
DSP Design of IIR Filters in 

Continuous Time 
 



• Consider a generic system transfer function 

𝐻 𝑠 =
𝑃(𝑠)

𝑄(𝑠)
= 𝑏0

(𝑠 − 𝑧1)(𝑠 − 𝑧2)… (𝑠 − 𝑧𝑁)

(𝑠 − 𝜆1)(𝑠 − 𝜆2) … (𝑠 − 𝜆𝑁)
 

• The value of the transfer function at some complex frequency 𝑠 = 𝑝 is: 

𝐻 𝑝 =
𝑃(𝑝)

𝑄(𝑝)
= 𝑏0

(𝑝 − 𝑧1)(𝑝 − 𝑧2)… (𝑝 − 𝑧𝑁)

(𝑝 − 𝜆1)(𝑝 − 𝜆2)… (𝑝 − 𝜆𝑁)
 

𝐻 𝑝 =
𝑃(𝑝)

𝑄(𝑝)
= 𝑏0

(𝑟1𝑒
𝑗𝜙1)(𝑟2𝑒

𝑗𝜙2)… (𝑟𝑁𝑒𝑗𝜙𝑁)

(𝑑1𝑒
𝑗𝜃1)(𝑑2𝑒

𝑗𝜃2)… (𝑑𝑁𝑒𝑗𝜃𝑁)
 

• The factor 𝑝 − 𝑧 is a complex number. 

 It is represented by a vector drawn 

from point 𝑧 to point 𝑝 in the complex plane. 

 Using polar coordinates we can write 𝑝 − 𝑧𝑖 = 𝑟𝑖𝑒
𝑗𝜙𝑖. 

with 𝑟𝑖 = 𝑝 − 𝑧𝑖  and 𝜙𝑖 = ∠(𝑝 − 𝑧𝑖) 

• Same comments are valid for the factor 𝑝 − 𝜆𝑖 = 𝑑𝑖𝑒
𝑗𝜃𝑖. 

• Note that 𝑧𝑖 and 𝜆𝑖 is a pole. 

Effect on poles and zeros on frequency response 



• The previous form can be further modified as: 

𝐻 𝑝 = 𝑏0

(𝑟1𝑒
𝑗𝜙1)(𝑟2𝑒

𝑗𝜙2) … (𝑟𝑁𝑒𝑗𝜙𝑁)

(𝑑1𝑒
𝑗𝜃1)(𝑑2𝑒

𝑗𝜃2) … (𝑑𝑁𝑒𝑗𝜃𝑁)
 

= 𝑏0

𝑟1𝑟2 …𝑟𝑁
𝑑1𝑑2 …𝑑𝑁

𝑒𝑗[ 𝜙1+𝜙2+⋯+𝜙𝑁 −(𝜃1+𝜃2+⋯+𝜃𝑁)] 

• Therefore, the magnitude and phase 

at 𝑠 = 𝑝 are given by: 

𝐻 𝑠 𝑠=𝑝 = 𝑏0

𝑟1𝑟2 …𝑟𝑁
𝑑1𝑑2 …𝑑𝑁

 

= 𝑏0

product of the distances of zeros to 𝑝

product of the distances of poles to 𝑝
 

∠𝐻(𝑠)𝑠=𝑝 = 𝜙1 + 𝜙2 + ⋯+ 𝜙𝑁 − 𝜃1 + 𝜃2 + ⋯ + 𝜃𝑁  

= sum of zeros′ angles to 𝑝 − sum of poles′ angles to 𝑝 

• If 𝑏0 is negative, there is an additional phase 𝜋 since in that case 

𝑏0 = − 𝑏0 = 𝑏0 𝑒𝑗𝜋 

Effect on poles and zeros on frequency response cont. 



Gain enhancement by a single pole 

• Consider the hypothetical case of a single pole at −𝑎 + 𝑗𝜔0.  

• The amplitude response at a specific value of 𝜔, 𝐻(𝑗𝜔) , is found by 

measuring the length of the line that connects the pole to the point 𝑗𝜔. 

• If the length of the above mentioned line is 𝑑, then 𝐻(𝑗𝜔)  is proportional 

to 
1

𝑑
. 

𝐻(𝑗𝜔) =
𝐾

𝑑
 

 As 𝜔 increases from zero, 𝑑 decreases progressively 

until 𝜔 reaches the value 𝜔0. 

 As 𝜔 increases beyond 𝜔0, 𝑑 increases progressively. 

 Therefore, the peak of 𝐻(𝑗𝜔)  occurs at 𝜔0. 

As 𝑎 becomes smaller, i.e., as the pole moves closer 

to the imaginary axis the gain enhancement at 𝜔0 

becomes more prominent (𝑑 becomes very small.) 

 

 

 

 

 



 In conclusion, we can enhance a gain at a frequency 𝜔0 by placing a pole 

opposite the point 𝑗𝜔0. 

 The closer the pole is to 𝑗𝜔0, 

the higher is the gain at 𝜔0  

and furthermore, 

the enhancement is 

more prominent around 𝜔0. 

 In the extreme case of 𝒂 = 𝟎 

(pole on the imaginary axis) 

the gain at 𝝎𝟎 goes to infinity. 

 Recall that poles must lie 

on the left half of the 𝑠 −plane. 

 Repeated poles further enhance 

the frequency selective effect. 

 

 

 

 

Gain enhancement by a single pole cont. 



• In a real system, a complex pole at −𝑎 + 𝑗𝜔0 must be accompanied by its 

conjugate pole −𝑎 − 𝑗𝜔0. 

• The amplitude response at a specific value of 𝜔, 𝐻(𝑗𝜔) , is found by 

measuring the length of the two lines that connect the poles to the point 𝑗𝜔. 

• If the lengths of the above mentioned lines are 𝑑, 𝑑′ then 𝐻(𝑗𝜔) =
𝐾

𝑑𝑑′. 

• We can see graphically 

that the presence 

of the conjugate pole 

does not affect substantially 

the behaviour of the system 

around 𝜔0. This is because 

as we move around 𝜔0, 

𝑑′ does not change dramatically. 

 

 

 

 

Gain enhancement by a pair of complex conjugate poles 



• Consider a real system with a pair of complex conjugate zeros at −𝑎 + 𝑗𝜔0 

and −𝑎 − 𝑗𝜔0. 

• The amplitude response at a specific value of 𝜔, 𝐻(𝑗𝜔)  is again found by 

measuring the length of the two lines that connect the zeros to the point 𝑗𝜔. 

• If the lengths of the above mentioned lines are 𝑟, 𝑟′ then 𝐻(𝑗𝜔) = 𝐾𝑟𝑟′. 

• In that case,  

the minimum of 𝐻(𝑗𝜔)  

occurs at 𝜔0. 

• As 𝑎 becomes smaller, 

i.e., as the zero moves closer 

to the imaginary axis, 

the gain suppression at 𝜔0 

becomes more prominent. 

 In the extreme case of 𝒂 = 𝟎 

(zero on the imaginary axis) 

the gain at 𝝎𝟎 goes to zero. 

 

 

 

 

 

Gain suppression by a pair of complex conjugate zeros 



• Angles formed by the poles −𝑎 + 𝑗𝜔0 and −𝑎 − 𝑗𝜔0 at 𝜔 = 0 are equal and 

opposite. 

• Their contribution to the phase response is ∠𝐻(𝑗𝜔) = − 𝜃1 + 𝜃2 . 

• As 𝜔 increases from 0 up, the angle 𝜃1 (due to pole −𝑎 + 𝑗𝜔0), which has a 

negative value at 𝜔 = 0, is reduced in magnitude. 

• As 𝜔 increases from 0 up, the angle 𝜃2 (due to pole −𝑎 − 𝑗𝜔0), 

which has a positive value at 𝜔 = 0, increases 

in magnitude. 

• As a result, both 𝜃1, 𝜃2, 

increase continuously 

and approaches a value of 𝜋/2 

as 𝜔 → ∞. 

• Therefore, 𝜃1 + 𝜃2, 

the sum of the two angles, 

increases continuously and 

approaches the value of 𝜋 

as 𝜔 → ∞. 

 

Phase response due to a pair of complex conjugate poles 



• Similar arguments regarding the phase are applied for a pair of 

complex conjugate zeros −𝑎 + 𝑗𝜔0 and −𝑎 − 𝑗𝜔0. 
 

• ∠𝐻(𝑗𝜔) = 𝜙1 + 𝜙2  

Phase response due to a pair of complex conjugate zeros 



• A lowpass filter is a system with a frequency response that has its 

maximum gain at 𝜔 = 0.  

• We showed in detail previously that a pole enhances the gain of the 

frequency response at frequencies which are within its close 

neighbourhood. 

• Therefore, for a maximum gain at 𝜔 = 0, we must place pole(s) on the 

real axis, within the left half plane, opposite the point 𝜔 = 0. 

• The simplest lowpass filter can be described by the transfer function: 

𝐻 𝑠 =
𝜔𝑐

𝑠 + 𝜔𝑐
 

 Observe that by putting 𝜔𝑐 to the numerator 

we achieve 𝐻 0 = 1. 

 If the distance from the pole to a point 𝑗𝜔 

is 𝑑 then 𝐻(𝑗𝜔) = 
𝜔𝑐

𝑑
. 

 

Lowpass filters. The simplest case. 



• An ideal lowpass filter has a constant gain of 1 up to a desired frequency 

𝜔𝑐 and then the gain drops to 0. 

• Therefore, for an ideal lowpass filter an enhanced gain is required within 

the frequency range 0 to 𝜔𝑐. This implies that a pole must be placed 

opposite every single frequency within the range 0 to 𝜔𝑐. 

• We require ideally a continuous “wall of poles” facing the imaginary axis 

opposite the range 0 to 𝜔𝑐  , and consequently, their complex conjugates 

facing the imaginary axis opposite the range 0 to −𝜔𝑐. 

 At this stage we are not interested in investigating the 

optimal shape of this wall of poles. 

 We can prove that for a maximally flat response 

within the range 0 to 𝜔𝑐, the wall is a semicircle. 

 A maximally flat amplitude response implies: 

𝑑𝑖 𝐻(𝜔)

𝑑𝜔𝑖
 
𝜔=0

= 0, 𝑖 = 0,1,2, … 

Lowpass filters. Wall of poles – Butterworth filters 



• We can prove that for a maximally flat response within the range 0 to 𝜔𝑐, 

the wall is a semicircle with infinite number of poles. 

• In practice we use 𝑁 poles and we end up with a filter with non-ideal 

characteristics. 

• Observe the response as a function of 𝑁. 

• This family of filters are called Butterworth filters.  

• There are families of filters with different characteristics (Chebyshev etc.) 

Lowpass filters. Wall of poles – Butterworth filters. 



• An ideal bandpass filter has a constant gain of 1 placed symmetrically 

around a desired frequency 𝜔0; otherwise the gain drops to 0. 

• Therefore, we require ideally a continuous wall of poles facing the 

imaginary axis opposite 𝜔0 , and consequently, their complex conjugates 

facing the imaginary axis opposite −𝜔0. 

 

Bandpass filters 



• An ideal bandstop (notch) filter has 0 amplitude response placed 

symmetrically around a desired frequency 𝜔0; otherwise the gain is 1. 

• Realization in theory requires infinite number of zeros and poles. 

• Let us consider a second order notch filter with zero gain at 𝜔0. 

 We must have zeros at ±𝑗𝜔0.  

 For lim
𝜔→∞

𝐻(𝑗𝜔) = 1 the number of poles must be equal to the number 

of zeros. (For 𝜔 → ∞ the distance of all poles and zeros from 𝜔 is 

basically the same.) 

 Based on the above two points, we must have two poles.  

 In order to have 𝐻(0) = 1 each pole much pair up with a zero and 

their distances from the origin must be the same. 

 This requirement can be satisfied if we place the two conjugate 

poles along a semicircle of radius 𝜔0 that lies within the left half 

plane. 

 

 

Bandstop (Notch) filters 



• Based on the previous statements, the pole-zero configuration and the 

amplitude response of a bandstop filter are shown in the two figures below. 

• Observe the behaviour of the amplitude response as a function of 𝜃, the 

angle that the pole vector forms with the negative real axis. 

 

Bandstop (Notch) filters cont. 



• Design a second-order notch filter to suppress 60𝐻𝑧 hum in a radio 

receiver. 

• Make 𝜔0 = 120𝜋.  Place zeros are at 𝑠 = ±𝑗𝜔0, and poles at −𝜔0cos𝜃 ±
𝑗𝜔0sin𝜃. We obtain: 

 

𝐻 𝑠 =
(𝑠 − 𝑗𝜔0)(𝑠 + 𝑗𝜔0)

(𝑠 + 𝜔0cos𝜃 + 𝑗𝜔0sin𝜃)(𝑠 + 𝜔0cos𝜃 − 𝑗𝜔0sin𝜃)
 

=
𝑠2+𝜔0

2

𝑠2+(2𝜔0cos𝜃)𝑠+𝜔0
2 = 

𝑠2+142122.3

𝑠2+ 753.98cos𝜃 𝑠+142122.3
 

𝐻(𝑗𝜔) =
−𝜔2 + 142122.3

(−𝜔2 + 142122.3)2+(753.98𝜔cos𝜃)2
 

 

Notch filter example 



• The figures below depict the location of poles and zeros within the plane 

and the amplitude response. 

 

 

Notch filter example cont. 



 

 

Practical filter specification 

Low-pass Filter Band-pass Filter 

High-pass Filter Band-stop Filter 



• Let us consider a normalised low-pass filter (i.e., one that has a cut-off 
frequency at 1) with an amplitude characteristic given by the equation: 

𝐻(𝑗𝜔) =
1

1 + 𝜔2𝑛
 

• As 𝑛 → ∞, this gives a ideal LPF response: 

 𝐻(𝑗𝜔) = 1 if 𝜔 ≤ 1 

 𝐻(𝑗𝜔) = 0 if 𝜔 > 1 

 

 

Butterworth filters again 



• In the previous amplitude response we replace 𝜔 with 
𝑠

𝑗
 and we obtain: 

𝐻(𝑗𝜔) 2 = 𝐻 𝑗𝜔 𝐻∗ 𝑗𝜔 = 𝐻 𝑗𝜔 𝐻 −𝑗𝜔 =
1

1+𝜔2𝑛 ⇒ 𝐻 𝑠 𝐻 −𝑠 = 
1

1+
𝑠

𝑗

2𝑛 

• The poles of 𝐻 𝑠 𝐻 −𝑠  are given by 1 +
𝑠

𝑗

2𝑛
= 0 ⇒ 

𝑠

𝑗

2𝑛
= −1. 

• We know that −1 = 𝑒𝑗𝜋 2𝑘−1  and 𝑗 = 𝑒𝑗
𝜋

2. 

•
𝑠

𝑗

2𝑛
= −1 ⇒ 𝑠2𝑛 = 𝑗2𝑛 ∙ −1 = 𝑒

𝑗
𝜋

2
2𝑛

∙ 𝑒𝑗𝜋 2𝑘−1  = 𝑒𝑗𝜋𝑛 ∙ 𝑒𝑗𝜋 2𝑘−1  

⇒ 𝑠2𝑛 = 𝑒𝑗𝜋 2𝑘−1+𝑛 ⇒ 𝑠 = 𝑒
𝑗𝜋 2𝑘−1+𝑛

2𝑛 , 𝑘 integer. 

• Therefore, the poles of 𝐻 𝑠 𝐻 −𝑠  lie along the unit circle (a circle around 
the origin with radius equal to 1). There are 2𝑛 distinct poles given by: 

𝑠𝑘 = 𝑒
𝑗𝜋 2𝑘−1+𝑛

2𝑛 , 𝑘 = 1,2, … , 2𝑛 

 

 

Butterworth filters cont. 



• We are only interested in 𝐻(𝑠), not 𝐻(−𝑠).  Therefore, we choose the 

poles of the low-pass filter to be those lying on the left half plane only. 
These poles are: 

𝑠𝑘 = 𝑒
𝑗𝜋 2𝑘−1+𝑛

2𝑛 = cos
𝜋

2𝑛
(2𝑘 − 1 + 𝑛) + 𝑗sin

𝜋

2𝑛
(2𝑘 − 1 + 𝑛), 𝑘 = 1,2, … , 𝑛 

 

• The transfer function of the filter is: 

𝐻 𝑠 =
1

(𝑠 − 𝑠1)(𝑠 − 𝑠2) … (𝑠 − 𝑠𝑁)
 

 

• This is a class of filters known as Butterworth filters.  

 

 

Butterworth filters cont. 



• To resume, Butterworth filters are a family of filters with poles distributed 
evenly around the left half of the unit circle. The poles are given by: 

𝑠𝑘 = 𝑒
𝑗𝜋 2𝑘+𝑛−1

2𝑛 , 𝑘 = 1,2, … , 𝑛 

• We assume 𝜔𝑐 = 1. 

• Here are the pole locations for Butterworth filters for orders 𝑛 = 1 to 4. 

𝐻 𝑠 =
1

(𝑠 − 𝑠1)(𝑠 − 𝑠2) … (𝑠 − 𝑠𝑁)
 

Butterworth filters cont. 



• Consider a fourth-order Butterworth filter (i.e., 𝑛 = 4). 
 

• The poles are at angles 
5𝜋

8
,
7𝜋

8
,
9𝜋

8
,
11𝜋

8
. 

 

• Therefore, the pole locations are: 

−0.3827 ± 𝑗0.9239, −0.9239 ± 𝑗0.3827. 
 

Therefore, 𝐻 𝑠 =
1

(𝑠2+0.7654𝑠+1)(𝑠2+1.8478𝑠+1)
= 

1

𝑠4+2.6131𝑠3+3.4142𝑠2+2.6131𝑠+1
 

 

Coefficients of Butterworth polynomial: 𝑩𝒏 𝒔 = 𝒔𝒏 + 𝒂𝒏−𝟏𝒔𝒏−𝟏 + ⋯ + 𝒂𝟏𝒔 + 𝟏 

 

Butterworth filters cont. 


