Imperial College London

Waths for Signals and Systems Linear Algebra in Engineering

Some problems by Allbert Strang

Imperial College

Mathematics for Signals and Systems

Problems

1. Consider u, v, w to be non-zero vectors in R^{7}. These vectors span a vector space. What are the possible dimensions of that space?
Answer: 1,2, or 3.
2. Consider a 5×3 matrix R which is in echelon form and has 3 pivots, i.e., $r=3$. What is the null space of this matrix?

Answer: It is the zero space. Since the rank is 3 , the rows (and columns) form R^{3}. The rows are however 3 -dimensional vectors and therefore, there isn't any 3-dimensional vector that is perpendicular to all the rows of this matrix. Therefore, the only vector which satisfies $R x=0$ is $x=0$.

Imperial College

Mathematics for Signals and Systems

Problem

3. Consider matrix R of the previous question and the 10×3 matrix $B=\left[\begin{array}{c}R \\ 2 R\end{array}\right]$. What is the rank and echelon form of matrix B ?
Answer: Row $i, i=6, \ldots, 10$ which belongs to the bottom half matrix $2 R$ of B can be fully eliminated by doubling row $i-5$ of R and subtracting it from row i. Therefore, the echelon form of B is $\left[\begin{array}{c}R \\ 0\end{array}\right]$.
The rank doesn't change since the rows of $2 R$ are dependent on the rows of R.

Imperial College

Mathematics for Signals and Systems

Problem

4. Consider a 5×3 matrix R which is in echelon form, with rank 3 and the 10×6 matrix $C=\left[\begin{array}{ll}R & R \\ R & 0\end{array}\right]$. What is the rank and echelon form of matrix C ?
Answer: By subtracting rows $i-5, i=6, \ldots, 10$ of the top half extended matrix $\left[\begin{array}{ll}R & R\end{array}\right]$ of C from rows $i, i=6, \ldots, 10$ which belong to the bottom half extended matrix $\left[\begin{array}{ll}R & 0\end{array}\right]$ of C we get $\left[\begin{array}{cc}R & R \\ 0 & -R\end{array}\right]$. By adding now rows i, $i=6, \ldots, 10$ of the bottom half extended matrix $\left[\begin{array}{ll}0 & -R\end{array}\right]$ to the rows $i-5, i=6, \ldots, 10$ of the top half extended matrix $\left[\begin{array}{ll}R & R\end{array}\right]$ we get $\left[\begin{array}{cc}R & 0 \\ 0 & -R\end{array}\right]$. By multiplying rows $i, i=6, \ldots, 10$ of the bottom half extended matrix $\left[\begin{array}{ll}0 & -R\end{array}\right]$ with -1 we get $\left[\begin{array}{ll}R & 0 \\ 0 & R\end{array}\right]$.
The rank of $\left[\begin{array}{ll}R & 0 \\ 0 & R\end{array}\right]$ is $2 \times 3=6$ (observe the form of $\left[\begin{array}{ll}R & 0 \\ 0 & R\end{array}\right]$).

Imperial College

Mathematics for Signals and Systems

Problem

5. Consider a 5×3 matrix R which is in echelon form, with rank 3 and the 10×6 matrix $C=\left[\begin{array}{ll}R & R \\ R & 0\end{array}\right]$. What is the dimension of the null space of C^{T} ? Answer: C^{T} is of dimension 6×10. Therefore, the vectors of the null space of C^{T} are of dimension 10×1. Since the rank of C^{T} is 6 , and we need 10 independent vectors in order to form the 10-dimensional space, we can find 4 independent vectors which are perpendicular to all the rows of C^{T}. Therefore, the dimension of the null space of C^{T} is 4 .

Imperial College

Mathematics for Signals and Systems

Problem

6. Consider the system $A x=b$. The complete solution of that system is
$x=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]+c\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+d\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ with c, d scalars and $b=\left[\begin{array}{l}2 \\ 4 \\ 2\end{array}\right]$. Find the rank of A.
Answer: The vectors $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ are independent. Since we are allowed to "throw" to the solution of the above system any amount of these vectors, the vectors must belong to the null space of A (what is the dimension of A ?). Therefore, the rank of A is 1 .

For $c=d=0, A\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}2 \\ 4 \\ 2\end{array}\right]$ and therefore the first column of A is $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
By choosing $c=0, d=1$ and $c=1, d=0$ we find $A=\left[\begin{array}{lll}1 & -1 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0\end{array}\right]$.

Imperial College

Mathematics for Signals and Systems

Problem

7. Consider the previous system $A x=b$. For what values of b does the system has a solution?
Answer: We found that $A=\left[\begin{array}{lll}1 & -1 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0\end{array}\right]$. The column space of A is all vectors which are multiples of $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. The system has a solution if b belongs to the column space of A, i.e., if it is a multiple of $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.

Mathematics for Signals and Systems

Problems

8. Consider a square matrix A with null space 0 . What can you say about the null space of A^{T} ?
Answer: In that case the matrix is full rank and therefore, the null space of A^{T} is also 0 .
9. Consider the space of 5×5 matrices and consider the subset of these which contains only the invertible 5×5 matrices. Do they form a subspace?
Answer: NO, since if I add two invertible matrices the result might not be an invertible matrix. There are alternative ways to answer this problem.

Mathematics for Signals and Systems

Problems

8. Consider a matrix A. If $A^{2}=0$, is $A 0$?

Answer: NO, for example consider $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
9. Is a system of n equations and n unknowns solvable for any right hand side if the columns of A are independent?
Answer: YES, since any vector can be written as a linear combination of the columns of A.

Mathematics for Signals and Systems

Problem

10. Consider a matrix $B=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$. Find a basis for the null space without carrying out the above matrix multiplication.

Answer: The null space of B is a subspace of R^{4}. The matrix $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$ is invertible and therefore, it doesn't have any impact in the null space of
B. Matrix $\left[\begin{array}{cccc}1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$ has two pivot columns. The two special
solutions are $\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 1\end{array}\right]$ and form a basis of the null space.

Imperial College

Mathematics for Signals and Systems

Problem

11. For the previous example find a complete solution to the system $B x=$ $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Answer: $B=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$. If we write $B=C D$ we see that the first column of D is $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and equal to the first column of C, i.e., $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and also the same as the right hand side. A vector which will multiply B from the right and give the first column of B is $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$. Therefore, a complete solution is $x_{p}+x_{n}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]+c\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right]+d\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 1\end{array}\right]$

Mathematics for Signals and Systems

Problems

12. In a square matrix is the row space the same as the column space?

Answer: NO, consider again the matrix $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
13. Do the matrices A and $-A$ share the same four subspaces? Answer: YES
14. If two matrices A and B have the same four subspaces, is A a multiple of B ?
Answer: NO - consider all invertible matrices of the same size.
15. If I exchange two rows of A which subspaces remain the same?

Answer: The row space and the null space.

