Signals and Systems

Lecture 3

DR TANIA STATHAKI

READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

DFT Properties

DFT:
$$X[k] = \sum_{0}^{N-1} x[n] e^{-j2\pi \frac{kn}{N}}$$

DTFT: $X(e^{j\omega}) = \sum_{-\infty}^{\infty} x[n] e^{-j\omega n}$

Case 1: x[n] = 0 for $n \notin [0, N-1]$

DFT is the same as DTFT at $\omega_k = \frac{2\pi}{N}k$.

The $\{\omega_k\}$ are uniformly spaced from $\omega = 0$ to $\omega = 2\pi \frac{N-1}{N}$. DFT is the z-Transform evaluated at N equally spaced points around the unit circle beginning at z = 1.

Case 2: x[n] is periodic with period N

DFT equals the normalized DTFT

$$X[k] = \lim_{K \to \infty} \underbrace{X_{K}(e^{j\omega_{k}})}_{ZK+1} \times X_{K}(e^{j\omega_{k}})$$

where $X_{K}(e^{j\omega}) = \sum_{-K}^{K} x[n]e^{-j\omega n}$

Number of samples kept symmetrically around the origin.

Proof of Case 2

We want to show that if x[n] = x[n + N] (i.e. x[n] is periodic with period N) then

$$\lim_{K \to \infty} \frac{N}{2K+1} \times X_K(e^{j\omega_k}) \triangleq \lim_{K \to \infty} \frac{N}{2K+1} \times \sum_{-K}^K x[n] e^{-j\omega_k n} = X[k]$$

where $\omega_k = \frac{2\pi}{N}k$. We assume that x[n] is bounded with |x[n]| < B.

We first note that the summand is periodic:

$$x[n+N]e^{-j\omega_k(n+N)} = x[n]e^{-j\omega_k n}e^{-jk\frac{2\pi}{N}N} = x[n]e^{-j\omega_k n}e^{-j2\pi k} = x[n]e^{-j\omega_k n}.$$

We now define M and R so that 2K + 1 = MN + R where $0 \le R < N$ (i.e. MN is the largest multiple of N that is $\le 2K + 1$). We can now write (K - R) - (-K) + 1 = 2K + 1 - R = MN terms $\frac{N}{2K+1} \times \sum_{-K}^{K} x[n]e^{-j\omega_k n} = \frac{N}{MN+R} \times \sum_{-K}^{K-R} x[n]e^{-j\omega_k n} + \frac{N}{MN+R} \times \sum_{-K}^{K} x[n]e^{-j\omega_n n}$

The first sum contains MN consecutive terms of a periodic summand and so equals M times the sum over one period. The second sum contains R bounded terms and so its magnitude is < RB < NB.

So
$$\frac{N}{2K+1} \times \sum_{-K}^{K} x[n]e^{-j\omega_k n} = \frac{MN}{MN+R} \times \sum_{0}^{N-1} x[n]e^{-j\omega_k n} + P = \frac{1}{1+\frac{R}{MN}} \times X[k] + P$$

where $|P| < \frac{N}{MN+R} \times NB \le \frac{N}{MN+0} \times NB = \frac{NB}{M}$.
As $M \to \infty$, $|P| \to 0$ and $\frac{1}{1+\frac{R}{MN}} \to 1$ so the whole expression tends to $X[k]$.
 $K - (K - R + 1) + 1 = R$ terms

Symmetries

If x[n] has a special property then $X(e^{j\omega})$ and X[k] will have corresponding properties as shown in the table (and vice versa):

One domain	Other domain
Discrete	Periodic
Symmetric	Symmetric
Antisymmetric	Antisymmetric
Real	Conjugate Symmetric
Imaginary	Conjugate Antisymmetric
Real + Symmetric	Real + Symmetric
Real + Antisymmetric	Imaginary + Antisymmetric

Symmetric:
$$x[n] = x[-n]$$

 $X(e^{j\omega}) = X(e^{-j\omega})$
 $X[k] = X[(-k)_{mod N}] = X[N-k]$ for $k > 0$

Conjugate Symmetric: $x[n] = x^*[-n]$ Conjugate Antisymmetric: $x[n] = -x^*[-n]$

Parseval's Theorem

Fourier transforms preserve "energy"

CTFT
$$\int |x(t)|^2 dt = \frac{1}{2\pi} \int |X(j\Omega)|^2 d\Omega$$

DTFT
$$\sum_{-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

DFT
$$\sum_{0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{0}^{N-1} |X[k]|^2$$

Hermitian: A complex matrix that is equal to its own conjugate transpose.

 $\begin{vmatrix} G^H G = \frac{1}{\sqrt{N}} F^H \frac{1}{\sqrt{N}} F = \frac{1}{N} F^H F \\ = \frac{1}{N} N F^{-1} F = I \end{vmatrix}$

More generally, they actually preserve complex inner products:

$$\sum_{0}^{N-1} x[n]y^*[n] = \frac{1}{N} \sum_{0}^{N-1} X[k]Y^*[k]$$

Unitary matrix viewpoint for DFT:

If we regard x and X as vectors, then $\mathbf{X} = \mathbf{F}\mathbf{x}$ where \mathbf{F} is a symmetric matrix defined by $f_{k+1,n+1} = e^{-j2\pi \frac{kn}{N}}$.

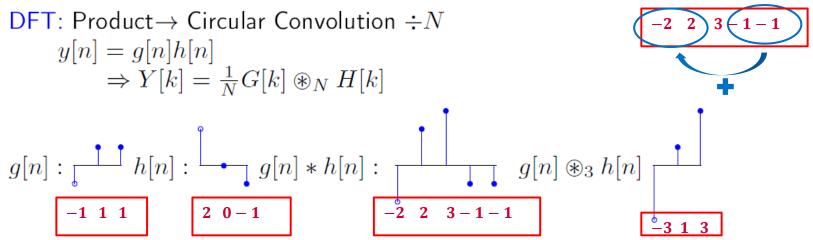
The inverse DFT matrix is $\mathbf{F}^{-1} = \frac{1}{N}\mathbf{F}^{H}$ equivalently, $\mathbf{G} = \frac{1}{\sqrt{N}}\mathbf{F}$ is a unitary matrix with $\mathbf{G}^{H}\mathbf{G} = \mathbf{I}$.

Convolution

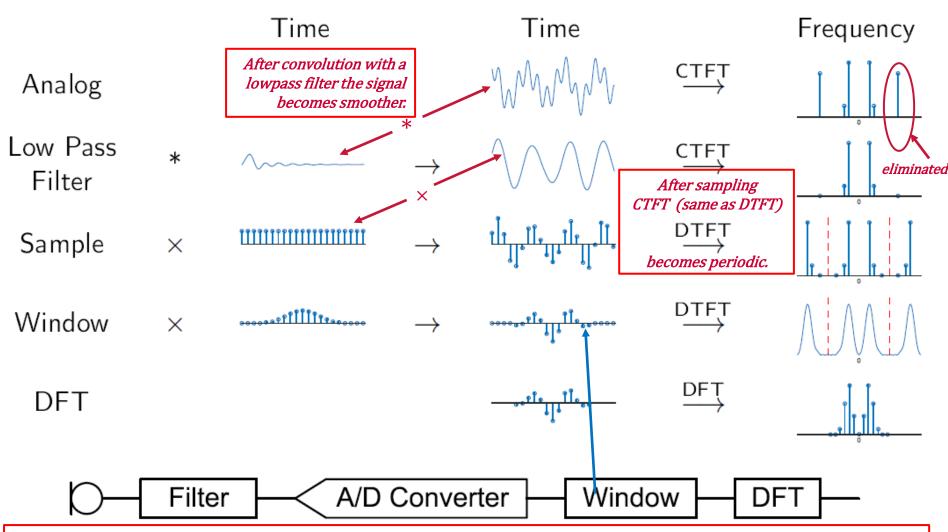
DTFT: Convolution
$$\rightarrow$$
 Product
 $x[n] = g[n] * h[n] = \sum_{k=-\infty}^{\infty} g[k]h[n-k]$
 $\Rightarrow X(e^{j\omega}) = G(e^{j\omega})H(e^{j\omega})$

DFT: Circular convolution \rightarrow Product $x[n] = g[n] \circledast_N h[n] = \sum_{k=0}^{N-1} g[k]h[(n-k)_{modN}]$ $\Rightarrow X[k] = G[k]H[k]$

DTFT: Product
$$\rightarrow$$
 Circular Convolution $\div 2\pi$
 $y[n] = g[n]h[n]$
 $\Rightarrow Y(e^{j\omega}) = \frac{1}{2\pi}G(e^{j\omega}) \circledast_{\pi} H(e^{j\omega}) = \frac{1}{2\pi}\int_{-\pi}^{\pi}G(e^{j\theta})H(e^{j(\omega-\theta)})d\theta$



Sampling Process

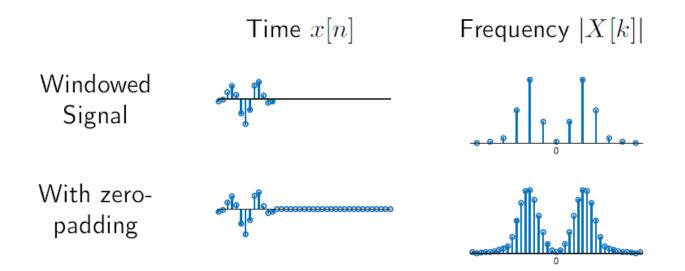


Lowpass filter the signal in order to make it bandlimited for sampling.

Window the signal to make it of finite duration.

Zero Padding

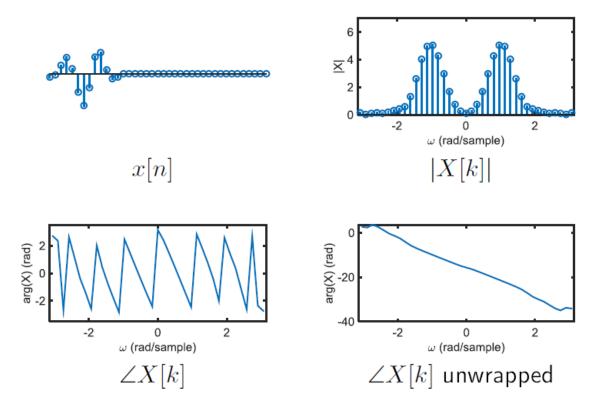
Zero padding means added extra zeros onto the end of x[n] before performing the DFT.



- Zero-padding causes the DFT to evaluate the DTFT at more values of ω_k. Denser frequency samples.
- Width of the peaks remains constant: determined by the length and shape of the window.
- Smoother graph but increased frequency resolution is an illusion.

Phase Unwrapping

Phase of a DTFT is only defined to within an integer multiple of 2π .



Phase unwrapping adds multiples of 2π onto each $\angle X[k]$ to make the phase as continuous as possible.

Uncertainty Principle

CTFT uncertainty principle:
$$\left(\frac{\int t^2 |x(t)|^2 dt}{\int |x(t)|^2 dt}\right)^{\frac{1}{2}} \left(\frac{\int \omega^2 |X(j\omega)|^2 d\omega}{\int |X(j\omega)|^2 d\omega}\right)^{\frac{1}{2}} \ge \frac{1}{2}$$

The first term measures the "width" of x(t) around t = 0. It is like σ if $|x(t)|^2$ was a zero-mean probability distribution. The second term is similarly the "width" of $X(j\omega)$ in frequency. A signal cannot be concentrated in both time and frequency.

Proof Outline:

Assume
$$\int |x(t)|^2 dt = 1 \Rightarrow \int |X(j\omega)|^2 d\omega = 2\pi$$
 [Parseval]
Set $v(t) = \frac{dx}{dt} \Rightarrow V(j\omega) = j\omega X(j\omega)$ [by parts]
Now $\int tx \frac{dx}{dt} dt = \frac{1}{2}tx^2(t)\Big|_{t=-\infty}^{\infty} - \int \frac{1}{2}x^2 dt = 0 - \frac{1}{2}$ [by parts]
So $\frac{1}{4} = \left|\int tx \frac{dx}{dt} dt\right|^2 \le \left(\int t^2 x^2 dt\right) \left(\int \left|\frac{dx}{dt}\right|^2 dt\right)$ [Schwartz]
 $= \left(\int t^2 x^2 dt\right) \left(\int |v(t)|^2 dt\right) = \left(\int t^2 x^2 dt\right) \left(\frac{1}{2\pi} \int |V(j\omega)|^2 d\omega\right)$
 $= \left(\int t^2 x^2 dt\right) \left(\frac{1}{2\pi} \int \omega^2 |X(j\omega)|^2 d\omega\right)$

No exact equivalent for DTFT/DFT but a similar effect is true

Uncertainty Principle Proof Steps

(1) Suppose $v(t) = \frac{dx}{dt}$. Then integrating the CTFT definition by parts w.r.t. t gives $X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt = \left[\frac{-1}{j\Omega}x(t)e^{-j\Omega t}\right]^{\infty} + \frac{1}{j\Omega}\int_{-\infty}^{\infty}\frac{dx(t)}{dt}e^{-j\Omega t}dt = 0 + \frac{1}{j\Omega}V(j\Omega)$ (2) Since $\frac{d}{dt}\left(\frac{1}{2}x^2\right) = x\frac{dx}{dt}$, we can apply integration by parts to get $\int_{-\infty}^{\infty} tx \frac{dx}{dt} dt = \left[t \times \frac{1}{2} x^2 \right]_{t=-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{dt}{dt} \times \frac{1}{2} x^2 dt = -\frac{1}{2} \int_{-\infty}^{\infty} x^2 dt = -\frac{1}{2} \times 1 = -\frac{1}{2}$ It follows that $\left|\int_{-\infty}^{\infty} tx \frac{dx}{dt} dt\right|^2 = \left(-\frac{1}{2}\right)^2 = \frac{1}{4}$ which we will use below. (3) The Cauchy-Schwarz inequality is that in a complex inner product space $|\mathbf{u} \cdot \mathbf{v}|^2 \leq (\mathbf{u} \cdot \mathbf{u}) (\mathbf{v} \cdot \mathbf{v})$. For the inner-product space of real-valued square-integrable functions, this becomes $\left|\int_{-\infty}^{\infty} u(t)v(t)dt\right|^2 \leq \int_{-\infty}^{\infty} u^2(t)dt \times \int_{-\infty}^{\infty} v^2(t)dt$. We apply this with u(t) = tx(t)and $v(t) = \frac{dx(t)}{dt}$ to get $\frac{1}{4} = \left| \int_{-\infty}^{\infty} tx \frac{dx}{dt} dt \right|^2 \le \left(\int t^2 x^2 dt \right) \left(\int \left(\frac{dx}{dt} \right)^2 dt \right) = \left(\int t^2 x^2 dt \right) \left(\int v^2(t) dt \right)$

(4) From Parseval's theorem for the CTFT, $\int v^2(t)dt = \frac{1}{2\pi} \int |V(j\Omega)|^2 d\Omega$. From step (1), we can substitute $V(j\Omega) = j\Omega X(j\Omega)$ to obtain $\int v^2(t)dt = \frac{1}{2\pi} \int \Omega^2 |X(j\Omega)|^2 d\Omega$. Making this substitution in (3) gives

$$\frac{1}{4} \le \left(\int t^2 x^2 dt\right) \left(\int v^2(t) dt\right) = \left(\int t^2 x^2 dt\right) \left(\frac{1}{2\pi} \int \omega^2 |X(j\Omega|^2 d\Omega)\right)$$

Summary

- □ Three types: CTFT, DTFT, DFT
 - DTFT = CTFT of continuous signal \times impulse train
 - DFT = DTFT of periodic or finite support signal

▶ DFT is a scaled unitary transform

- $\hfill\square$ DTFT: Convolution \rightarrow Product; Product \rightarrow Circular Convolution
- □ DFT: Product ↔ Circular Convolution
- \Box DFT: Zero Padding \rightarrow Denser freq sampling but same resolution

 \Box Phase is only defined to within a multiple of 2π .

- □ Whenever you integrate over frequency you need a scale factor
 - $\frac{1}{2\pi}$ for CTFT and DTFT or $\frac{1}{N}$ for DFT
 - e.g. Inverse transform, Parseval, frequency domain convolution

For further details see Mitra: 3 & 5.