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Mathematics for Signals and Systems 

Problem: Block elimination 
 

• Consider the set of two systems of equations: 

𝐴𝑥 + 𝐵𝑦 = 𝑎 

𝐶𝑥 + 𝐷𝑦 = 𝑏 

where 𝐴, 𝐵, 𝐶, 𝐷 are square matrices of size 𝑛 × 𝑛 and 𝑎, 𝑏 are column 

vectors of size 𝑛 × 1. 

 

• The above system can be solved by finding 𝑥 from the first system 

and replacing it to the second system to get 𝑦. 

 

• More specifically,  

𝐴𝑥 + 𝐵𝑦 = 𝑎 ⇒ 𝐴−1𝐴𝑥 + 𝐴−1𝐵𝑦 = 𝐴−1𝑎 ⟹ 𝐼𝑥 + 𝐴−1𝐵𝑦 = 𝐴−1𝑎 ⇒ 

𝑥 = 𝐴−1𝑎 −𝐴−1 𝐵𝑦 

 

 

 

 

 

 

 

 

 

 

 



Mathematics for Signals and Systems 

Problem: Block elimination (cont.) 
 

• The second equation becomes now: 

𝐶 𝐴−1𝑎 −𝐴−1 𝐵𝑦 + 𝐷𝑦 = 𝑏 ⇒ 

𝐶𝐴−1𝑎 − 𝐶𝐴−1𝐵𝑦 + 𝐷𝑦 = 𝑏 ⇒ 

(𝐷 − 𝐶𝐴−1𝐵)𝑦 = 𝑏 − 𝐶𝐴−1𝑎 

 

• If we write the set of the two systems in a single matrix form we obtain: 
𝐴 𝐵
𝐶 𝐷

𝑥
𝑦 =

𝑎
𝑏

 

 

• The matrix 
𝐴 𝐵
𝐶 𝐷

 is a block-matrix. This means that its elements are 

matrices. We refer to them as sub-matrices. 

 

 

 

 

 

 

 

 

 

 

 



Mathematics for Signals and Systems 

Problem: Block elimination (cont.) 
 

• Our goal is to carry elimination in a block-matrix. 

• We know how to do elimination in a standard matrix where the elements 

are scalars. 

• In the case of a standard 2 × 2 matrix 
𝑎11 𝑎12

𝑎21 𝑎22
 we can remove element 

𝑎21 by multiplying the first row of the matrix with −
𝑎21

𝑎11
 and adding it to the 

second row. This yields the upper triangular matrix 
𝑎11 𝑎12

0 𝑎22 −
𝑎21

𝑎11
𝑎12

. 

• The above is equivalent to multiplying the original matrix from the left with 

the elimination matrix 
1 0

−
𝑎21

𝑎11
1  

 

 

 

 

 

 

 



Mathematics for Signals and Systems 

Problem: Block elimination (cont.) 
 

• Our goal is to carry elimination in a block-matrix. 

• The equivalent of inversing a scalar in case of matrices is to take the 

inverse of a matrix. 

• In the case of a 2 × 2 block-matrix 
𝐴 𝐵
𝐶 𝐷

 we can remove sub-matrix (2,1), 

which in that case is 𝐶, by multiplying the first row of the matrix from the 

left with −𝐶𝐴−1 and adding it to the second row. This yields the upper 

triangular matrix 
𝐴 𝐵
0 𝐷 − 𝐶𝐴−1𝐵

. 

• This is equivalent to multiplying the original block-matrix from the left with 

the elimination block-matrix 
𝐼 0

−𝐶𝐴−1 𝐼
 

• The right-hand side of the augmented system is also multiplied with the 

above elimination matrix. 

 

 

 

 

 

 

 



Mathematics for Signals and Systems 

Problem: Block elimination (cont.) 
 

• The entire procedure can be depicted as follows: 
 

𝐼 0
−𝐶𝐴−1 𝐼

𝐴 𝐵 ⋮ 𝑎
𝐶 𝐷 ⋮ 𝑏

=
𝐴 𝐵 ⋮ 𝑎                   
𝟎 𝐷 − 𝐶𝐴−1𝐵 ⋮ 𝑏 − 𝐶𝐴−1𝑎

 

 

 

• The above matrix form provides the same result that we obtained when we 

explicitly removed 𝑥 from the second system of equations. 
 

(𝐷 − 𝐶𝐴−1𝐵)𝑦 = 𝑏 − 𝐶𝐴−1𝑎 
 

 

• Note that the above analysis requires that the inverse of 𝐴 exists. 

• Can you think of the equivalent condition for the case of a single system of 

equations 𝐴𝑥 = 𝑏? 

• What happens if 𝐴 is singular? In that case permutation is required. 

 

 

 

 

 

 

 



Mathematics for Signals and Systems 

Problem 

• Solve the system of equations using block-elimination. 

𝐴𝑥 + 𝐵𝑦 = 𝑎 

𝐶𝑥 + 𝐷𝑦 = 𝑏 

𝐴 =
1 2
3 6

, 𝐵 =
1 2
3 4

, 𝐶 = 𝐼, 𝐷 =
1 0
2 4

, 𝑎 =
2
1

, 𝑏 =
1
3

 

• Hint: In this problem 𝐴 is not invertible and therefore, we must change the 

order of the two systems. That means  

𝐶 =
1 2
3 6

, 𝐷 =
1 2
3 4

, 𝐴 = 𝐼, 𝐵 =
1 0
2 4

, 𝑏 =
2
1

, 𝑎 =
1
3

 

𝐷 − 𝐶𝐴−1𝐵 = 𝐷 − 𝐶𝐵 =
−4 −6

−12 −20
⇒ 𝐷 − 𝐶𝐵 −1 =

−5/2 3/4
3/2 −1/2

 

𝑦 = 𝐷 − 𝐶𝐵 −1 𝑏 − 𝐶𝐴−1𝑎 =
−5/2
5/2

 

𝐴𝑥 + 𝐵𝑦 = 𝑎 ⇒ 𝑥 = 𝑎 − 𝐵𝑦 =
7/2
−2

 

 

 

 

 

 



Mathematics for Signals and Systems 

Exam 
 

• Exam questions will be of similar style and difficulty as the 6 Tutorial 

Sheets and also the problems in the notes. 

• Make sure you have paid attention to detail and you are able to use the 

various algorithms you learnt in real life scenarios. 

• Emphasize on: 

 The 4 subspaces. 

 The 5 decompositions: LU, QR, eigenvalue decomposition, 

decomposition into orthogonal matrices, SVD. 

 Projections. 

 Properties of determinants. 

 Least squares method. 

 

 

 

 

 


