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What is this lecture about? 

• Welcome back to the Digital Image Processing lecture! 

• In this lecture we will learn about the Discrete Fourier Transform in 

images. This is a two-dimensional transform (2D DFT). 

• We will briefly recall the one-dimensional Discrete Fourier Transform (1D 

DFT) and show how this transform can be extended into two dimensions. 

• The 1D DFT is a member of a large family of transforms called unitary 

transforms. 

 

 

 

One-dimensional transforms in Science and 

Engineering. 

One dimensional unitary 
transforms  

Two-
dimensional 
DFT 



The generic form of a one-dimensional signal transform 

• Consider a one-dimensional discrete signal with 𝑁 samples. 

• Call the signal 𝑓(𝑥), 0 ≤ 𝑥 ≤ 𝑁 − 1. 
• A transform of the signal 𝑓(𝑥) will “convert” this signal into a new signal 

which let us call 𝑔(𝑢). 
• It makes sense that if 𝑓(𝑥) has 𝑁 samples, then 𝑔(𝑢) has 𝑁 samples. 

• In engineering and science most of the transforms we deal with have the 

following generic form: 

𝑔 𝑢 =  𝑇 𝑢, 𝑥 𝑓(𝑥)𝑁−1
𝑥=0 , 0 ≤ 𝑢 ≤ 𝑁 − 1, 𝑇 𝑢, 𝑥  is a function of 𝑢, 𝑥 called 

the forward transformation kernel. 

• Note that all values of 𝑓(𝑥) are required to produce a single value of 𝑔 𝑢 . 
• We can put the signals 𝑓(𝑥) and 𝑔 𝑢  in column vectors. Denote these 

with 𝑓 and 𝑔, respectively . 

• Therefore, the transform can be written in the form 𝑔 = 𝑇 ∙ 𝑓. 

• The matrix 𝑇 is of dimension 𝑁 × 𝑁 and contains the values 𝑇 𝑢, 𝑥  for 

different 𝑢, 𝑥 . 



Example of a one-dimensional signal transform: DFT 

• Recall the generic form: 

𝑔 𝑢 =  𝑇 𝑢, 𝑥 𝑓(𝑥)𝑁−1
𝑥=0 , 0 ≤ 𝑢 ≤ 𝑁 − 1, 𝑇 𝑢, 𝑥  is a function of 𝑢, 𝑥. 

 

• Now recall the one-dimensional Discrete Fourier Transform (DFT) 

𝐹 𝑢 =  𝑓(𝑥)
1

𝑁
𝑒−𝑗2𝜋

𝑢𝑥

𝑁𝑁−1
𝑥=0 , 0 ≤ 𝑢 ≤ 𝑁 − 1 

Very often 𝑥 represents time. We can write: 

𝐹 𝑢 =
1

𝑁 1 𝑒
−𝑗2𝜋
𝑢
𝑁 … 𝑒−𝑗2𝜋

𝑢(𝑁−1)
𝑁 ∙

𝑓(0)
𝑓(1)
⋮

𝑓(𝑁 − 1)

 

 

• We see that for each 𝑢 the signal is projected (observe the inner product) 

onto complex sinusoids which depend on 𝑢 (the frequency of the complex 

sinusoid). 
 

• Try to observe the analogy with the generic form: for the DFT we have 

𝑇 𝑢, 𝑥 =
1

𝑁
𝑒−𝑗2𝜋

𝑢𝑥

𝑁 . 

 



The generic form of the inverse 

of a one-dimensional signal transform 

• Transforming a signal 𝑓(𝑥) into a signal 𝑔(𝑢) might be handy but we 

must have a method to get back to 𝑓(𝑥) from 𝑔(𝑢). 
• Therefore, we need an inverse transform. 

• The inverse transform has the generic form: 

𝑓 𝑥 =  𝐼 𝑢, 𝑥 𝑔(𝑢)𝑁−1
𝑢=0 , 0 ≤ 𝑥 ≤ 𝑁 − 1, 𝐼 𝑢, 𝑥  is a function of 𝑢, 𝑥 called 

the inverse transformation kernel. 

• Note again that all values of 𝑔(𝑢) are required to produce a single value 

of 𝑓 𝑥 . 
• The inverse transform can be written in the form 𝑓 = 𝐼 ∙ 𝑔. 

• The matrix 𝐼 is of dimension 𝑁 ×𝑁 and contains the values 𝐼 𝑢, 𝑥  for 

different 𝑢, 𝑥 . 

• Note that 𝑓 = 𝐼 ∙ 𝑔 = 𝐼 ∙ 𝑇 ∙ 𝑓 ⇒ 𝐼 = 𝑇−1. We must invert 𝑇 to obtain 𝐼. 

• Requiring to invert a matrix is a tedious task. Think that if 𝑁 = 1000, i.e., 

𝑓(𝑥) is a signal with 1000 samples, then 𝑇 is of dimension 1000 × 1000. 
• There must be a way to do this easily, otherwise using a transform would 

not be efficient. 



The one-dimensional inverse DFT (IDFT) 

• Recall the generic form: 

𝑓 𝑥 =  𝐼 𝑢, 𝑥 𝑔(𝑢)𝑁−1
𝑢=0 , 0 ≤ 𝑥 ≤ 𝑁 − 1, 𝐼 𝑢, 𝑥  is a function of 𝑢, 𝑥. 

• Now recall the one-dimensional Inverse Discrete Fourier Transform (IDFT). 

𝑓 𝑥 =  𝑒𝑗2𝜋
𝑢𝑥

𝑁 𝐹(𝑢)𝑁−1
𝑢=0 , 0 ≤ 𝑥 ≤ 𝑁 − 1 

• Observe that for the IDFT we have 

𝐼 𝑢, 𝑥 = 𝑒𝑗2𝜋
𝑢𝑥

𝑁 = 𝑁
1

𝑁
 𝑒𝑗2𝜋

𝑢𝑥

𝑁 = 𝑁
1

𝑁
 (𝑒−𝑗2𝜋

𝑢𝑥

𝑁 )∗= 𝑁(
1

𝑁
𝑒−𝑗2𝜋

𝑢𝑥

𝑁 )∗= 𝑁𝑇∗(𝑢, 𝑥). 

Therefore, 𝐼 = 𝑇−1 = 𝑁𝑇∗. 
• The above relationship reveals that the inverse of matrix 𝑇 is simply its 

complex conjugate multiplied with 𝑁, i.e., the size of the signal. 

• The inverse of matrix 𝑇 would be identical to 𝑇 if we put 
1

𝑁
 in both forward 

and inverse transform instead of 
1

𝑁
 and 1. 

• Therefore, we don’t really have to calculate any inverse matrix in the case 

of DFT. This is a universal observation: in all transforms we use in 

engineering and science, the inverse of the transformation matrix is easily 

obtained from the forward transformation matrix. 

 



Unitary matrices: some brief revision of linear algebra 

• A square matrix 𝑇 is unitary if 𝑇𝐻 = 𝑇−1, where 𝑇𝐻  denotes the Hermitian 

(conjugate transpose) of 𝑇, 𝑇𝐻 = 𝑇∗
𝑇
  and 𝑇−1 is the matrix inverse. 

• Unitary matrices leave the length of a complex vector unchanged, i.e., 

𝑇𝑥 = 𝑥 . 

• For real matrices, 𝑇𝐻 = 𝑇𝑇 = 𝑇−1 and the term unitary matrix becomes the 

same as the term orthogonal matrix. 

• The term orthogonal is quite obvious since 𝑇𝑇 = 𝑇−1 implies that 𝑇𝑇 ∙ 𝑇 = 𝐈 
which means that the rows/columns of 𝑇 are orthogonal (and more 

accurately orthonormal).  

• In fact, the rows 𝑟𝑖 of a unitary matrix are a unitary basis. That is, each row 

has length one, and their Hermitian inner product is zero, i.e., 𝑟𝑖 ∙ 𝑟𝑗
∗𝑇 = 0, 𝑖 ≠

𝑗 and 𝑟𝑖 ∙ 𝑟𝑖
∗𝑇 = 1.  

• Similarly, the columns are also a unitary basis. 

• Given any unitary basis, the matrix whose rows are that basis is a unitary 

matrix. It is shown that the columns are another unitary basis. 

• The eigenvalues of a unitary matrix have the property 𝜆 = 1. 
 

 

 



Let us go back to the one-dimensional DFT 

• Now recall again the one-dimensional IDFT 

𝑓 𝑥 =  𝑒𝑗2𝜋
𝑢𝑥

𝑁 𝐹(𝑢)𝑁−1
𝑢=0 , 0 ≤ 𝑥 ≤ 𝑁 − 1 

and the result we have shown, i.e., 𝐼 = 𝑇−1 = 𝑁𝑇∗. 

• In that case 𝑇−1 ∙ 𝑇 = 𝐈 = 𝑁𝑇∗ ∙ 𝑇 = 𝑁𝑇∗
𝑇
 ∙ 𝑇 (observe that 𝑇 and 𝑇∗  are 

symmetric and therefore, 𝑇∗ = 𝑇∗
𝑇
. 

• Therefore, 𝑇∗
𝑇
 ∙ 𝑇 =

1

𝑁
 𝐈. We see that the rows/columns of 𝑇 are not 

orthonormal but they are orthogonal. This property is equally good to 

make the transformation matrix easily invertible; the inverse is simply the 

conjugate, multiplied by a constant factor. 

• However, why are we still discussing one-dimensional DFT (1D-DFT) in 

an Image Processing course? 

• The 1D-DFT is the building block for the implementation of the two-

dimensional DFT introduced next. 

 

 

 

 



Why do we use image transforms? 

• Before we embark into the two-dimensional DFT (2D DFT) let us comment 

in general on Image Transforms. Why do we use them? 

• Often, image processing tasks are best performed in a domain other than 

the spatial domain. The key steps are: 

o Transform the image. 

o Carry the task(s) of interest in the transformed domain. 

o Apply inverse transform to return to the spatial domain. 

 

 



The generic form of a two-dimensional transform 

• Consider a two-dimensional signal 𝑓(𝑥, 𝑦) 𝑥 = 0,… ,𝑀 − 1 and 𝑦 =
0,… ,𝑁 − 1. We can assume that 𝑓(𝑥, 𝑦) is an image. 

• The generic form of a two-dimensional (image) transform is a 

straightforward extension from the one-dimensional case. It is defined as 

follows: 

𝑔 𝑢, 𝑣 =   𝑇 𝑢, 𝑥, 𝑣, 𝑦 𝑓(𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

• A 2D transform is separable if 𝑇 𝑢, 𝑥, 𝑣, 𝑦 = 𝑇1(𝑢, 𝑥) ∙ 𝑇2(𝑣, 𝑦). 

• A 2D transform is symmetric if 𝑇1 𝑢, 𝑥 = 𝑇2(𝑢, 𝑥) 

• The inverse transform is defined as follows: 

𝑓 𝑥, 𝑦 =   𝐼 𝑢, 𝑥, 𝑣, 𝑦 𝑔(𝑢, 𝑣)

𝑁−1

𝑣=0

𝑀−1

𝑢=0

 

• The same definitions for separability and symmetry apply to the inverse 

transform. 



Separable and symmetric image transforms 

• Consider the generic image transform below. Assume that 𝑥 indicates row 

and 𝑦 indicates column. 

𝑔 𝑢, 𝑣 =   𝑇 𝑢, 𝑥, 𝑣, 𝑦 𝑓(𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

• Suppose that it is separable and symmetric: 

𝑔 𝑢, 𝑣 =   𝑇 𝑢, 𝑥 𝑇(𝑣, 𝑦)𝑓(𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

• We can write 𝑔 𝑢, 𝑣 =  𝑇 𝑢, 𝑥  𝑇(𝑣, 𝑦)𝑓(𝑥, 𝑦)𝑁−1
𝑦=0

𝑀−1
𝑥=0  

• The sum  𝑇(𝑣, 𝑦)𝑓(𝑥, 𝑦)𝑁−1
𝑦=0 , 𝑣 = 0,… ,𝑁 − 1 is basically the corresponding 

one-dimensional transform applied along the 𝑥 −th row of the image. 

• By applying the one-dimensional 

transform in each row 𝑥 = 0,… ,𝑀 − 1 
we obtain an intermediate image 𝐹 𝑥, 𝑣 . 



Separable and symmetric image transforms cont. 

• We can now write 𝑔 𝑢, 𝑣 =  𝑇 𝑢, 𝑥 𝐹(𝑥, 𝑣)𝑀−1
𝑥=0  

• The above sum is now the corresponding one-dimensional transform 

applied along the 𝑣 −th column of the intermediate image 𝐹(𝑥, 𝑣). 

• We see, therefore, that the implementation of a separable and symmetric 

transform in an image requires the sequential implementation of the 

corresponding one-dimensional transform row-by-row and then column-by-

column (or the inverse). 

• The above process is depicted in the figure below. 

 



Two crucial properties of most signal and image transforms 

• Energy preservation. A transform possesses the property of energy 

preservation if both the original and the transformed signal have the same 

energy, i.e., 𝑔
2
= 𝑓

2
. For images this property can be written as 

  𝑓(𝑥, 𝑦) 2𝑁−1
𝑦=0

𝑀−1
𝑥=0 =   𝑔(𝑢, 𝑣) 2𝑁−1

𝑣=0
𝑀−1
𝑢=0 . 

 

• Energy compaction. Most of the energy of the original data is 

concentrated in only a few transform coefficients, which are placed close to 

the origin; remaining coefficients have small values. 
 

• The property of energy compaction facilitates the compression of the 

original image. A generic compression scheme based on this idea can be 

summarized in the following steps. 
 

o Transform the image. 

o Keep a small fraction of the transformed image values close to the origin (the 

(0,0) point). That way you save space. 

o For reconstruction, replace the values that you discarded with zeros and use 

the inverse transform. 

 

 

 

 

 

 



Two-dimensional Discrete Fourier Transform (2D DFT) 

• Consider an image 𝑓(𝑥, 𝑦) of size 𝑀 ×𝑁. The 2D DFT is defined as 

follows: 

𝐹 𝑢, 𝑣 =
1

𝑀𝑁
  𝑓(𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

𝑒
−𝑗2𝜋

𝑢𝑥
𝑀+
𝑣𝑦
𝑁  

• The 2D Inverse DFT (2D IDFT) is defined as:  

𝑓(𝑥, 𝑦) =   𝐹 𝑢, 𝑣

𝑁−1

𝑣=0

𝑀−1

𝑢=0

𝑒
𝑗2𝜋
𝑢𝑥
𝑀+
𝑣𝑦
𝑁  

• It is separable and symmetric, with its one-dimensional version being 

(almost) unitary. 

• Therefore, the one-dimensional DFT and more specifically the FFT, can be 

used for the implementation of the two-dimensional DFT ( 2D FFT. 



Two-dimensional Discrete Fourier Transform (2D DFT) cont. 

• The location of the 
1

𝑀𝑁
  is not important. 

• Sometimes it is located in front of the inverse transform. 

• Other times it is found split into two equal terms of 
1

𝑀𝑁
 multiplying the 

transform and its inverse. 

• In the cases of square images 𝑀 = 𝑁. 

• Very often in Image Processing we work with square images whose size is 

a power of 2. Powers of 2 facilitate easier implementation of DSP 

algorithms as you already know. 

• The amplitude spectrum of 2D DFT is 𝐹(𝑢, 𝑣) = 𝑅2 𝑢, 𝑣 + 𝐼2 𝑢, 𝑣 1/2, 
𝑅(𝑢, 𝑣) and 𝐼(𝑢, 𝑣) are the real and imaginary parts of 𝐹(𝑢, 𝑣), respectively. 

• The phase spectrum is 𝜙 𝑢, 𝑣 = tan−1
𝐼(𝑢,𝑣)

𝑅(𝑢,𝑣)
 

• The power spectrum is 𝑃 𝑢, 𝑣 = 𝐹(𝑢, 𝑣) 2 = 𝑅2 𝑢, 𝑣 + 𝐼2 𝑢, 𝑣  



The visualisation of the range of values of 2D DFT 

• The range of values of 𝐹(𝑢, 𝑣) is typically very large. 

• Due to quantization of 𝐹(𝑢, 𝑣) small values are not distinguishable when 

we attempt to display the amplitude of 𝐹 𝑢, 𝑣 . 
• We, therefore, apply a logarithmic transformation to enhance small values. 

𝐷 𝑢, 𝑣 = 𝑐log 1 + 𝐹(𝑢, 𝑣)  

• The parameter 𝑐 is chosen so that 

the range of 𝐷(𝑢, 𝑣) is [0, 255], i.e., 

𝑐 =
255

log 1+max { 𝐹 𝑢,𝑣 }
. 

 

 

 

 

 
 

 

            Original image                Display of amplitude        Display of the logarithmic 

                                                                of DFT                          amplitude of DFT 



The visualisation of the range of values of 2D DFT cont. 

 

 

 

 

 

 

 

 

 

     Display of amplitude of DFT                  Display of the logarithmic amplitude of DFT 



 

 

 

 

 

 

 

 

 

       

        

 

        

      Display of amplitude of DFT                   Display of the logarithmic amplitude of DFT 

The visualisation of the range of values of the 2D DFT cont. 



• Periodicity: The 2D DFT and its inverse are periodic 

𝐹 𝑢, 𝑣 = 𝐹 𝑢 + 𝑀, 𝑣 = 𝐹 𝑢, 𝑣 + 𝑁 = 𝐹(𝑢 +𝑀, 𝑣 + 𝑁) 
Therefore, use of DFT implies virtual periodicity in space. 

• Conjugate symmetry: 𝐹 𝑢, 𝑣 = 𝐹∗ −𝑢 + 𝑝𝑀,−𝑣 + 𝑞𝑁  with 𝑝, 𝑞 any 

integers. This property also implies that 𝐹(𝑢, 𝑣) = 𝐹(−𝑢,−𝑣) . 

• If 𝑓 𝑥, 𝑦  is real and even then 𝐹 𝑢, 𝑣  is real and even. 

• If 𝑓 𝑥, 𝑦  is real and odd then 𝐹 𝑢, 𝑣  is imaginary and odd. 

• ℱ 𝑓 𝑥, 𝑦 + 𝑔 𝑥, 𝑦 = ℱ 𝑓 𝑥, 𝑦 + ℱ 𝑔 𝑥, 𝑦  where ℱ{∙} indicates the 

Discrete Fourier Transform operator. 

• ℱ 𝑓 𝑥, 𝑦 ∙ 𝑔 𝑥, 𝑦 ≠ ℱ 𝑓 𝑥, 𝑦 ∙ ℱ 𝑔 𝑥, 𝑦  

• Translation in spatial and frequency domain:  

𝑓 𝑥 − 𝑥0, 𝑦 − 𝑦0 ↔ 𝐹(𝑢, 𝑣)𝑒
−𝑗2𝜋

𝑢𝑥0
𝑀
+
𝑣𝑦0
𝑁  

𝑓 𝑥, 𝑦 𝑒
𝑗2𝜋
𝑢0𝑥
𝑀 +
𝑣0𝑦
𝑁 ↔ 𝐹(𝑢 − 𝑢0, 𝑣 − 𝑣0) 

• Average value of the signal 𝑓 (𝑥, 𝑦) =
1

𝑀𝑁
  𝑓(𝑥, 𝑦)𝑁−1

𝑦=0
𝑀−1
𝑥=0  

𝐹 0,0 =
1

𝑀𝑁
  𝑓(𝑥, 𝑦) ⇒𝑁−1

𝑦=0
𝑀−1
𝑥=0  𝑓 (𝑥, 𝑦) = 𝐹(0,0) 

 

Properties of 2D DFT 



Properties of 2D DFT cont. 

• Rotation: Rotating 𝑓(𝑥, 𝑦) by 𝜃 rotates 𝐹 𝑢, 𝑣  by 𝜃.   

 



• In order to display a full period of the 2D DFT in the center of the image, 

we need to translate the origin of the transform at 𝑢, 𝑣 = (𝑀/2,𝑁/2). 

• To move 𝐹 𝑢, 𝑣  at (𝑀/2,𝑁/2) we use the second translation property in 

the previous slide with 𝑢0 = 𝑀/2 and 𝑣0 = 𝑁/2. 

In that case ℱ 𝑓 𝑥, 𝑦 𝑒
𝑗2𝜋

𝑢0𝑥

𝑀
+
𝑣0𝑦

𝑁 = 𝐹(𝑢 − 𝑢0, 𝑣 − 𝑣0) becomes 

ℱ 𝑓 𝑥, 𝑦 𝑒𝑗𝜋 𝑥+𝑦 = ℱ 𝑓 𝑥, 𝑦 (−1) 𝑥+𝑦 = 𝐹(𝑢 −𝑀/2, 𝑣 − 𝑁/2) 

 

 

 

 

 

 

 

    Original image                    Original DFT amplitude        Translated DFT amplitude 

 

  

 

Visualisation of a full period of 2D DFT 



Applications: 

Exploiting the property of energy compaction of 2D DFT 



Applications: Low- and high- pass filtering: 

How do frequencies show up in an image? 

                

                

 

 

 

 

 

 

         

 

 

 

 

 

                                original image                low-pass filtered image 

 

• Low frequencies correspond to slowly varying pixel intensities (e.g., 

smooth surfaces). 

• High frequencies correspond to quickly varying pixel intensities (e.g., 

edges) 



Low- and high- pass filtering using amplitude of 2D DFT 

                

                

 

 

 

 

 

 

         original image                       low pass filtered                        high pass filtered 

 

 

 

 

 

 

 
                                            

       amplitude of DFT                 amplitude of DFT with               amplitude of DFT with 

                                               eliminated high frequencies       eliminated low frequencies 

 

 



Amplitude and phase of 2D DFT 

                

                

 

 

 

 

 

 

         original image                       amplitude of DFT                         phase of DFT 

 

 

 

 

 

 
                  

       amplitude of DFT                    amplitude of DFT                         phase of DFT 
 
Exercise: use IDFT to reconstruct the image using magnitude or phase only information 
 

 



Reconstructed image using the 

amplitude of DFT only and zero phase. 

The magnitude determines the  

strength of each frequency component but 

not its location. 

 

 

 

Reconstructed image using the phase 

of DFT only and amplitude equal to 1. 

• The phase determines the locations of 

individual frequencies within the image. 

• High frequencies → abrupt changes → 

edges → object silhouettes → image 

content. 

 

 

Amplitude and phase of 2D DFT cont. 



Reconstruction from the amplitude of one image 

and the phase of another 

                

                

 

 

                 phase of cameraman             phase of grasshopper 

                 amplitude of grasshopper        amplitude of cameraman 

 

 



Reconstruction from the amplitude of one image 

and the phase of another cont. 

                

                

 

 

                        phase of buffalo               phase of rocks 

                           amplitude of rocks           amplitude of buffalo 

 

 



 

 

What follows in the next slides are experiments done by students of the 

MSc in Communications and Signal Processing 

 

 

 

 

      

              



Experiment run by Zheng Zhang 

MSc Student in Communications and Signal Processing, 2018-2019. 



Experiment run by Zheng Zhang, 

MSc Student in Communications and Signal Processing, 2018-2019. 



Experiment run by Zheng Zhang, 

MSc Student in Communications and Signal Processing, 2018-2019. 



Experiment run by Ximo Chen 

MSc Student in Communications and Signal Processing, 2018-2019. 



Experiment run by Ximo Chen 

MSc Student in Communications and Signal Processing, 2018-2019. 



 

       Original image             Reconstruction using        Reconstruction using 

                                                amplitude only                     phase only 

      

              

Experiment run by Yunping Zhang 

MSc Student in Communications and Signal Processing, 2018-2019. 
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Experiment run by Yunping Zhang 

MSc Student in Communications and Signal Processing, 2018-2019. 
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Experiment run by Yunyi Guang 

MSc Student in Communications and Signal Processing, 2018-2019. 
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Experiment run by Yunyi Guang 

MSc Student in Communications and Signal Processing, 2018-2019. 


