DSP & Digital Filters

Lectures 2-3 Three Different Fourier Transforms

DR TANIA STATHAKI

READER (ASSOCIATE PROFESSOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Three different Fourier Transforms

There are three useful representations of signals in frequency domain.

- Continuous Time Fourier Transform (CTFT)
 - Continuous aperiodic signals. Continuous time and continuous frequency.
- Discrete Time Fourier Transform (DTFT)
 - Discrete aperiodic signals. Discrete time and continuous frequency.
- Discrete Fourier Transform (DFT)
 - Discrete periodic signals. Discrete Time and discrete frequency.

CTFT
$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

 Ω : "real" frequency $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega)e^{j\Omega t}d\Omega$ DTFT $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$
 $\omega = \Omega T$: "normalised" angular frequency $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega$ DFT $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{kn}{N}}$ $x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k]e^{j2\pi \frac{kn}{N}}$

Discrete Time Fourier Transform

The discrete-time Fourier transform (DTFT) X(e^{jω}) of a sequence x[n] is given by

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

• In general $X(e^{j\omega})$ is a complex function of the real variable ω and can be written as

$$X(e^{j\omega}) = X_{\rm re}(e^{j\omega}) + jX_{\rm im}(e^{j\omega})$$

where $X_{re}(e^{j\omega})$ and $X_{im}(e^{j\omega})$ are the real and imaginary parts of $X(e^{j\omega})$ and are real functions of ω .

• $X(e^{j\omega})$ can alternatively be expressed as $X(e^{j\omega}) = |X(e^{j\omega})|e^{j\theta(\omega)}$

where $|X(e^{j\omega})|$ and $\theta(\omega)$ are the amplitude and phase of $X(e^{j\omega})$ and are real functions of ω as well.

Discrete Time Fourier Transform

- For a real sequence x[n], $|X(e^{j\omega})|$ and $X_{re}(e^{j\omega})$ are even functions of ω , whereas, $\theta(\omega)$ and $X_{im}(e^{j\omega})$ are odd functions of ω .
- Note that for any integer k

$$X(e^{j\omega}) = |X(e^{j\omega})|e^{j[\theta(\omega)+2\pi k]} = |X(e^{j\omega})|e^{j\theta(\omega)}$$

- The above property indicates that the phase function $\theta(\omega)$ cannot be uniquely specified for the DTFT. Recall that the same observation holds for the CTFT.
- Unless otherwise stated, we shall assume that the phase function $\theta(\omega)$ is restricted to the following range of values:

$$-\pi \le \theta(\omega) < \pi$$

called the *principal value*.

Discrete Time Fourier Transform

- The phase response of DTFT might exhibit discontinuities of 2π radians in the plot.
 - [In numerical computations, when the computed phase function is outside the range $[-\pi, \pi]$, the phase is computed modulo 2π to bring the computed value to the above range.]
- An alternate type of phase function that is a continuous function of ω is often used in that case.
- It is derived from the original phase function by removing the discontinuities of 2π .
- The process of removing the discontinuities is called *phase unwrapping*.
- Sometimes the continuous phase function generated by unwrapping is denoted as $\theta_c(\omega)$.

Discrete Time Fourier Transform Periodicity

• Unlike the Continuous Time Fourier Transform, the DTFT is a periodic function in ω with period 2π .

 $X(e^{j(\omega_0+2\pi k)}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j(\omega_0+2\pi k)n} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega_0 n} e^{-j2\pi kn} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega_0 n} = X(e^{j\omega_0}), \text{ for any integer } k.$

- Therefore, $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$ imitates a Fourier Series representation of the periodic function $X(e^{j\omega})$.
- As a result, the Fourier Series coefficients x[n] can be derived from $X(e^{j\omega})$ using the Fourier integral

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

called the Inverse DTFT (IDTFT).

 Periodicity of DTFT is not a new concept; we know from sampling theory, that sampling a continuous signal results in a periodic repetition of its CTFT.

Revision

Nyquist sampling: Just about the correct sampling rate

- In that case we use the Nyquist sampling rate of 10Hz.
- The spectrum $\overline{X}(\omega)$ consists of back-to-back, non-overlapping repetitions of $\frac{1}{T_s}X(\omega)$ repeating every 10Hz.
- In order to recover $X(\omega)$ from $\overline{X}(\omega)$ we must use an ideal lowpass filter of bandwidth 5Hz. This is shown in the right figure below with the dotted line.

Revision

Oversampling: What happens if we sample too quickly?

- Sampling at higher than the Nyquist rate (in this case 20Hz) makes reconstruction easier.
- The spectrum $\overline{X}(\omega)$ consists of non-overlapping repetitions of $\frac{1}{T_s}X(\omega)$, repeating every 20*Hz* with empty bands between successive cycles.
- In order to recover $X(\omega)$ from $\overline{X}(\omega)$ we can use a practical lowpass filter and not necessarily an ideal one. This is shown in the right figure below with the dotted line.

• The filter we use for reconstruction must have gain T_s and bandwidth of any value between *B* and $(f_s - B)Hz$.

Revision

Undersampling: What happens if we sample too slowly?

- Sampling at lower than the Nyquist rate (in this case 5Hz) makes reconstruction impossible.
- The spectrum $\overline{X}(\omega)$ consists of overlapping repetitions of $\frac{1}{T_s}X(\omega)$ repeating every 5*Hz*.
- $X(\omega)$ is not recoverable from $\overline{X}(\omega)$.
- Sampling below the Nyquist rate corrupts the signal. This type of distortion is called <u>aliasing</u>.

More DTFT Properties

- The DTFT is the *z* -transform evaluated at *z* = e^{jω}. [Recall that *X*(*z*) = ∑[∞]_{-∞} *x*[*n*] *z*⁻ⁿ]. Therefore, the DTFT converges if the ROC includes |*z*| = 1 (*z* = e^{jω}).
- The DTFT is the same as the CTFT of a signal comprising impulses of appropriate heights at the sample instances.

$$x_{\delta}(t) = \sum_{n} x[n] \delta(t - nT) = x(t) \sum_{-\infty}^{\infty} \delta(t - nT)$$

• Recall that
$$x[n] = x(nT)$$

 $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x[n] \int_{-\infty}^{\infty} \delta(t-nT)e^{-j\omega \frac{t}{T}} dt$

$$= \int_{-\infty}^{\infty} \left[\sum_{n=-\infty}^{\infty} x[n] \,\delta(t-nT)\right] e^{-j\omega \frac{t}{T}} dt = \int_{-\infty}^{\infty} x_{\delta}(t) e^{-j\Omega t} dt$$

• For the above the condition $\sum_{n=-\infty}^{\infty} |x[n]| < \infty$ must hold.

•
$$\omega = \Omega T$$

Examples

• The DTFT of a shifted discrete Dirac function $\delta[n-k]$ is given by:

$$\Delta(\omega) = \sum_{n=-\infty}^{\infty} \delta \left[n - k \right] e^{-j\omega n} = e^{-j\omega k}$$

- The DTFT of the causal sequence $x[n] = \alpha^n u[n]$, $|\alpha| < 1$ is given by: $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \alpha^n u[n] e^{-j\omega n} = \sum_{n=0}^{\infty} \alpha^n e^{-j\omega n} = \sum_{n=0}^{\infty} (\alpha e^{-j\omega})^n = \frac{1}{1-\alpha e^{-j\omega}}$ if $|\alpha e^{-j\omega}| = |\alpha| < 1$
- For $\alpha = 0.5$, the magnitude and phase of $X(e^{j\omega}) = 1/(1 0.5e^{-j\omega})$ are shown below.

Inverse Discrete Time Fourier Transform (IDTFT)

• Lets us prove the previous statement that the IDTFT is defined as:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Proof

$$\begin{aligned} x[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{\ell=-\infty}^{\infty} x[\ell] e^{-j\omega\ell} \right) e^{j\omega n} d\omega \\ &= \sum_{\ell=-\infty}^{\infty} x[\ell] \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-\ell)} d\omega \right) = \sum_{\ell=-\infty}^{\infty} x[\ell] \frac{\sin \pi (n-\ell)}{\pi (n-\ell)} \end{aligned}$$

(Note that the order of integration and summation can be interchanged if the summation inside the top brackets converges uniformly, i.e., if $X(e^{j\omega})$ exists.)

Inverse Discrete Time Fourier Transform cont.

$$x[\ell] \frac{\sin \pi (n-\ell)}{\pi (n-\ell)} = \begin{cases} 1 & n=\ell\\ 0 & n\neq\ell \end{cases}$$

Hence,

$$\sum_{\ell=-\infty}^{\infty} x[\ell] \frac{\sin \pi \left(n-\ell\right)}{\pi (n-\ell)} = \sum_{\ell=-\infty}^{\infty} x[\ell] \delta[n-\ell] = x[n]$$

Discrete Time Fourier Transform: uniform convergence

- An infinite series of the form $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$ may or may not converge.
- Let $X_K(e^{j\omega}) = \sum_{n=-K}^K x[n]e^{-j\omega n}$
- For *uniform convergence* (strong convergence) of $X(e^{j\omega})$ we require: $\lim_{K \to \infty} X_K(e^{j\omega}) = X(e^{j\omega})$
- If x[n] is an *absolutely summable* sequence, i.e., if ∑_{n=-∞}[∞] |x[n]| < ∞, then

$$\left|X(e^{j\omega})\right| = \left|\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right| \le \sum_{n=-\infty}^{\infty} |x[n]| \left|e^{-j\omega n}\right| \le \sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

for all values of $\boldsymbol{\omega}$

• Thus, the absolute summability of x[n] is a sufficient condition for the existence of the DTFT $X(e^{j\omega})$.

Examples

• The sequence $x[n] = \alpha^n u[n]$ is absolutely summable for $|\alpha| < 1$ since

$$\sum_{n=-\infty}^{\infty} |\alpha^n| u[n] = \sum_{n=0}^{\infty} |\alpha^n| = \frac{1}{1-|\alpha|} < \infty$$

and its DTFT converges uniformly to $1/(1 - \alpha e^{-j\omega})$.

- Note that:
 - □ Since $\sum_{n=-\infty}^{\infty} |x[n]|^2 \le (\sum_{n=-\infty}^{\infty} |x[n]|)^2$, an absolutely summable sequence has always finite energy.
 - However, a finite energy sequence is not necessarily absolutely summable.

• The sequence
$$x[n] = \begin{cases} 1/n & n \ge 1 \\ 0 & n \le 0 \end{cases}$$

has finite energy equal to $\sum_{n=1}^{\infty} (\frac{1}{n})^2 = \pi^2/6$ but is not absolutely summable.

Discrete Time Fourier Transform: mean square convergence

 To represent a finite energy sequence x[n] that is not absolutely summable by DTFT, it is necessary to consider the so called *mean-square convergence* (weak convergence) of X(e^{jω}):

$$\lim_{K \to \infty} \int_{-\pi}^{\pi} \left| X(e^{j\omega}) - X_K(e^{j\omega}) \right|^2 d\omega = 0$$

where $X_K(e^{j\omega}) = \sum_{n=-K}^{K} x[n]e^{-j\omega n}$.

- Here, the total energy of the error $X(e^{j\omega}) X_K(e^{j\omega})$ must approach zero at each value of ω as K goes to ∞ .
- In such a case, the absolute value of the error may not go to zero as K goes to ∞ and the DTFT is no longer bounded.

Example

- Consider the DTFT: $H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$ $H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$
 - The inverse DTFT is given by

$$h_{LP}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{LP}(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$

$$=\frac{1}{2\pi}\left(\frac{e^{j\omega_{c}n}}{jn}-\frac{e^{-j\omega_{c}n}}{jn}\right)=\frac{\sin\omega_{c}n}{\pi n}, -\infty < n < \infty$$

- The energy of $h_{LP}[n]$ is given by $E_h = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_{LP}(e^{j\omega})|^2 d\omega = \frac{\omega_c}{\pi}$.
- $h_{LP}[n]$ is a finite-energy sequence, but it is not absolutely summable.

Example cont.

• As a result

$$\sum_{n=-K}^{K} h_{LP}[n] e^{-j\omega n} = \sum_{n=-K}^{K} \frac{\sin \omega_c n}{\pi n} e^{-j\omega n}$$

does not uniformly converge to

$$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

for all values of ω , but converges to $H_{LP}(e^{j\omega})$ in the mean-square sense.

 The mean-square convergence property of the sequence h_{LP}[n] can be further illustrated by examining the plot of the function

$$H_{LP,K}(e^{j\omega}) = \sum_{n=-K}^{K} \frac{\sin \omega_c n}{\pi n} e^{-j\omega n}$$

for various values of *K* as shown next.

Example cont.

Example cont.

- As it can be seen from these plots, independent of the value of *K* there are ripples in the plot of $H_{LP,K}(e^{j\omega})$ around both sides of the point $\omega = \omega_c$.
- The number of ripples increases as *K* increases with the height of the largest ripple remaining the same for all values of *K*.
- As *K* goes to infinity, the condition

$$\lim_{K\to\infty}\int_{-\pi}^{\pi} \left|H_{LP}(e^{j\omega}) - H_{LP,K}(e^{j\omega})\right|^2 d\omega = 0$$

holds, indicating the convergence of $H_{LP,K}(e^{j\omega})$ to $H_{LP}(e^{j\omega})$.

• The oscillatory behavior observed in $H_{LP,K}(e^{j\omega})$ is known as the **Gibbs** phenomenon.

Neither absolutely- nor square- summable

- The DTFT can also be defined for a certain class of sequences which are neither absolutely summable nor square summable.
- Examples of such sequences are the unit step sequence u[n], the sinusoidal sequence $\cos(\omega_o n + \varphi)$ and the complex exponential sequence $A\alpha^n$. These are neither absolutely summable nor square summable.
- For this type of sequences, a DTFT representation is possible using Dirac delta functions.
- A **Dirac delta function** $\delta(\omega)$ is a "function" of ω with infinite height, zero width, and unit area.
- It is the limiting form of a unit area pulse function $p_{\Delta}(\omega)$ as Δ goes to zero

$$\delta(\omega) = \lim_{\Delta \to 0} p_{\Delta}(\omega)$$

satisfying

$$\int_{-\infty}^{\infty} p_{\Delta}(\omega) d\omega = 1, \, p_{\Delta}(\omega) = 0, \, \omega \neq 0$$

Example

• Consider the complex exponential sequence $x[n] = e^{j\omega_0 n}$, ω_0 real. Its DTFT is given by

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi\delta(\omega - \omega_o + 2\pi k)$$

where $\delta(\omega)$ is an impulse function of ω and $-\pi \leq \omega_o \leq \pi$.

• To verify the above we can take the IDTFT of $X(e^{j\omega})$ above:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_o + 2\pi k) e^{j\omega n} d\omega = \int_{-\pi}^{\pi} \delta(\omega - \omega_o) e^{j\omega n} d\omega = e^{j\omega_o n}$$

DTFT properties (listed without proof)

Type of Property	Sequence	Discrete-Time Fourier Transform
	g[n] h[n]	$G(e^{j\omega})$ $H(e^{j\omega})$
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G(e^{j\omega}) + \beta H(e^{j\omega})$
Time-shifting	$g[n-n_o]$	$e^{-j\omega n_o}G(e^{j\omega})$
Frequency-shifting	$e^{j\omega_o n}g[n]$	$G\left(e^{j\left(\omega-\omega_{o}\right)} ight)$
Differentiation in frequency	ng[n]	$j \frac{dG(e^{j\omega})}{d\omega}$
Convolution	$g[n] \circledast h[n]$	$G(e^{j\omega})H(e^{j\omega})$
Modulation	g[n]h[n]	$\frac{1}{2\pi}\int_{-\pi}^{\pi}G(e^{j\theta})H(e^{j(\omega-\theta)})d\theta$
Parseval's relation	$\sum_{n=1}^{\infty} g[n]h^*[$	$[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\omega}) H^*(e^{j\omega}) d\omega$

 $n = -\infty$

DTFT properties (listed without proof)

Sequence	Discrete-Time Fourier Transform	
<i>x</i> [<i>n</i>]	$X(e^{j\omega})$ $x[n]$: A complex sequence	ce
x[-n]	$X(e^{-j\omega})$	
$x^{*}[-n]$	$X^*(e^{j\omega})$	
$\operatorname{Re}\{x[n]\}$	$X_{\rm cs}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) + X^*(e^{-j\omega}) \}$	
$j \operatorname{Im} \{x[n]\}$	$X_{\rm ca}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) - X^*(e^{-j\omega}) \}$	
$x_{\rm cs}[n]$	$X_{\rm re}(e^{j\omega})$	
$x_{ca}[n]$	$jX_{\rm im}(e^{j\omega})$	

Note: $X_{cs}(e^{j\omega})$ and $X_{ca}(e^{j\omega})$ are the conjugate-symmetric and conjugate-antisymmetric parts of $X(e^{j\omega})$, respectively. Likewise, $x_{cs}[n]$ and $x_{ca}[n]$ are the conjugate-symmetric and conjugate-antisymmetric parts of x[n], respectively.

DTFT properties (listed without proof)

Sequence	Discrete-Time Fourier Transform	
x[n]	$X(e^{j\omega}) = X_{\rm re}(e^{j\omega}) + jX_{\rm im}(e^{j\omega})$	x[n]: A real sequence
$x_{\rm ev}[n]$ $x_{\rm od}[n]$	$X_{ m re}(e^{j\omega})$ $jX_{ m im}(e^{j\omega})$	
	$X(e^{j\omega}) = X^*(e^{-j\omega})$	
	$X_{\rm re}(e^{j\omega}) = X_{\rm re}(e^{-j\omega})$ $X_{\rm re}(e^{-j\omega}) = X_{\rm re}(e^{-j\omega})$	
Symmetry relations	$X_{\rm im}(e^{j\omega}) = -X_{\rm im}(e^{-j\omega})$ $ X(e^{j\omega}) = X(e^{-j\omega}) $	
	$\arg\{X(e^{j\omega})\} = -\arg\{X(e^{-j\omega})\}$	

Note: $x_{ev}[n]$ and $x_{od}[n]$ denote the even and odd parts of x[n], respectively.

Common DTFT pairs

$$\begin{split} \delta[n] &\leftrightarrow 1\\ 1 &\leftrightarrow \sum_{k=-\infty}^{\infty} 2\pi\delta(\omega + 2\pi k)\\ u[n] &\leftrightarrow \frac{1}{1 - e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi\delta(\omega + 2\pi k)\\ e^{j\omega_0 n} &\leftrightarrow \sum_{k=-\infty}^{\infty} 2\pi\delta(\omega - \omega_0 + 2\pi k)\\ \alpha^n u[n], (|\alpha| < 1) &\leftrightarrow \frac{1}{1 - \alpha e^{-j\omega}} \end{split}$$

Example

• Determine the DTFT of the sequence

$$w[n] = (n+1)\alpha^n u[n], |\alpha| < 1$$

- Let $x[n] = \alpha^n u[n]$, $|\alpha| < 1$. We can, therefore, write y[n] = nx[n] + x[n]
- From tables, the DTFT of x[n] is given by

$$X(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}}$$

Using the differentiation property of the DTFT given in previous tables, we
observe that the DTFT of nx[n] is given by

$$j\frac{dX(e^{j\omega})}{d\omega} = j\frac{d}{d\omega}\left(\frac{1}{1-\alpha e^{-j\omega}}\right) = \frac{\alpha e^{-j\omega}}{(1-\alpha e^{-j\omega})^2}$$

 Next using the linearity property of the DTFT given in previous tables we arrive at

$$Y(e^{j\omega}) = \frac{\alpha e^{-j\omega}}{(1 - \alpha e^{-j\omega})^2} + \frac{1}{1 - \alpha e^{-j\omega}} = \frac{1}{(1 - \alpha e^{-j\omega})^2}$$

Example

• Determine the DTFT of the sequence *v*[*n*] defined by

 $d_0v[n] + d_1v[n-1] = p_0\delta[n] + p_1\delta[n-1], \, |d_1/d_0| < 1$

- From previous tables, we see that the DTFT of $\delta[n]$ is 1.
- Using the time-shifting property of the DTFT given in previous tables, we observe that the DTFT of $\delta[n-1]$ is $e^{-j\omega}$ and the DTFT of v[n-1] is $e^{-j\omega}V(e^{j\omega})$.
- Using the linearity property of previous tables we then obtain the frequency-domain representation of $d_0v[n] + d_1v[n-1] = p_0\delta[n] + p_1\delta[n-1]$ as

$$d_0 V(e^{j\omega}) + d_1 e^{-j\omega} V(e^{j\omega}) = p_0 + p_1 e^{-j\omega}$$

• Solving the above equation we get

$$V(e^{j\omega}) = \frac{p_0 + p_1 e^{-j\omega}}{d_0 + d_1 e^{-j\omega}}$$

Energy Density Spectrum

• The total energy of a finite-energy sequence g[n] is given by

$$\varepsilon_g = \sum_{n=-\infty}^{\infty} |g[n]|^2$$

• From Parseval's Theorem we know that

$$\varepsilon_g = \sum_{n=-\infty}^{\infty} |g[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |G(e^{j\omega})|^2 d\omega$$

- The quantity $S_{gg}(\omega) = |G(e^{j\omega})|^2$ is called the **energy density spectrum**.
- The area under this curve in the range $-\pi \le \omega \le \pi$ divided by 2π is the energy of the sequence.

Example

• Compute the energy of the sequence

$$h_{LP}[n] = rac{\sin\omega_c n}{\pi n}, -\infty < n < \infty$$

• Here,

$$\sum_{n=-\infty}^{\infty} |h_{LP}[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_{LP}(e^{j\omega})|^2 d\omega$$
$$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c\\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

• Therefore,

$$\sum_{n=-\infty}^{\infty} |h_{LP}[n]|^2 = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} d\omega = \frac{\omega_c}{\pi} < \infty$$

• Hence, $h_{LP}[n]$ is a finite energy sequence.

Introduction. Time sampling theorem resume.

- We wish to perform spectral analysis using digital computers.
- Therefore, we must somehow sample the Discrete Time Fourier Transform of the signal!
- We will compute a discrete version of the DTFT of a <u>sampled</u>, <u>finite-duration</u> signal. This transform is known as the Discrete Fourier Transform (DFT).
- The goal is to understand how DFT is related to the original Fourier transform.
- We showed that a signal bandlimited to BHz can be reconstructed from signal samples if they are obtained at a rate of $f_s > 2B$ samples per second.
- Not that the signal spectrum exists over the frequency range (in Hz) from -B to B.
- The interval 2B is called spectral width.
 Note the difference between spectral width (2B) and bandwidth (B).
- In time sampling theorem: $f_s > 2B$ or $f_s >$ (spectral width).

Time sampling theorem has a dual: Spectral sampling theorem

- Consider a time-limited signal x(t) with a spectrum $X(\omega)$.
- In general, a time-limited signal is 0 for $t < T_1$ and $t > T_2$. The duration of the signal is $\tau = T_2 T_1$. Below we assume that $T_1 = 0$.
- Recall that $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt = \int_{0}^{\tau} x(t)e^{-j\omega t}dt$.
- The Fourier transform $X(\omega)$ is assumed real for simplicity.

Spectral sampling theorem

The spectrum $X(\omega)$ of a signal x(t), time-limited to a duration of τ seconds, can be reconstructed from the samples of $X(\omega)$ taken at a rate R samples per Hz, where $R > \tau$ (the signal width or duration in seconds).

Spectral sampling theorem

- We now construct the periodic signal x_{T₀}(t). This is a periodic extension of x(t) with period T₀ > τ.
- This periodic signal can be expressed using Fourier series.

$$\begin{aligned} x_{T_0}(t) &= \sum_{n=-\infty}^{n=\infty} D_n e^{jn\omega_0 t}, \ \omega_0 = \frac{2\pi}{T_0} \\ D_n &= \frac{1}{T_0} \int_0^{T_0} x(t) \ e^{-jn\omega_0 t} dt = \frac{1}{T_0} \int_0^{\tau} x(t) \ e^{-jn\omega_0 t} dt = \frac{1}{T_0} X(n\omega_0) \end{aligned}$$

- The result indicates that the coefficients of the Fourier series for $x_{T_0}(t)$ are the values of $X(\omega)$ taken at integer multiples of ω_0 and scaled by $\frac{1}{\tau_0}$.
- We call spectrum of a periodic signal the weights of the exponential terms in its Fourier series representation.
- The above implies that the spectrum of the periodic signal $x_{T_0}(t)$ is the sampled version of spectrum $X(\omega)$.

Spectral sampling theorem cont.

• The spectrum of the periodic signal $x_{T_0}(t)$ is the sampled version of spectrum $X(\omega)$ (see figure below).

- If successive cycles of x_{T₀}(t) do not overlap, x(t) can be recovered from x_{T₀}(t).
- If we know x(t) we can find $X(\omega)$.
- The above imply that $X(\omega)$ can be reconstructed from its samples.
- These samples are separated by the so called fundamental frequency $f_0 = \frac{1}{T_0} Hz$ or $\omega_0 = 2\pi f_0 rads/s$ of the periodic signal $x_{T_0}(t)$.
- Therefore, the condition for recovery is $T_0 > \tau \Rightarrow f_0 < \frac{1}{\tau}Hz$.

Spectral interpolation formula

• To reconstruct the spectrum $X(\omega)$ from the samples of $X(\omega)$, the samples should be taken at frequency intervals $f_0 < \frac{1}{\tau}Hz$. If the sampling rate is *R* frequency samples/*Hz* we have:

$$R = \frac{1}{f_0} > \tau \text{ samples/Hz}$$

 We know that the continuous version of a signal can be recovered from its sampled version through the so called *signal interpolation formula*: (refer to a Signals and Systems book for the proof of it)

$$x(t) = \sum_{n} x(nT_s)h(t - nT_s) = \sum_{n} x(nT_s)\operatorname{sinc}\left(\frac{\pi t}{T_s} - n\pi\right)$$

We use the dual of the approach employed to derive the signal interpolation formula above, to obtain the **spectral interpolation formula** as follows. We assume that x(t) is time-limited to τ and centred at T_c . We can prove that:

$$X(\omega) = \sum_{n=-\infty} X(n\omega_0) \operatorname{sinc}\left(\frac{\omega T_0}{2} - n\pi\right) e^{-j(\omega - n\omega_0)T_c}, \, \omega_0 = \frac{2\pi}{T_0}, \, T_0 > \tau$$

Spectral interpolation formula: Proof.

- We know that $x_{T_0}(t) = \sum_{n=-\infty}^{n=\infty} D_n e^{jn\omega_0 t}$, $\omega_0 = \frac{2\pi}{T_0}$
- Therefore, $\mathcal{F}\{x_{T_0}(t)\} = 2\pi \sum_{n=-\infty}^{n=\infty} D_n \,\delta(\omega n\omega_0)$ [It is easier to prove that $\mathcal{F}^{-1}\{\sum_{n=-\infty}^{n=\infty} D_n \,\delta(\omega - n\omega_0)\} = x_{T_0}(t)$]
- We can write $x(t) = x_{T_0}(t) \cdot \operatorname{rect}\left(\frac{t-T_c}{T_0}\right)$ (1) [We were given that x(t) is centred at T_c]
- We know that $\mathcal{F}\left\{\operatorname{rect}\left(\frac{t}{T_0}\right)\right\} = T_0\operatorname{sinc}\left(\frac{\omega T_0}{2}\right)$.
- Therefore, $\mathcal{F}\left\{\operatorname{rect}\left(\frac{t-T_{c}}{T_{0}}\right)\right\} = T_{0}\operatorname{sinc}\left(\frac{\omega T_{0}}{2}\right)e^{-j\omega T_{c}}$.
- From (1) we see that $X(\omega) = \frac{1}{2\pi} \mathcal{F}\left\{x_{T_0}(t)\right\} * \mathcal{F}\left\{\operatorname{rect}\left(\frac{t-T_c}{T_0}\right)\right\}$
- $X(\omega) = \frac{1}{2\pi} 2\pi \left[\sum_{n=-\infty}^{n=\infty} D_n \,\delta(\omega n\omega_0)\right] * T_0 \operatorname{sinc}\left(\frac{\omega T_0}{2}\right) e^{-j\omega T_c}$ $X(\omega) = \sum_{n=-\infty} D_n T_0 \operatorname{sinc}\left[\frac{(\omega n\omega_0)T_0}{2}\right] e^{-j(\omega n\omega_0)T_c}, \,\omega_0 = \frac{2\pi}{T_0}, \,T_0 > \tau$ $X(\omega) = \sum_{n=-\infty} X(n\omega_0) \operatorname{sinc}\left(\frac{\omega T_0}{2} n\pi\right) e^{-j(\omega n\omega_0)T_c}$

Discrete Fourier Transform DFT

- The numerical computation of the Fourier transform requires samples of x(t) since computers can work only with discrete values.
- Furthermore, the Fourier transform can only be computed at some discrete values of ω .
- The goal of what follows is to relate the samples of X(ω) with the samples of x(t).
- Consider a time-limited signal x(t). Its spectrum $X(\omega)$ will not be bandlimited (try to think why). In other words aliasing after sampling cannot be avoided.
- The spectrum $\overline{X}(\omega)$ of the sampled signal $\overline{x}(t)$ consist of $X(\omega)$ repeating every $f_s Hz$ with $f_s = \frac{1}{\tau}$.

Discrete Fourier Transform DFT cont.

- Suppose now that the sampled signal $\bar{x}(t)$ is repeated periodically every T_0 seconds.
- According to the spectral sampling theorem, this operation results in sampling the spectrum at a rate of T_0 samples/Hz. This means that the samples are spaced at $f_0 = \frac{1}{T_0}Hz$.
- Therefore, when a signal is sampled and periodically repeated, its spectrum is also sampled and periodically repeated.

Discrete Fourier Transform DFT cont.

- The number of samples of the discrete signal in one period T_0 is $N_0 = \frac{T_0}{T}$ (figure below left).
- The number of samples of the discrete spectrum in one period is $N'_0 = \frac{f_s}{f_0}$.

• We see that
$$N'_0 = \frac{f_s}{f_0} = \frac{\frac{1}{T}}{\frac{1}{T_0}} = \frac{T_0}{T} = N_0.$$

 This is an interesting observation: the number of samples in a period of time is identical to the number of samples in a period of frequency.

Aliasing and leakage effects

• Since $X(\omega)$ is not bandlimited, we will get some aliasing effect:

• Furthermore, if x(t) is not time limited, we need to truncate x(t) with a window function. This leads to a "leakage" effect (refer to a Signals and Systems book for the demonstration of it).

Formal definition of DFT

• If x(nT) and $X(k\omega_0)$ are the n^{th} and k^{th} samples of x(t) and $X(\omega)$ respectively, we define:

$$x[n] = Tx(nT) = \frac{T_0}{N_0}x(nT)$$
$$X[k] = X(k\omega_0), \, \omega_0 = 2\pi f_0 = \frac{2\pi}{T_0}$$

• It can be shown that x[n] and X[k] are related by the following equations:

$$X[k] = \sum_{n=0}^{N_0 - 1} x[n] e^{-jnk\Omega_0}$$
(1)

$$x[n] = \frac{1}{N_0} \sum_{k=0}^{N_0 - 1} X[k] e^{jkn\Omega_0} , \ \Omega_0 = \omega_0 T = \frac{2\pi}{N_0}$$
(2)

- The equations (1) and (2) above are the direct and inverse Discrete Fourier Transforms respectively, known as DFT and IDFT.
- In the above equations, the summation is performed from 0 to $N_0 1$. It can be shown that the summation can be performed over any successive N_0 values of n or k.

Example

• Use DFT to compute the Fourier transform of 8rect(t) (Lathi page 808.)

- The essential bandwidth *B* (calculated by finding where the amplitude response drops to 1% of its peak value) is well above 16Hz. However, we select B = 4Hz:
 - To observe the effects of aliasing.
 - In order not to end up with a huge number of samples in time.

Example cont.

- $B = 4Hz, f_s = 8Hz, T = \frac{1}{f_s} = \frac{1}{8}.$
- For the frequency resolution we choose $f_0 = \frac{1}{4}Hz$. This choice gives us 4 samples in each lobe of $X(\omega)$ and $T_0 = \frac{1}{f_0} = 4s$.

Example cont.

- $N_0 = \frac{T_0}{T} = \frac{4}{1/8} = 32$. Therefore, we must repeat x(t) every 4s and take samples every $\frac{1}{8}s$. This yields 32 samples in a period.
- $x[n] = Tx(nT) = \frac{1}{8}x(\frac{n}{8})$ with x(t) = 8rect(t).
- The DFT of the signal x[n] is obtained by taking any full period of x[n] (i.e., N₀ samples) and not necessarily N₀ over the interval (0, T₀) as we assumed in the theoretical analysis of DFT.

Example cont.

• $X[k] = \sum_{n=0}^{N_0 - 1} x[n] e^{-jk\Omega_0 n} = \sum_{n=0}^{31} x[n] e^{-jk(\pi/16)n}$. See figure below.

Example cont.

- Observe that X[k] is periodic.
- The dotted curve depicts the Fourier transform of x(t) = 8rect(t).
- The aliasing error is quite visible when we use a single graph to compare the superimposed plots. The error increases rapidly with *k*.

Appendix: Proof of DFT relationships

• For the sampled signal we have:

$$\overline{x(t)} = \sum_{n=0}^{N_0 - 1} x(nT) \delta(t - nT).$$

Since $\delta(t - nT) \Leftrightarrow e^{-jn\omega T}$
$$\overline{X(\omega)} = \sum_{n=0}^{N_0 - 1} x(nT) e^{-jn\omega T}$$

For $|\omega| \le \frac{\omega_s}{2}$, $\overline{X(\omega)}$ the Fourier transform of $\overline{x(t)}$ is $\frac{X(\omega)}{T}$, i.e.,
 $X(\omega) = T\overline{X(\omega)} = T \sum_{n=0}^{N_0 - 1} x(nT) e^{-jn\omega T}, |\omega| \le \frac{\omega_s}{2}$

$$X(\omega) = T\overline{X(\omega)} = T\sum_{n=0}^{N_0 - 1} x(nT)e^{-jn\omega T}, |\omega| \le \frac{\omega_s}{2}$$
$$X[k] = X(k\omega_0) = T\sum_{n=0}^{N_0 - 1} x(nT)e^{-jnk\omega_0 T}$$

• If we let $\omega_0 T = \Omega_0$ then $\Omega_0 = \omega_0 T = 2\pi f_0 T = \frac{2\pi}{N_0}$ and also Tx(nT) = x[n].

• Therefore, $X[k] = \sum_{n=0}^{N_0 - 1} x[n] e^{-jnk\Omega_0}$

Appendix: Proof of DFT relationships

• To prove the inverse relationship write:

$$\begin{split} \sum_{k=0}^{N_0-1} X[k] e^{jkm\Omega_0} &= \sum_{k=0}^{N_0-1} \left[\sum_{n=0}^{N_0-1} x[n] e^{-jnk\Omega_0} \right] e^{jkm\Omega_0} \Rightarrow \\ \sum_{k=0}^{N_0-1} X[k] e^{jkm\Omega_0} &= \sum_{n=0}^{N_0-1} x[n] \left[\sum_{k=0}^{N_0-1} e^{-jk(n-m)\Omega_0} \right] \\ \bullet \quad \sum_{k=0}^{N_0-1} e^{-jk(n-m)\Omega_0} &= \sum_{k=0}^{N_0-1} e^{-jk(n-m)\frac{2\pi}{N_0}} = \begin{cases} N_0 & n-m=rN_0, r \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

• Since $0 \le m, n \le N_0 - 1$ the only multiple of N_0 that the term (n - m) can be is 0. Therefore:

$$\sum_{k=0}^{N_0-1} e^{-jk(n-m)\frac{2\pi}{N_0}} = \begin{cases} N_0 & n-m=0 \Rightarrow n=m\\ 0 & \text{otherwise} \end{cases}$$

• Therefore,

$$x_m = \frac{1}{N_0} \sum_{k=0}^{N_0 - 1} X[k] e^{jkm\Omega_0}, \ \Omega_0 = \frac{2\pi}{N_0}$$

Continue with Dr Mike Brookes's notes

• For the rest of the material related to DFT refer to Dr Mike Brookes's notes Three Different Fourier Transforms, from section Symmetries to the end.