SHORT REVISION
Start with a Discrete Time signal

Linear Convolution < Discrete Time Fourier Transform (DTFT)

Circular Convolution C*@uurier Transform (DFT)

periodic in frequency —> periodic in time




It x(7) and v(7) are both pertodic with period Af

the circular convolution 18 defimed as

Z(1)= > x(m)v(i—m)
=0



Periodic Extension of Signals: Wrong!
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Periodic Extension of Signals: Correct!




One dimensional discrete degradation model

Suppose we have a one-dimensional discrete signal f(7) of size A samples which is

due to a degradation process.

The degradation can be modeled by a one-dimensional dizcrete mmpulse response

h(i) of s1ze B samples.

AIM: Work with the Discrete Fourier Transform instead of Time

THIS MEANS: Each function m tume should be
® Extended

e Penodic



We tform the extended versions of f(7) and /(7), both of size M zA+ B—1 and

periodic with period M . These ca sted as £, (1) and 7, (7).

11

M- ’ ’ Extension is
Ve (D)= fo(m)hy (i —m)+n, (i) done by zero-
m=0 padding
Using matrix notation we can write the following form
v=Hf+n
[ 1,(0) h(M-1) . <)
oo | Re® h,(0) o e (2)
M) | f R
N, (M -1) h,(M-2) . h,(0)]

Yik) = MH (F)F (), k=01, . M—1



1

2T
exp(J—k)
w(k) =] . M

exp[ji/l—”(M ~1)K]

W=[w©0) w@® ... w(M-1)]
H=WDW"' = D=W"HW

" 2(0) 0
A(1)

0 | AM —1)

D(k,k) = A(k) = MH (k)



The proof Is In the notes
based on the following points

» The eigenvalues of a circulant matrix are the DFT
values of the signal that forms the matrix.

» The eigenvectors of a circulant matrix are the DFT

basis functions!

 Diagonalisation of the degradation matrix yields the

proof circular convolution

DFT



2-D Case

For a space mvariant degradation process we obtam

| M-1N-1 | |
v (i, )= > > fo(mu)h,(i—m, j—n)+n,(i,j)

m=0 n=0
Using matrix notation
v=Hf+n
where f and y are MN —dunensional column vectors that represent the

lexicographic ordering of images f,(7,j) and 7,(i, j) respectively.
In that case we end up with the followimng set of M « NV scalar problems.

Y, v)=MNH (1, v)F (i1, v)(+N(11,v))
u=0I1__.M-1Lv=0l1_ _.,N-1



Example

* Image 256x256
* Degradation 3x3

* Finally both at least
(256+3-1)x(256+3-1)=258x258
and also periodic






DETERMINISTIC APPROACHES TO RESTORATION
DIRECT METHODS

Inverse filtering

yv=Hf+n

Formulation of the problem:  minimize J(f) = |n(f )HZ —|lv— Hf ||2

We get the tirst derrvative of the cost function equal to zero

or(f)

—=0= —2HY(y-Hf)=0=>H'Hf =Hly >

f=(H'H)'HTy

If M = N then if H! exists then = (HTH)'IHT],J = H'I(HT)'IHT}r —

f=Hly




Spatial Domain-Matrix Form-Lexicographic Ordering

f=(H'H)'Hy

f=Hy

Frequency Domain-Scalar Form-Point Processing

H :h(u, WY @Ly) Y(u,v) _
‘H (u,v}ﬁ H(u,v)

-4

F(u,v)=

£ /) = Ellﬂ * (20, V)Y (1, vj} _ q_;_{ Y(u,v) }

H (1.,v) \l C L H@w.v)




Problems — Suppose there isn’t any additive noise

A problem ariges 1f H(u,v) becomes very
small or zero for some pomt (2,v) or for a
whole region m the (z,v) plane. In that region

mverse filtering cannot be applied.

Note that m most real applications H(u,v)

drops oft rapidly as a function of distance trom

the origmn!



Solution: carry out the restoration process m a limited neighborhood about the

origin where H (., v) m not very small.

This procedure 1z called pseudoinverse filtering.

(H* ()Y (1,v)
|H (e, 1—*)\‘1
F(u,v)= 1 —

< 0 H(u,v)=0

S ~——

H(u,v)=0




Problems — Suppose THERE IS ADDITIVE NOISE

H™ (u,v)(Y (u,v) + N(u,v))

If(u,v): 2 _
H (u, V)|
H™(u,v)Y (u,v) N H*(u,v)N(u,v) _
H(uv)’ H(u,v) CAN BE HUGE !

N

F(u,v)=F(u,v)A

It H(u,v) becomes very small, the term N(i, v) dommates the result.



Solution: carry out the restoration process m a limited neighborhood about the

origin where H (., v) m not very small.

This procedure 1z called pseudoinverse filtering.

(H* ()Y (1,v)
|H (e, 1—*)\‘1
F(u,v)= 1 —

< 0 H(u,v)=0

S ~——

H(u,v)=0




Pseudo-inverse Filtering with Different Thresholds




Pseudo-inverse Filtering
INn the Presence of Noise




2. Constrained least squares (CLS) restoration

It refers to a very large number of restoration algorithms.

The problem can be formulated as follows.

Mmiunmize
J(®) =[n®ff =y - B[
subject to

Cf|

.
-+
w
~ &

where

Cf 1z a lugh pass filtered version of the unage.



The 1idea behind the above constraint is that the highpass
version of the image contains a considerably large amount

of noise!

Algorithms of the above type can be handled using

optimization techmques.



Constramed least squares (CLS) restoration can be formulated by choosing an f to

minimize the Lagrangian

3

1111'11(”}-' — Hf ||l + a|Cf

Typical choice for C 12 the 2-D Laplacian operator given by

0.00 =025 0.00
C=/-025 100 -025
0.00 =025 0.00

o represents the Lagrange multiplier that 1z commonly known as the regularisation
parameter.

Ct

|3

. o 2
¢ controls the relative contribution between the term |y — Hf|* and the term




The mmimization of the above leads to the following estunate

tor the origimal 1mage

i—1
f=H'H+oC'C) H'y



H™H+oCTCf = HTy

H=WDygW'= WDyW'
H' = WDyW' = WDyW"

HTH = WD W WDy W ! = WD Dy W* = WDy £ W'
cTC = WD [P W

{:HTH +oCtC f =H'y= 1’-"{|DH * + oD [ _:M-":':f = WDHW'y =
[Dyf* + D W' =Dy W'y



”DH|2 -+ Q‘DC ‘2 h’if_lf — Di{‘ﬁrﬂl

Dy ‘l: A diagonal jmatrix with the (DFT)* values of H

—_——

De |3: A diagonal jmatrix with the (DFT)* values of C
W't: A vector wi%th the DFT values of f

W'y: A vector with the DFT values of v

'
(HU,v)|* +a|Cu,v)[*)F (u,v) = H*u,v)Y (u,v) =

H"(u,v)
(H u,v)|* +a|Cu,v))

F(u,v)= Y (u,v)



Computational issues concerning the CLS method
(I) Choice of

A restored mmage 1s approximated by an image which lies m the mtersection of

the two ellipsoids defined by (set theoretic approach).

Ory = ||y~ HE' < £2) and O = {f [[Cf[ < £}

The center of one of the ellipsoids which bounds the mtersection of Ofy and
Of » 18 given by the equation

f = [HTH+oCTC TIHT}-'
with o = (E/ 5)‘1 :

: ~ 2 2
Another problem: choice of £ and £~.



Computational issues concerning the CLS method

(I) Choice of & (cont.)

A popular choice 12

~ BSNR



¢ Blurred Signal-to-Noise Ratio (BSNR): a metric that describes the degradation

model.

& R
— V3 e, )-8 N ) —

; ;
Ty

g(d, j)y=v{, j)—n(i,j)
20, j) = E{g(i. )

variance of
2 . - - .
o, variance of additive noise degraded
noiseless signal



e Improvement in SNR (ISNR): validates the pertormance of the image restoration

algorithm.

S SfG ) - v )
ISNR = 10log o1 —* 1 _\
ssra - 76 )F
SR )

ISNR can only be used for simulation with artificial data!!! since the original

image is NOT AVAILABLE in a real life situation



Comments

With larger values of o, and thus more regularigation, the restored 1image tends to

have more ringing.

With smaller values of o, the restored umage tends to have more amplified noise

effects.



The variance and bias of the error unage i frequency domain are

|H (H.,‘L’)‘l
C(u,v) \l r

M N
u=0v=0 (‘H (1, 1—*)|‘1 + o

ML |F ()| o
. . 2}
Bias(e) =0, X Ll |

"' i
H | |

u=0v= G(‘H(H ﬂ\ + o

2O, 1)‘
C(u, 1)| T

The mmimum MSE (e) 18 encountered close to the intersection of the above

functions.
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A good choice of @ would be one that gives the best compromise between the

variance and bias of the error image.




ITERATIVE METHODS

new estimate=old estimate+function(old estimate)

There is no need to explicitly implement the inverse of an operator. The
restoration process is monitored as it progresses. Termination of the
algorithm may take place before convergence.

The effects of noise can be controlled in each iteration.
The algorithms used can be spatially adaptive.

The problem specifications are very flexible with respect to the type of
degradation. Iterative techniques can be applied in cases of spatially
varying or nonlinear degradations or in cases where the type of degradation
is completely unknown (blind restoration).



A general formulation

In general, iterative restoration refers to any techmque that attempts to mmimize a
tunction of the form
D(f)

usmg an updating rule tor the partially restored image.

Method of successive approximations:

fo=0
fiq=1 — PO =F(I)



Least squares iteration

In that caze we seek for a golution that mmimizes the function
s 2
M(f) =|v — Hf]|
A necegszary condition for AZ/(f) to have a mmimum 1s that 1ts gradient with respect

to f 12 equal to zero, which results m the normal equations

(jf(f) — 0= HTHf _ HTF =)= _HT(}"— Hf) =1

-

of
and

O(f)=-H(y-Hf)

fo=H'y
fi 1=+ H (y-—Hf)= pH'y + 1 - pH H)f,,



Constrained least squares iteration

3
e

M(f.e) =y —Hf[* +c|Ct

D)=V ME, )= HH+oCTOf —H 'y =0

fo = fH'y
fr,1=f + S(H'y - (H'H+oC )y ]



It can be proved that the above iteration (known as Iterative CLS or Tikhonov-

Miller Method) converges if

.-}

0< <

"ﬂ'lllﬂ}i |

where A, .. 1s the maximum eigenvalue of the matrix

H'H+ 1O

[t the matrices H and C are block-circulant the iteration can be implemented i the

trequency domain.



Figure 3: rraded by a 7 x 7 pill-box blur, 20 dB BSNR : ; 2 .
igure 3: Degraded by a 7x 7 pill-box blur, 20 SNR Figure 5: Degraded by a 5 x 5 Gaussian blur (¢= = 1), 20 dB BSNR

Figure 11: Result of Figure 3 restored by a generalized inverse filter with a Figure 17: Result of Figure 5 restored by a generalized inverse filter with a

threshold of 1073, ISNR = —32.9 dB threshold of 1073, ISNR = —36.6 dB



Figure 3: Degraded by a 7 x 7 pill-box blur, 20 dB BSNR

Figure 13: Result of Figure 3 restored by a generalized inverse filter with a Figure 19: Result of Figure 5 restored by a generalized inverse filter with a
threshold of 10~*, ISNR = 0.61 dB threshold of 107!, ISNR = —1.8 dB



Figure 3: Degraded by a 7 x 7 pill-box blur, 20 dB BSNR

Figure 26: CLS restoration of Figure 3 with @ = 1, ISNR = 2.5 dB Figure 40: CLS restoration of Figure 5 with @ = 1, ISNR = 1.3 dB



BSNR

Figure 30: CLS restoration of Figure 3 with o = 0.0001, ISNR = -21.9dB  , 44. CLS restoration of Figure 5 with o = 0.0001, ISNR. = —22.1 dB



Figure 3: Degraded by a 7 x 7 pill-box blur, 20 dB BSNR Figure 27: Corresponding error image for Figure 26 (|original — restored|, scaled
for display)

Figure 29: Corresponding error image for Figure 28 (|original — restored|, scaled Figm_-c 31: Corresponding error image for Figure 30 (|original — restored|, scaled
for display) for display)



Stochastic approaches to restoration

DIRECT METHODS

The 1mage restoration problem can be viewed ag a system 1dentification problem of

the followimg torm

7 7) (. J) N
—Pp > >

n(i.j)



The objectrve 18 to mmimize the following function

E{f-) (1))

To do so the following conditions should hold:

(1) E{f}=E{f}= E{f}= WE{y}

(1) the error must be orthogonal to the obgervation about the mean

E{f - )y —E{y})'}=0



w=R;HY(HRzHY + R, )]
f =R HT(HR;HT +R,,) Ty
Note that knowledge of R4 and Ry, 18 assumed.

Ry = E{ff '} and Ry, = E{nn '}



In trequency domain

S (. VH " (10.v)
W (i, v) = A

. . l T ’
S g (U, 1*)‘15’(3% ﬂ| +S,, (1, v)

S g, v)H NORD

F (1,v) = Y(u,v)

. - l 1 i
S g, 1:)‘H (i1, 1-‘}| +S,, (1, v)



Computational issues

The noize variance hag to be known, otherwize it 1z estumated from a tlat region

ot the observed umage.

In practical cazez where a single copy of the degraded unage 1z available, 1t 13
(quite common to use Sy, (¢,v) as an estumate of S (2, v). This is very often

a poor estimate !



(a)
(b)

Wiener smoothing filter in the absence of blur (onlv noise present)

In the abszence of any blur, A (x,v)=1 and

S g, v) _ (SNR)

Wiu,v)=—— — e
lsﬁ(;’e’.‘lf’}-l—lsﬂﬁ(?!.‘k’} (SNR)+1

Low gpatial frequencies (SNR) == 1= W (u,v) =1
High spatial frequencies (SNR) << 1 = W (u,v) = (SNR) SMALL

Wi, v) can be implemented with a lowpass (smoothing) filter.



Relation with inverse filtering

S, v)H "(u,v)

Wi, v) = -
S e (U, 1-‘)‘H (11, 1-‘)‘“ +S,,, (1, v)

. , _ iy 1 S . .
It S, (t.v) =0=W(u,v) = ——— which 1s the mverse filter
Hu,v)
It S, (t,v) >0
1 , _
— H(u,v)=0
H(u,v)
hm W (w,v)=-
DS —>0 _ : :
0 H(u,v)=0

which 15 the pseudoinverse filter.



Tikhonov-Miller Method

Iterative restoration of Figure 2

"f_f;'__!:
e
e

Figure 48: Result of Figure 2 restored by the iterative Tikhonov-Miller algorit hm
after 20 iterations, a = 107°, ISNR = (.88 dB



Figure 49: Result of Figure 2 restored by the iterative Tikhonov-Miller algorithm
after 60 iterations, a = 10—3, ISNR = 4.17 dB



Figure 50: Final result of Figure 2 restored by the iterative Tikhonov-Miller
algorithm (74 iterations), a = 10—, ISNR = 4.15 dB



Iterative restoration of Figure 3

Figure 51: Result of Figure 3 restored by the iterative Tikhonov-Miller algorit hm
after 20 iterations, o = 107, ISNR = 0.23 dB
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Figure 52: Result of Figure 3 restored by the iterative Tikhonov-Miller algorithm
after 30 iterations, a = 10—2, ISNR = 1.42 dB



e o e

Figure 53: Result of Figure 3 restored by the 1iterative Tikhonov-Miller algorthm
after 80 iterations, o = 10~=%, ISNR = —0.63 dB
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Figure 54: Final result of Figure 3 restored by the iterative Tikhonov-Miller
algorithm (92 iterations), o = 10—%, ISNR = —1.01 dB



Figure 55: Result of Figure 4 restored by the iterative Tikhonov-Miller algorit hm
after 40 iterations, a = 102, ISNR = 2.73 dB



Figure 56: Final result of Figure 4 restored by the iterative Tikhonov-Miller
algorithm (73 iterations), a = 1077, ISNR = 2.38 dB



Figure 57: Result of Figure 5 restored by the iterative Tikhonov-Miller algorit hm
after 20 iterations, o = 1077, ISNR = —2.70 dB



Figure 58: Result of Figure 5 restored by the iterative Tikhonov-Miller algorithm

after 40 iterations, o = 107%, ISNR = —1.73 dB
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Figure 59: Final result of Figure 5 restored by the iterative Tikhonov-Miller
algorithm (81 iterations), o = 1077, ISNR = —3.67 dB



Wiener Filtering

Figure 60: Result of Figure 2 restored by a direct Wiener filter, ISNR = 2.6 dB



Figure 61: Result of Figure 3 restored by a direct Wiener filter, ISNR = 1.7 dB



Figure 62: Result of Figure 4 restored by a direct Wiener filter, ISNR = 1.8 dB



Figure 63: Result of Figure 5 restored by a direct Wiener filter, ISNR = 1.0 dB



ITERATIVE METHODS

Step 0:Iitial estunate of Ry
Ry (0)=Ryy = E{yy "}

Step 1:Construct the i™ restoration filter
W(i+1) =Ry (HDHT(HRg (WHT + Ry )]

Step 2:Obtain the (7 + l)ﬂl estimate of the restored unage
f(i+1)=W(@i+1)y

Step 3:Use f(i+1) to compute an improved estimate of Ry given by
Ry (i+1) = EFG+DETG+1))

Step 4:Increase 7 and repeat steps 1,2.3.4.









