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Mathematics for Signals and Systems 

In this set of lectures we will tackle the following problems: 

 

• Column Space, Row Space and Rank of a matrix 

• Vector Spaces and Subspaces 

• Column Spaces and Nullspaces 

• Solving 𝐴𝑥 = 0 

• Pivot / Free Variables 

• Special Solutions 

 



Background 

Column Space, Row Space and Rank of a matrix 

• In linear algebra, we define the column space 𝐶(𝐴) of a matrix 𝐴 (sometimes 

called the range of a matrix) as the set of all possible linear combinations of 

its column vectors. 

• Consider a matrix 𝐴 of size 𝑚 × 𝑛. Its columns are 𝑚 − dimensional vectors. 

Therefore, its column space is a linear subspace of the 𝑚 − dimensional plane 

𝑅𝑚.  

• The dimension of the column space of a matrix 𝐴 is called the rank of the matrix. 

• We define the row space 𝑅(𝐴) of a matrix 𝐴 as the set of all possible linear 

combinations of its row vectors. 

• Consider a matrix 𝐴 of size 𝑚 × 𝑛. Its rows are 𝑛 − dimensional vectors. 

Therefore, its row space is a linear subspace of the 𝑛 − dimensional plane 𝑅𝑛. 

• The column and row space of a matrix are always of the same 

dimension!  

• Therefore, the dimension of the row space of a matrix 𝐴 also defines the rank of 

the matrix 𝐴. 

• Based on the above, the rank of a matrix is at most 𝐦𝐢𝐧 𝒎, 𝒏 ‼! 

 

 



Rank: What you know so far 

To summarise the previous material, let 𝐴 be an 𝑚 × 𝑛 matrix. So far you know that: 

 

• 𝑟𝑎𝑛𝑘 𝐴 = dim 𝑅 𝐴 = dim 𝐶 𝐴  

 

• 𝑟𝑎𝑛𝑘(𝐴) = the maximum number of linearly independent rows or columns of 𝐴. 

 

• 𝑟𝑎𝑛𝑘 𝐴 ≤ min (𝑚, 𝑛) 

 

• Keep in mind and don’t forget that the column and row space of a 

matrix are of the same dimension, but they are different spaces! 

 



𝑅+
2  

is not a vector space ? 

Mathematics for Signals and Systems: Vector Spaces 

• An 𝑁 −dimensional space in which we can define specific vector operations is 

called vector space. 

• For example, 𝑅2 (𝑥 − 𝑦 plane) is a vector space where operations on 2-

dimensional vectors can be defined. 

• Note that all vectors with two real components are included in 𝑅2. 

• A vector space must be closed under multiplication and addition. If it is not, then 

it is NOT a vector space! This means that:  

 The product of a vector with a real number has to be in the vector space. 

 Any linear combination of vectors in the vector space has to be in the vector 

space. 

   is a vector space 

   (subspace of 𝑅2) 



Mathematics for Signals and Systems: Subspaces 

 
• Examples of vector spaces which are subspaces of 𝑅2: 

 All of  𝑅2 (plane). 

 All lines that go through the origin (line). 

 Zero vector only (point). 

 

• Examples of vector spaces which are subspaces of 𝑅3: 

 All of 𝑅3. 

 All planes that go through the origin (𝑅2 planes). 

 All lines through the origin (lines). 

 Zero vector only (point). 



Mathematics for Signals and Systems: Column Space 
 

• Consider the columns of matrix 𝐴 =
1
2

3
3

4 1
. 

• They are 3-dimensional vectors and therefore, they lie in 𝑅3. 

• Their linear combinations form a subspace of 𝑅3. 

• This subspace of 𝑅3 is called the Column Space of 𝑨  and it is denoted by 

𝐶(𝐴). 

• In that particular example, matrix 𝐴 has two independent columns that lie in 𝑅3. 

• The column space of matrix 𝐴 is a two dimensional plane (subspace) that goes 

through the origin. 

 

𝐶(𝐴) 



𝐶(𝐴) 

Mathematics for Signals and Systems: Column Space cont. 

 
• Consider the column spaces of matrix 𝐴 and matrix 𝐵. 

 

 

 

  

• The union of 𝐶(𝐴) and 𝐶(𝐵) is not a subspace. 

• Linear combination of columns 𝐴 and 𝐵 do 

not necessarily lie in the union. 

• The intersection of 𝐶(𝐴) and 𝐶(𝐵) is a subspace. This is because intersection 

is the zero vector which is a subspace. 

• In general, the intersection of subspaces is always a subspace. 

 

 

𝐴 =
1 3
2 3
4 1

 𝐵 =
2
1
0

 
𝐶(𝐵) 



Mathematics for Signals and Systems: Column Space cont. 

 
• A system of linear equations doesn’t always have a solution for every 𝑏. 

 

 

• Consider the example where we have 4 equations with 3 unknowns: 

 

 

 

 

 

• If 𝑏 is a linear combination of the columns of 𝐴 then the system has a solution.  

• The column space 𝐶(𝐴) contains, by definition, all the linear combinations 𝐴𝑥 of 

the columns of 𝐴. 

• Therefore, we can solve 𝐴𝑥 = 𝑏 exactly only when 𝑏 is in the column space of 

𝐶(𝐴). 

 

 

𝐴𝑥 = 𝑏 

𝐴𝑥 =

1 1 2
2 1 3
3 1 4
4 1 5

𝑥1

𝑥2

𝑥3

=

𝑏1

𝑏2

𝑏3

𝑏4

= 𝑏 



Mathematics for Signals and Systems: Column Space cont. 

 
• Notice that in the previous example, column 3 of 𝐴 is a linear combination of the 

other two columns. 

 

 

 

 

• The first two columns are independent. 

• Independent columns are also known as pivot columns. 

• The column space 𝐶(𝐴) of matrix 𝐴 is a two dimensional plane which is a 

subspace of 𝑅4. 

• The number of pivot (independent) columns defines the column space of a 

matrix. 

 

 

 

 

𝐴𝑥 =

1 1 2
2 1 3
3 1 4
4 1 5

𝑥1

𝑥2

𝑥3

=

𝑏1

𝑏2

𝑏3

𝑏4

= 𝑏 



Mathematics for Signals and Systems: Nullspace 

 
• The nullspace of 𝐴, denoted as 𝑁(𝐴), contains all possible solutions of the 

system: 

𝐴𝑥 = 0 

• Consider the example: 

𝐴𝑥 =

1 1
2 1

2
3

3 1
4 1

4
5

𝑥1
𝑥2

𝑥3

=

0
0
0
0

 

•  In this example 𝐶(𝐴) is a subspace of 𝑅4 and 𝑁(𝐴) is a subspace of 𝑅3. 

•  We can see that the solutions of 𝐴𝑥 = 0 have the form: 

𝑐
1
1

−1
 

•  So the nullspace of 𝐴 is a line (as defined above) which is a subspace of 𝑅3. 

 

 

 



Mathematics for Signals and Systems: Nullspace cont. 

 
• The solutions to 𝐴𝑥 = 0 always form a subspace. 

 

• This is because any linear combination of the solutions to 𝐴𝑥 = 0 is also a 

solution since if 𝐴𝑣 = 0 and 𝐴𝑤 = 0 then 𝐴 𝑣 + 𝑤 = 𝐴𝑣 + 𝐴𝑤 = 0. 

 

• Also any multiple of the solutions to 𝐴𝑥 = 0 is also a solution since if 𝐴𝑣 = 0 

then 𝐴 𝑐𝑣 = 𝑐𝐴𝑣 = 0. 

 

 

 



Mathematics for Signals and Systems 

Column Spaces and Nullspaces 
 
• Consider again the system 𝐴𝑥 = 𝑏 where 𝑏 is non-zero: 

 

𝐴𝑥 =

1 1
2 1

2
3

3 1
4 1

4
5

𝑥1
𝑥2

𝑥3

=

1
2
3
4

 

 

• The solutions to 𝐴𝑥 = 𝑏 where 𝑏 is non-zero do not form a subspace. 

 

• The above statement can be easily verified by the fact that the zero vector is 

not a solution, and therefore, the solutions cannot form a subspace. 

 

• In other words, the solutions to 𝐴𝑥 = 𝑏 lie in a plane or line that doesn’t go 

through the origin, and hence, they don’t form a subspace. 

 



Mathematics for Signals and Systems 

Column Spaces and Nullspaces 

• The column space 𝐶(𝐴) contains all the linear combinations of the form 𝐴𝑥. 

• The nullspace 𝑁(𝐴) contains all the solutions to the system 𝐴𝑥 = 0. 

• Lets see how we describe the column space and nullspace. 

• We will describe / compute the nullspace of following matrix: 

 

𝐴 =
1 2
2 4

2 2
6 8

3 6 8 10
 

 

• We will perform elimination on this rectangular matrix. 

• Note that a number of columns and rows are not independent. For example the 

second column is obtained from the first column if the later is multiplied by 2. 

• This will become apparent during elimination. 

 



Mathematics for Signals and Systems 

Computing the Nullspace 

• We will solve the system 𝐴𝑥 = 0 by elimination. 
 

𝐴 =
1 2
2 4

2 2
6 8

3 6 8 10
 

 

• During elimination the nullspace remains unchanged, since the solution to 

𝐴𝑥 = 0 does not change by elimination. 

• The first two steps of elimination yield the matrix below right.  

• Note that we can’t find a pivot in the second column, meaning that the second 

column is not independent (depends on the previous column). 

 
1 2
2 4

2 2
6 8

3 6 8 10
     

1 2
0 0

2 2
2 4

0 0 2 4
 

 

 

𝟐 − 𝟐 𝟏  

𝟑 − 𝟑 𝟏  



Mathematics for Signals and Systems 

Computing the Nullspace 

 
• We ignore the fact that we can’t find a pivot in the second column and we 

continue the elimination in the third column. 

• We also notice that the last column doesn’t have a pivot and it also depends on 

the previous columns. 

 

 

 

• Therefore, in this case we only have 2 pivots, signifying the number of 

independent columns. 

• The number of pivots is called the rank of the matrix. 

• Therefore, in this particular example 𝑟𝑎𝑛𝑘 𝐴 = 2. 

• Note that in the rectangular (non-square) case the resulting matrix 𝑢 is not 

really an upper triangular, but it is in the so-called Echelon (staircase) form. 

• In order to identify the nullspace we need to describe the solutions of 𝐴𝑥 = 0. 

 

 

 

 

1 2
2 4
3 6

    
2 2
6 8
8 10

 
𝟐 − 𝟐 𝟏  

𝟑 − 𝟑 𝟏  

1 2
0 0
0 0

    
2 2
2 4
2 4

 
𝟑 − 𝟐  

1 2
0 0
0 0

    
2 2
2 4
0 0

 



Mathematics for Signals and Systems 

Computing the Nullspace 
 
• By applying elimination we obtained the upper triangular matrix 𝑢. 

 

𝑢 =
1 2
0 0

2 2
2 4

0 0 0 0
 

 

• The matrix 𝑢 contains two pivot columns shown in red and two free columns 

shown in blue. 

• The free columns represent free variables, i.e., variables that we can assign any 

values to them. 

• We obtain the null space of 𝐴𝑥 = 0, by solving the system 𝑢𝑥 = 0 . 

 

 

 

 

 

 

 



Mathematics for Signals and Systems 

Computing the Nullspace 
 
• In order to calculate the null space we need to solve the system 𝐴𝑥 = 0. 

• The system 𝐴𝑥 = 0 is equivalent to 𝑢𝑥 = 0 which can be written as: 

𝑢𝑥 =
1 2
0 0
0 0

    
2 2
2 4
0 0

𝑥1

𝑥2
𝑥3

𝑥4

= 0 

• Using row formulation we obtain: 

𝑥1 + 2𝑥2 + 2𝑥3 + 2𝑥4 = 0 ⇒ 𝑥1 + 2𝑥2 − 4𝑥4 + 2𝑥4 = 0 ⇒ 𝑥1 = −2𝑥2 + 2𝑥4 
2𝑥3 + 4𝑥4 = 0 ⇒ 𝑥3 = −2𝑥4 

• The solution of the above system is of the form: 
𝑥1

𝑥2
𝑥3

𝑥4

=

−2𝑥2 + 2𝑥4

𝑥2

−2𝑥4

𝑥4

= 𝑥2

−2
1
0
0

+ 𝑥4

2
0

−2
1

 

• 𝑥2 and 𝑥4 can take any values (free variables). 

 

 

 

 

 

 

 

 

 

 



Mathematics for Signals and Systems 

Computing the Nullspace 

• By assigning the value of 1 to a particular free variable and the value of 0 to the 

rest of the free variables we obtain a so called special solution. 

• First Special Solution is obtained for 𝑥2 = 1, 𝑥4 = 0 and is 

−2
   1
   0
   0

 

• Second Special Solution is obtained for 𝑥2 = 0, 𝑥4 = 1 and is 

   2
   0
−2
   1

 

• The null space is the linear combination of the special solutions: 

𝑐

−2
   1
   0
   0

+ 𝑑

   2
   0
−2
   1

 

 

 

 

 

 

 

 

 

 

 

 

 



Mathematics for Signals and Systems 

Computing the Nullspace-Summary 
 
• We have seen that the matrix 𝑢 contains two pivot and two free columns. 

1 2
0 0
0 0

    
2 2
2 4
0 0

 

• In general if an 𝑚 × 𝑛 matrix has rank 𝑟, it has 𝑟 pivot variables and 𝑛 − 𝑟 free 

variables. 

• The matrix has 𝑟 independent columns and 𝑛 − 𝑟 dependent columns. 

• We choose freely 𝑛 − 𝑟 variables. 

• By assigning the value of 1 to a particular free variable and the value of 0 to the 

rest of the free variables we obtain a so called special solution. 

• There are obviously 𝑛 − 𝑟 special solutions. 

• The linear combinations of these 𝑛 − 𝑟 special solutions constitute the nullspace 

𝐴𝑥 = 0. 

• The column space of 𝐴 has dimension 𝑟 and the nullspace has dimension 𝑛 − 𝑟. 

 

 

 

 

 

 

 

 



Mathematics for Signals and Systems 

Computing the Nullspace 

 
• Now lets continue with elimination upwards to make the matrix even more 

“sparse”. 

𝐴 =
1 2
2 4
3 6

    
2 2
6 8
8 10

, 𝑢 =
1 2
0 0
0 0

    
2 2
2 4
0 0

 

• Matrix 𝑢 is in an echelon form. 

• We notice that it has a row of zeros. 

• Therefore, elimination revealed the fact that the third row of 𝐴 is a linear 

combination of rows one and two. 

• We continue with eliminations upwards to get zeros above (and below) the 

pivots. 

• Finally we divide the second row by 2 to get one at the pivot positions. 

 

 

 

 

 

1 2
0 0
0 0

    
2 2
2 4
0 0

 𝟏 − 𝟐  

1 2
0 0
0 0

    
0 −2
2 4
0 0

 𝟐 /𝟐 

1 2
0 0
0 0

    
0 −2
1 2
0 0

= 𝑅 



Mathematics for Signals and Systems 

Computing the Nullspace 
 
• The matrix 𝑅 is said to have a reduced row echelon form, it has unit pivots and 

zeros above and below the pivots. 

𝑅 =
1 2
0 0
0 0

    
0 −2
1 2
0 0

 

• In MATLAB we can calculate the reduced row echelon form of matrix 𝐴 with the 

command: 

𝑅 = 𝑟𝑟𝑒𝑓(𝐴) 

• Notice the identity matrix which occupies the pivot rows and columns and 

represents the independent part of matrix 𝐴. 

• The rest of the matrix contains the free columns. 

• Homework: Find the nullspace of 𝐴𝑇. 

 

 

 

 

 


