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Image Enhancement

 The goal is to process an image so that the resulting
Image Is:

» more suitable than the original image for a specific
application

» of better quality in terms of some quantitative metric
» visually better

« Spatial domain methods

* Frequency domain methods.
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Spatial Domain Methods: Local neighborhood processing

* Procedures that operate directly on the local aggregate of

pixels composing an new image g(x,y) = T[f(x,y).]

Origin

* A neighborhood around (x, y)
Is defined by using a square
(or rectangular) sub-image area
centered at (x, y).
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Spatial Domain Methods: Point processing

* When the neighborhoodis 1 x 1 then g(x,y) depends

only on the value of f(x,y) at (x,y) and T becomes a
grey-level transformation (or mapping) function:
s=T(r)

r,s are the grey levels of f(x,y) and g(x, y) at (x, y).

* These techniques are called point processing techniques.
» Histogram processing
» Thresholding
» Contrast stretching
» Manv others
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Point Processing: contrast enhancement

* In the figures below you can see examples of two
different intensity transformations.

« The figure on the right shows the process of binarization
of the image.
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Take an image with intensities 4,k € [0,L — 1] and size MN.
The number of pixels with intensity ry, is n,.

The histogram of the image is the function h(ry) = n;.

The normalized histogram is the function is the function

_ g _ _
p(r) = Yo fork=01,2,... L—1
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Two different images with the same histogram.
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Histogram Processing: definition of intensity transformation

Consider for the moment continuous intensity values.
The continuous intensity of an image isr € [0,L — 1].
r = 0 represents black and L — 1 represent white.

We are looking for intensity transformations of the form:
s=T({r),0<r<L-1

Conditions on T'(r)

» T(r) is monotonically increasingin0 <r <L —1OR
strictly monotonically increasingin 0 <r <L -1

»0<T(r)<L-1for0<r<L-1
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Histogram Processing: definition of intensity transformation

« The condition for T(r) to be monotonically increasing
guarantees that ordering of the output intensity values will
follow the ordering of the input intensity values (avoids
reversal of intensities).

« If T(r) is strictly monotonically increasing then the mapping
from s back to r will be 1-1.

« The second condition (T(r) in [0,1]) guarantees that the
range of the output will be the same as the range of the
Input.
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Monotonicity versus strict monotonicity

T(r) T(r)
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L—1f-————=—=————— | L—1{————————————= |
Single | / I :
value, Sk I T(F) — :
T(r) ~ | |
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| |
1 . | ’
0 r L—1
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values  value

a) We cannot perform inverse mapping (from s to r).
b) Inverse mapping Is possible.
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« We can view intensities r and r as random variables and their
histograms as probability density functions (pdf) p,-(r) and
ps(S).

« There is a fundamental result from probability theory stating
that if p,-(r) and s = T(r) are known and T (r) is continuous
and differentiable, then

1 dr
ps(s) = pr(r)w = pr(1) E

dr
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Histogram Equalization: continuous form

« The pdf of the output is determined by the pdf of the input
and the transformation.

« This means that we can determine the histogram of the
output image.

« A transformation of particular importance in image

processing is the cumulative distribution function (CDF) of a
random variable:

s=Tr)=(L-1) f p,-(w)dw
0
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Histogram Equalization: continuous form

It satisfies the first condition as the area under the curve
Increases as r increases.

It satisfies the second condition as forr = L — 1 we have
s=L-—1.
To find ps(s) we have to compute

d d

Knowing that p.(s) = pr(r) — we get

pS(S)—: S_1 ., L — 1

Therefore p;(s) is a uniform pdf!
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Histogram Equalization: discrete form

* The formula for histogram equalisation in the discrete
case is given by
sk =T(r) = L — DI opr (1) =52 o,
Where:
1. Input intensity
Sk processed intensity
n;: the frequency of intensity j
MN: number of image pixels
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A histogram equalization example In discrete form

* A 3-bit 64x64 image with 8 intensities is described in the table.
» Discrete histogram equalised

intensity levels are obtained through | ne o0 = R
Kk =0 790 0.19
rn=1 10%3 0.25
si=T() = L =1 ) pr(r) S
j:() ry =4 329 0.08
rs =35 245 0.06
e = 6 122 0.03
+ After applying histogram equalization ["" oo -
so =T (rp) = 7zpr(7"j) = 7py(15) = 1.33
J50
s1=T() =7 ) pr (1) = 7p,(r0) + 7p, (1) = 3.08
7=0

and so on...
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By rounding to the nearest integer we get:
So=133->15=308->35,=455->55;=567-6
S, =623 256 sS5=665->7 5,=686>7 s, =7->7

Pr(re) Sk Ps(Sk)

,Zﬁi T . 25 1 . ®
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154 | ’ i 151 | .
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abc

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (¢) Equalized histogram.
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Notice that due to discretization, the resulting histogram will

rarely be perfectly flat. However, it will more “extended”
compared to the original histogram.

pr(r) Sk ps(sk)
i 4
25i . 25 + . °
0+ | ® 204 4 | *
s+ | s+
04 e 104 e
s+ 4 L os+
S N AV SRR S T )
0123 45 0123 4567

abc

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (¢) Equalized histogram.
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Histogram equalization applied to the dark image
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Transiormation functions for histogram equalization
for the previous example

The functions T'(r) used to equalise the images in the
previous examples (try to explain their form!)

The numbering in the figure below is consistent with the previous numbering of the four images.
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« Example of image of Phobos (Mars moon) and its histogram.

« Histogram equalization (bottom of right image) does not
always provide the desirable results.
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We are looking for a technique which can provide an image
with any pre-specified histogram.

This is called histogram specification.
We assume that the original image has a pdf p,.(r).

We are looking for a transformation z = T'(r) which provides
an image with a specific pdf p,(2).

This technique will use histogram equalization as an
Intermediate step.
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We first equalize the given image
s=Tr)=(L-1) f(; p,(W)dw

If we had the desired image we could equalized it and
obtain

s=G(z)=(L—- 1)fpz(w)dw
0

Based on the above we can assume that
G(z)=Tr)=>z=G6"YT())
In the case of continuous variables, if p,.(r) and p,(z) are

given we can get z after formulating the functions T, ¢ and
G~
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In the discrete case we first equalize the initial histogram of
the image:

k k

L—1
=T = (L=1) Y prl) =52 >,
j=0

J=0

The we equalize the target histogram:
q
i = G(zq) = (L =1) ) p,(1)
i=0

Obtain the inverse transform:
zg =G 1 (sp) =G (T(1r))
Notice the difference in indices of z and s.



Imperial College

Rt Fi(z)
0.22r Original histogram 0.251 Deesired histogram
02 r 02 r
015 o1sr
o1 ol r
Q.05 | 005
0 | | o L1
o 1 2z 3 4 5 & 7 i o 1 2 3 4 5 & 7 i

0 790 0.19 0.19 1.33 1
B 1023 0.25 0.44 3.08 3
B ss0 0.21 0.65 4.55 5
B ss6 0.16 0.81 5.67 6
- 0.08 0.89 6.23 6
B 25 0.06 0.95 6.65 7
B 0.03 0.98 6.86 7
7 81 0.02 1 7 7



Imperial College

| Pi(2)
0.25F

0.2 r
015
o1 I

0.25

COriginal histogram

|
6

0.2
.15
i1
0.05

0.15
0.2
0.3
0.2

0.15

0
0
0.15
0.35
0.65
0.85
1

, Pi(2)

Desired histogram

. L1
7 1 Y g 1 2 3 4
0 0

0
0
1.05
2.45
4.55
5.95

5 65 7 1

~No oo N P OO O



Imperial College

\l\l\lmmmeI

o 0 3
o 0 4
2 0 5
B 1 6
e 2 6
. 5 5 7
B 6 7
== 7 S A | I A

Pi(z)

Final histogram

015
a1l r
Q.05




Imperial College

Histogram Specification: Example

Notice that due to discretization, the resulting histogram will
rarely be exactly the same as the desired histogram.

PA(re) P:(z,)
30 + 30 .
25+ . 25 +
.. 20§ I ¢ 20 + . .
« Top left: original pdf a5t 15+ . | o
. : 10+ | . 10 + | |
« Top right: desired pdf st LT, el
. : i S e
Bottom left: desired CDF T S S A T T S A
« Bottom right: resulting pdf ¢, p(z,)
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Histogram Equalization: Examples
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Histogram Equalization: Examples
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Left: histogram of the original image, Right: normalized cumulative histogram of the original image
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Histogram Equalization: Examples

1/

Histogram of the sLbimage Histagram of the equalized image
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Histogram Equalization: Examples
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Histogram Equalization: Examples
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Local Histogram Specification

The histogram processing methods discussed previously
are global (transformation is based on the intensity
distribution of the entire image).

This global approach is suitable for overall enhancement.

There are cases in which it is necessary to enhance details
over small areas in an image.

The number of pixels in these areas may have negligible
Influence on the computation of a global transformation.

The solution Is to devise transformation functions based on
the intensity distribution in a neighbourhood around every
pixel.
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Local Histogram Specification
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