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Welcome back to the Digital Image Processing lecture!

In this lecture we will learn about the Discrete Fourier Transform in
Images. This is a two-dimensional transform (2D DFT).

We will briefly recall the one-dimensional Discrete Fourier Transform (1D
DFT) and show how this transform can be extended into two dimensions.

The 1D DFT is a member of a large family of transforms called unitary
transforms.

One-dimensional transforms in Science and
Engineering.

One dimensional unitary
transforms

One-
dimensional
DFT

Two-
dimensional
DFT




Imperial College

The generic form of a one-dimensional signal transform

Consider a one-dimensional discrete signal with N samples.

Call the signal f(x), 0 <x <N —1.

A transform of the signal f(x) will “convert” this signal into a new signal
which let us call g(u).

It makes sense that if f(x) has N samples, then g(u) has N samples.

In engineering and science most of the transforms we deal with have the
following generic form:

g) = XN AT(u,x)f(x), 0 <u<N-1,T(u,x) is a function of u, x called
the forward transformation kernel.

Note that all values of f(x) are required to produce a single value of g(u).
We can put the signals f(x) and g(u) in column vectors. Denote these
with f and g, respectively .

Therefore, the transform can be written in the formg =T - f.

The matrix T is of dimension N x N and contains the values T (u,x) for
different (u, x).
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Example of a one-dimensional signal transform: DFT

Recall the generic form:
gw) =YV AT, x)f(x),0 <u<N-1, T(u,x) is a function of u, x.

Now recall the one-dimensional Discrete Fourier Transform (DFT)
Fw) = ¥V f() e ™V, 0<su<N-1
Very often x represents time. We can write:

£(0)
(1)

FN - 1),

We see that for each u the signal is projected (observe the inner product)
onto complex sinusoids which depend on u (the frequency of the complex
sinusoid).

1 : . N-1
Fa) =5l ooy | G

Try to observe the analogy with the generic form: for the DFT we have

1 —jom¥
T(u,x) =—e 2Ty
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The generic form of the inverse
of a one-dimensional signal transform

Transforming a signal f(x) into a signal g(u) might be handy but we
must have a method to get back to f(x) from g(u).

Therefore, we need an inverse transform.

The inverse transform has the generic form:

fx)=YN31(u,x)g(w), 0 <x <N -1, 1(u,x) is afunction of u, x called
the inverse transformation kernel.

Note again that all values of g(u) are required to produce a single value
of f(x).

The inverse transform can be written in the form f =1- g.

The matrix I is of dimension N X N and contains the values I(u, x) for
different (u, x).

Notethat f =1-g=1-T-f=1=T"1. We mustinvert T to obtain I.

Requiring to invert a matrix is a tedious task. Think that if N = 1000, i.e.,

f(x) is a signal with 1000 samples, then T is of dimension 1000 x 1000.

There must be a way to do this easily, otherwise using a transform would
not be efficient.
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The one-dimensional inverse DFT (IDFT)

Recall the generic form:

fx)=YN231(u,x)g(u), 0 <x <N -1, I(u,x)is afunction of u, x.
Now recall the one-dimensional Inverse Discrete Fourier Transform (IDFT).
FO) =YN1e/2™NF(w),0<x <N -1

Observe that for the IDFT we have

I(u,x) = eI — N% el? "N = N% (e ]2”_) = N(— _]2”_) = NT*(u, x).
Therefore, | = T~! = NT*.

The above relationship reveals that the inverse of matrix T is simply its
complex conjugate multiplied with N, i.e., the size of the signal.

The inverse of matrix T would be identical to T if we put \/iﬁ In both forward

) . 1
and inverse transform instead of ~ and 1.

Therefore, we don’t really have to calculate any inverse matrix in the case
of DFT. This is a universal observation: in all transforms we use in
engineering and science, the inverse of the transformation matrix is easily
obtained from the forward transformation matrix.
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Unitary matrices: some brief revision of linear algebra

A square matrix T is unitary if T" = T~1, where T denotes the Hermitian

(conjugate transpose) of T, TH = T*' and T~1is the matrix inverse.
Unitary matrices leave the length of a complex vector unchanged, i.e.,
1Tl = llxl.

For real matrices, T? = TT = T~ and the term unitary matrix becomes the
same as the term orthogonal matrix.

The term orthogonal is quite obvious since TT = T~! implies that TT - T =1
which means that the rows/columns of T are orthogonal (and more
accurately orthonormal).

In fact, the rows r; of a unitary matrix are a unitary basis. That is, each row

has length one, and their Hermitian inner product is zero, i.e., 1; -rj*T =0,i #
j and 1 - T'i*T = 1.

Similarly, the columns are also a unitary basis.

Given any unitary basis, the matrix whose rows are that basis is a unitary

matrix. It is shown that the columns are another unitary basis.
The eigenvalues of a unitary matrix have the property |1]| = 1.
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Let us go back to the one-dimensional DFT

Now recall again the one-dimensional IDFT

f) =3YN 1PN Fw), 0<x <N -1
and the result we have shown, i.e., I =T 1 = NT*.

Inthatcase T-Y-T =1=NT*-T = NT* T (observethatT and T* are
symmetric and therefore, T* = T* .

Therefore, T+ T = % I. We see that the rows/columns of T are not

orthonormal but they are orthogonal. This property is equally good to
make the transformation matrix easily invertible; the inverse is simply the
conjugate, multiplied by a constant factor.

However, why are we still discussing one-dimensional DFT (1D-DFT) in
an Image Processing course?

The 1D-DFT is the building block for the implementation of the two-
dimensional DFT introduced next.
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Why do we use image transforms?

Before we embark into the two-dimensional DFT (2D DFT) let us comment
In general on Image Transforms. Why do we use them?

Often, image processing tasks are best performed in a domain other than
the spatial domain. The key steps are:

o Transform the image.

o Carry the task(s) of interest in the transformed domain.

o Apply inverse transform to return to the spatial domain.

T(u, v) ot R[T(u, v)] e |
f(x, y)— Transform - Dpuf{?lmn - :11'1:1::1:;111 — g (X, y)
— Il

domain Transform domain domain
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The generic form of a two-dimensional transform

Consider a two-dimensional signal f(x,y) x =0,...,M —1andy =
0,..,N — 1. We can assume that f(x,y) is an image.

The generic form of a two-dimensional (image) transform is a
straightforward extension from the one-dimensional case. It is defined as

follows:
M—-1N-1
g v) = ) Y T(wxv, ()

x=0 y=0
A 2D transform is separable if T(u, x, v,y) = Ty (u, x) - T, (v, ).
A 2D transform is symmetric if T, (u, x) = T, (u, x)

The inverse transform is defined as follows:
M—1N-1

oy = ) > 10,90 v)
u=0 v=0
The same definitions for separability and symmetry apply to the inverse
transform.
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sSeparable and symmetric image transforms

Consider the generic image transform below. Assume that x indicates row
and y indicates column.

M—-1N-
9, v) =ZZ T(w,%,v,)f (x,)
x=0y

Suppose that it is separable a d ymmetrlc.
M-1N-1

g v) = ) ) T@OT@)fxy)
x=0 y=0
We can write g(u, v) = X355 T(w, x) X720 T(w, y)f (%, ¥)
The sum Y325 T(v,¥)f (x,¥), v = 0,..,N — 1 is basically the corresponding
one-dimensional transform applied along the x —th row of the image.
By applying the one-dimensional (0,0) N1 (0,0) N-1
transformineachrowx =0, ...,M — 1 |

we obtain an intermediate image F(x, v).
N-1

o

ranstorm

N-1

£ xr
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We can now write g(u,v) = XX T(u, x)F (x, v)

The above sum is now the corresponding one-dimensional transform
applied along the v —th column of the intermediate image F(x, v).

We see, therefore, that the implementation of a separable and symmetric
transform in an image requires the sequential implementation of the

corresponding one-dimensional transform row-by-row and then column-by-
column (or the inverse).

The above process is depicted in the figure below.

(0,0) N1 (0,0) N1 (0,0) N-1

Row Transform ColumnTransform
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Two crucial properties of most signal and image transforms

 Energy preservation. A transform possesses the property of energy
preservation if both the original and the transformed signal have the same

2 2
energy, i.e., HQH = HZH . For images this property can be written as
Yoo Xy=olf eI = Xuse Xhzelg(w v)%.
« Energy compaction. Most of the energy of the original data is

concentrated in only a few transform coefficients, which are placed close to
the origin; remaining coefficients have small values.

« The property of energy compaction facilitates the compression of the
original image. A generic compression scheme based on this idea can be
summarized in the following steps.

o Transform the image.

o Keep a small fraction of the transformed image values close to the origin (the
(0,0) point). That way you save space.

o For reconstruction, replace the values that you discarded with zeros and use
the inverse transform.
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Two-dimensional Discrete Fourier Transform (2D DFT)

Consider an image f(x,y) of size M X N. The 2D DFT is defined as

follows:
M—1N-1

B ]Zn(ux vy)
Fauv) =2 ) fxy)e
x=0 y=0
The 2D Inverse DFT (2D IDFT) is defined as:
M—-1N-1
faeyy =Y Y Fav) )
u=0 v=0

It is separable and symmetric, with its one-dimensional version being
(almost) unitary.

Therefore, the one-dimensional DFT and more specifically the FFT, can be
used for the implementation of the two-dimensional DFT ( 2D FFT.
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Two-dimensional Discrete Fourier Transform (2D DFT] cont.

The location of the M—lN IS not important.
Sometimes it is located in front of the inverse transform.

Other times it is found split into two equal terms of N multiplying the

transform and its inverse.

In the cases of square images M = N.

Very often in Image Processing we work with square images whose size is
a power of 2. Powers of 2 facilitate easier implementation of DSP
algorithms as you already know.

The amplitude spectrum of 2D DFT is |F (u, v)| = [R?(u, v) + I*(u, v)]*/?,
R(u,v) and I(u, v) are the real and imaginary parts of F(u, v), respectively.

The phase spectrum is ¢(u, v) = tan™ [%]

The power spectrum is P(u,v) = |F(u,v)|? = R*(u,v) + I*(u, v)
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The visualisation of the range of values of 2D DFT

The range of values of F(u, v) is typically very large.

Due to quantization of F(u, v) small values are not distinguishable when
we attempt to display the amplitude of F(u, v).

We, therefore, apply a logarithmic transformation to enhance small values.
D(u,v) = clog(1 + |F(u,v)|)

The parameter c is chosen so that

the range of D(u,v) is [0,255], I.e.,
255

€= log(1+max{|F(u,v)|})’

Original image Display of amplitude Display of the logarithmic
of DFT amplitude of DFT
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The visualisation of the range of values of 2D DFT cont.

300

Display of amplitude of DFT

Display of the logarithmic amplitude of DFT
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The visualisation of the range of values of the 2D DFT cont.

50 100 150 200

Display of amplitude of DFT

100

150

250 Bty

Display of the logarithmic amplitude of DFT
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Properties of 2D DFT

Periodicity: The 2D DFT and its inverse are periodic
Fluv)=Fu+M,v) =F(u,v+N)=Fu+M,v+N)

Therefore, use of DFT implies virtual periodicity in space.

Conjugate symmetry: F(u,v) = F*(—u + pM,—v + gN) with p, q any
iIntegers. This property also implies that |F (u, v)| = |F(—u, —v)].

If f(x,y) is real and even then F(u, v) is real and even.

If f(x,y) is real and odd then F(u, v) is imaginary and odd.

F{f(x,y) + g(x,9)} = F{f(x, )} + F{g(x,y)} where F{-} indicates the
Discrete Fourier Transform operator.

FUf(x,y) -9y} #= FUf ()} Flgx, y)}
Translation in spatial and frequency domain:

~ j2m (M0 20)
]Zn(M-I- N

f(x —x0,y —y0) © F(u,v)e

UgX VoY

f(x, y)eJ'Z’T(T+ N ) o F(u—1ug,v—1vy)

Average value of the signal f(x,y) = ﬁzxMz‘ol Y0=0 f )
F(0,0) = — YM-3 ¥N23 f(x,y) = f(x,y) = F(0,0)
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Properties of 2D DFT cont.

« Rotation: Rotating f(x,y) by 6 rotates F(u, v) by 6.

I'
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Visualisation of a full period of 2D DFT

* In order to display a full period of the 2D DFT in the center of the image,
we need to translate the origin of the transform at (u,v) = (M/2,N/2).
 To move F(u,v) at (M/2,N/2) we use the second translation property in

the previous slide with ug = M/2 and vy = N/2.

UoX_ voy

In that case F {f(x, y)ejzn( M N )} = F(u —uy, v —v,) becomes
F{f Gey)el™ ) = Fif (e, y) (=D} = F(u - M/2,v = N/2)

Original image Original DFT amplitude Translated DFT amplitude
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Anplications:
Exploiting the property of energy compaction of 2D DFT

F .
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FIGURE 4.11 (a) An image of size 500 x 500 pixels and (b) its Fourier spectrum. The

superimposed circles ]1_;-1|}-'u radii values of 5. 15. 30, 80, and 230, which enclose 92.0, TETITYT Y P saannna
94.6,96.4, 98.0, and 99.5% of the image power, respectively. L ey

a b FHGURE 4.12 (a) Original image. ( ) Results of ideal lowpass filtering with cutoff .S a ana a

b)—
¢ d frequencies set at radii values of * ]_ 30, 80, and 230, as shown in Fig. 411 1(b). The || | I | | I | | | | I | | | | |
S

¢ [ power removed by these filters was 8,5 5.4,3.6.2, and 0.59 “ of the total, l‘n]'ﬁutl\t,l\
aaaaaaaa aaaﬂaaaa
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Anplications: Low- and high- pass filtering:
How do frequencies show up in an image?

« Low frequencies correspond to slowly varying pixel intensities (e.g.,
smooth surfaces).

« High frequencies correspond to quickly varying pixel intensities (e.g.,
edges)

original image low-pass filtered image
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Low- and high- pass filtering using amplitude of 2D DFT

.

-

original image low pass filtered

amplitude of DFT amplitude of DFT with amplitude of DFT with
eliminated high frequencies eliminated low frequencies
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Ampiitude and phase of 2D DFT

amplltude of DFT amplitude of DFT | hase of DFT

Exercise: use IDFT to reconstruct the image using magnitude or phase only information
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Amplitude and phase of 2D DFT cont.

Reconstructed image using the
amplitude of DFT only and zero phase.
The magnitude determines the

strength of each frequency component but
not its location.

Reconstructed image using the phase

of DFT only and amplitude equal to 1.

* The phase determines the locations of
individual frequencies within the image.

« High frequencies — abrupt changes —
edges — object silhouettes — image
content.
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phase of cameraman phase of grasshopper
amplitude of grasshopper amplitude of cameraman
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TR
phase of buffalo phase of rocks
amplitude of rocks amplitude of buffalo
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What follows in the next slides are experiments done by students of the
MSc in Communications and Signal Processing
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Experiment run by Zheng Zhang
MSc Student in Communications and Signal Processing, 2018-2019.

Image2: Seals

Average Amplitude of the FFT of Image 1 Average Amplitude of the FFT of image 2

Average Phase of the FFT of the Image 1 Average Amplitude of the FFT of image 2
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Experiment run by Zheng Zhang,
MSc Student in Communications and Signal Processing, 2018-2019.

Image 1: Desert Image 2: Seals

Phases are swapped between RGB (RGB->GBR) of Image 1
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Experiment run by Zheng Zhang,
MSc Student in Communications and Signal Processing, 2018-2019.

Image 1: Desert Image 2: Seals

Amplitude of the Desert,Phase of the Seals

Amplitude of the Seals,Phase of the Desert
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Experiment run hy Kimo Chen
MSc Student in Communications and Signal Processing, 2018-2019.

Original Gray
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Experiment run by Kimo Chen
MSc Student in Communications and Signal Processing, 2018-2019.

Orignial_2
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Experiment run by Yunping Zhang
MSc Student in Communications and Signal Processing, 2018-2019.

Original image Reconstruction using Reconstruction using
amplitude only phase only

600
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Experiment run by Yunping Zhang
MSc Student in Communications and Signal Processing, 2018-2019.

Original image “Tea” Original image “Drawing”

H

'?

Phase of “Tea”, amplitude of “Drawing” Phase of “Drawin‘g”, amplitude of “Tea”

cafe phase + portrait amp
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Experiment run by Ai BO
MSc Student in Communications and Signal Processing, 2018-2019.

figure 1 figure 2

Reconstructed image using the amplitude of DFT only and zero phrase Reconstructed image using the phrase of DFT only and amplitude equal to 1

Reconstructed image using the phrase of 2 and amplitude of 1
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Experiment run hy Yunyi Guang
MSc Student in Communications and Signal Processing, 2018-2019.

Original image Reconstruction using Reconstruction using
amplitude only phase only
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Experiment run by Yunyi Guang
MSc Student in Communications and Signal Processing, 2018-2019.

Original image “Girl” Original image “Sticker”

& 25| %]R

Phase of “Girl”, amplitude of “Sticker” Phase of “Sticker”, amplitude of “Girl”
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