A^{T}. The eigenvalues of A^{T} are obtained through the equation $\operatorname{det}\left(A^{T}-\lambda I\right)=0$. But:

$$
\operatorname{det}\left(A^{T}-\lambda I\right)=\operatorname{det}\left(A^{T}-\lambda I^{T}\right)=\operatorname{det}\left[(A-\lambda I)^{T}\right]=\operatorname{det}(A-\lambda I)
$$

- Hence, the eigenvalues of A and A^{T} are the same, which implies that 1 is also an eigenvalue of A.
- Since $\operatorname{det}(A-I)=0$, the matrix $A-I$ is singular, which means that there is a vector x for which

$$
(A-I) x=0 \Rightarrow A x=x
$$

- A vector of the null space of $A-I$ is the eigenvector of A that corresponds to eigenvalue $\lambda=1$.

Stochastic matrices and their eigenvalues cont.

- I would like now to prove that the eigenvalues of a stochastic matrix have magnitude smaller or equal to 1.
- Assume that $v=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ is an eigenvector of a stochastic matrix A with an eigenvalue $|\lambda|>1$. Then $A^{n} v=\lambda^{n} v$ implies $\sum_{j=1}^{n}\left[A^{n}\right]_{i j} v_{j}=\lambda^{n} v_{i}$
- λ^{n} has exponentially growing length for $n \rightarrow \infty$. The maximum value that $\sum_{j=1}^{n}\left[A^{n}\right]_{i j} v_{j}$ can take is $v_{\text {max }} \cdot \max _{i} \sum_{j=1}^{n}\left[A^{n}\right]_{i j} \leq v_{\text {max }} \cdot n$ since the entries of A^{n} are ≤ 1.
- The relationship $\sum_{j=1}^{n}\left[A^{n}\right]_{i j} v_{j}=\lambda^{n} v_{i}$ must be valid for any n. There is always a minimum n for which $\sum_{j=1}^{n}\left[A^{n}\right]_{i j} v_{j} \leq v_{\text {max }} \cdot n<\lambda^{n} v_{i}$ if $|\lambda|>1$.
- Based on the above, the assumption of an eigenvalue being larger than 1 can not be valid.

Imperial College

Application of stochastic matrices

- Consider again the system described by an equation of the form $u_{k}=A^{k} u_{0}$, where A is now a stochastic matrix.
- Previously, we managed to write $u_{k}=A^{k} u_{0}=c_{1} \lambda_{1}{ }^{k} x_{1}+c_{2} \lambda_{2}{ }^{k} x_{2}+\cdots$ where λ_{i} and x_{i} are the eigenvalues and eigenvectors of matrix A, respectively.
- Note that the above relationship requires a complete set of eigenvectors.
- If $\lambda_{1}=1$ and $\left|\lambda_{i}\right|<1, i>1$ then the steady state of the system is $c_{1} x_{1}$ (which is part of the initial condition u_{0}).
- I will use an example where A is a 2×2 matrix. Generally, an $n \times n$ stochastic matrix is related to n "states". Assume that the 2 "states" are 2 UK cities.
- I take London and Oxford. I am interested in the population of the two cities and how it evolves.
- I assume that people who inhabit these two cities move between them only.

$$
\left[\begin{array}{c}
u_{\mathrm{ox}} \\
u_{\mathrm{lon}}
\end{array}\right]_{t=k+1}=\left[\begin{array}{cc}
0.9 & 0.2 \\
0.1 & 0.8
\end{array}\right]\left[\begin{array}{c}
u_{\mathrm{ox}} \\
u_{\mathrm{lon}}
\end{array}\right]_{t=k}
$$

- It is now obvious that the column elements are positive and also add up to 1 because they represent probabilities.

Application of stochastic matrices [cont.]

- I assume that $\left[\begin{array}{l}u_{\mathrm{ox}} \\ u_{\mathrm{lon}}\end{array}\right]_{t=k=0}=\left[\begin{array}{c}0 \\ 1000\end{array}\right]$. Then $\left[\begin{array}{l}u_{\mathrm{ox}} \\ u_{\mathrm{lon}}\end{array}\right]_{k=1}=\left[\begin{array}{cc}0.9 & 0.2 \\ 0.1 & 0.8\end{array}\right]\left[\begin{array}{c}0 \\ 1000\end{array}\right]=\left[\begin{array}{c}200 \\ 800\end{array}\right]$.

Problem:

What is the population of the two cities after a long time?

Solution:

Consider the matrix $\left[\begin{array}{ll}0.9 & 0.2 \\ 0.1 & 0.8\end{array}\right]$. The eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=0.7$.
(Notice that the second eigenvalue is found by the trace of the matrix.)
The eigenvectors of this matrix are $x_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $x_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

$$
\left[\begin{array}{l}
u_{\mathrm{ox}} \\
u_{\mathrm{lon}}
\end{array}\right]_{k}=c_{1} \lambda_{1}{ }^{k}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2} \lambda_{2}^{k}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2} 0.7^{k}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

I find c_{1}, c_{2} from the initial condition $\left[\begin{array}{l}u_{\mathrm{ox}} \\ u_{\mathrm{lon}}\end{array}\right]_{t=k=0}=\left[\begin{array}{c}0 \\ 1000\end{array}\right]$
$\left[\begin{array}{c}0 \\ 1000\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and therefore, $c_{1}=\frac{1000}{3}$ and $c_{2}=\frac{2000}{3}$

Application of stochastic matrices [cont.]

- Stochastic models facilitate the modeling of various real life engineering applications.
- An example is the modeling of the movement of people without gain or loss: total number of people is conserved.

