Imperial College London

Digital Image Procesing

The Karhunen-Loeve Transform [KLT] in Image Processing

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

Elgenvalues and Elyenvectors

The concepts of eigenvalues and eigenvectors are important for understanding the KL transform.

If C is a matrix of dimension $n \times n$, then a scalar λ is called an eigenvalue of C if there is a nonzero vector \underline{e} in R^{n} such that:

$$
C \underline{e}=\lambda \underline{e}
$$

The vector \underline{e} is called an eigenvector of the matrix C corresponding to the eigenvalue λ.

Vector nopulation

- Consider a population of random vectors of the following form:

$$
\underline{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- The quantity x_{i} may represent the value(grey level) of the image i.
- The population may arise from the formation of the above vectors for different image pixels.

Imperial College

Example: x vectors could he pixel values in several spectral hands [channels)

Mean and Covariance Matrix

- The mean vector of the population is defined as:

$$
\underline{m}_{x}=E\{\underline{x}\}=\left[\begin{array}{llll}
m_{1} & m_{2} & \ldots & m_{n}
\end{array}\right]^{T}=\left[\begin{array}{llll}
E\left\{x_{1}\right\} & E\left\{x_{2}\right\} & \ldots & E\left\{x_{n}\right\}
\end{array}\right]^{T}
$$

- The covariance matrix of the population is defined as:

$$
C=E\left\{\left(\underline{x}-\underline{m}_{x}\right)\left(\underline{x}-\underline{m}_{x}\right)^{T}\right\}
$$

- For M vectors of a random population, where M is large enough

$$
\underline{m}_{x}=\frac{1}{M} \sum_{k=1}^{M} \underline{x}_{k}
$$

Karhunen-Loeve Transform

- Let A be a matrix whose rows are formed from the eigenvectors of the covariance matrix C of the population.
- They are ordered so that the first row of A is the eigenvector corresponding to the largest eigenvalue, and the last row the eigenvector corresponding to the smallest eigenvalue.
- We define the following transform:

$$
\underline{y}=A\left(\underline{x}-\underline{m}_{x}\right)
$$

- It is called the Karhunen-Loeve transform.

Karhunen-Loeve Transform

- You can demonstrate very easily that:

$$
\begin{aligned}
& E\{\underline{y}\}=0 \\
& C_{y}=A C_{x} A^{T} \\
& C_{y}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]
\end{aligned}
$$

Inverse Karhunen-Loeve Transform

- Toreconstrud theoriginal vectors \underline{x} fromits correspondng \underline{y}

$$
\begin{aligned}
& A^{-1}=A^{T} \\
& \underline{x}=A^{T} \underline{y}+\underline{m}_{x}
\end{aligned}
$$

- Weforma matrix A_{K} from the K eigenvectors which correspond to the K largest eigenvalues, yielding a transformation matrix of size $K \times n$.
- The \underline{y} vectorswould thenbe K dimensional.
- Thereconstrudion of theoriginal vector $\hat{\underline{x}}$ is

$$
\underline{\hat{x}}=A_{K}^{T} \underline{y}+\underline{m}_{x}
$$

Inverse Karhunen-Loeve Transform

- Toreconstrud theoriginal vectors \underline{x} fromits correspondng \underline{y}

$$
\begin{aligned}
& A^{-1}=A^{T} \\
& \underline{x}=A^{T} \underline{y}+\underline{m}_{x}
\end{aligned}
$$

- Weforma matrix A_{K} from the K eigenvectors which correspond to the K largest eigenvalues, yielding a transformation matrix of size $K \times n$.
- The \underline{y} vectorswould thenbe K dimensional.
- Thereconstrudion of theoriginal vector $\hat{\underline{x}}$ is

$$
\underline{\hat{x}}=A_{K}^{T} \underline{y}+\underline{m}_{x}
$$

Mean squared error of approximate reconstruction

- It can be proven tha themean square errorbetween
theperfectreconstrudion \underline{x} and theapproximat reconstrudion $\underline{\hat{x}}$ is given by theexpression

$$
e_{\mathrm{ms}}=\|\underline{x}-\underline{\hat{x}}\|^{2}=\sum_{j=1}^{n} \lambda_{j}-\sum_{j=1}^{K} \lambda_{j}=\sum_{j=K+1}^{n} \lambda_{j}
$$

- By using A_{K} insteadof A for theKLtransformwe can achieve compresssion of theavailable data.

Drawhacks of the KI Transform

Despite its favourable theoretical properties, the KLT is not used in practice for the following reasons.

- Its basis functions depend on the covariance matrix of the image, and hence they have to recomputed and transmitted for every image.
- Perfect decorrelation is not possible, since images can rarely be modelled as realisations of ergodic fields.
- There are no fast computational algorithms for its implementation.

Imperial College

Example: x vectors could he plixel values In several spectral hands [channels)

Imperial College

London

Example of the KIT: Original Imayes

6 spectral images from an airborne Scanner.

Channel 1

Channel 3

Channel 2

Channel 4

Imperial College

London

Example: Principal Components

Component 1

Component 3

Component	λ
1	3210
2	931.4
3	118.5
4	83.88
5	64.00
6	13.40

Imperial College
London

Example: Principal Components [cont]

Imperial College
London

Example: Original Imayes [leftu and Principal Components [right

