Imperial College London

Digital Image Processing

Image Transforms
 The 2 D Discrete Cosine Transform

DR TANIA STATHAKI

READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON

What is this lecture about?

- Welcome back to the Digital Image Processing lecture!
- In this lecture we will learn about one of the so called Discrete Cosine Transforms (DCT).
- From the above bullet point you might already have suspected that the DCT is not a single transform but a family of transforms.
- We will call the one that we will see here, DCT. In various textbooks different versions of the DCT have names such as Type I DCT, Type II DCT etc. Let us ignore these names and call the transform just DCT.
- We will start with the one-dimensional Discrete Cosine Transform (1D DCT) and show how this transform can be extended into two dimensions.
- The 1D DCT is also a member of the family of unitary transforms.

One-dimensional Discrete Cosine Transform [1D-DCT]

- The one-dimensional Discrete Cosine Transform (DCT) is defined as:

$$
C(u)=a(u) \sum_{x=0}^{N-1} f(x) \cos \left[\frac{(2 x+1) u \pi}{2 N}\right], 0 \leq u \leq N-1
$$

$$
a(u)=\left\{\begin{array}{c}
\sqrt{\frac{1}{N}} \quad u=0 \\
\sqrt{\frac{2}{N}} \quad u=1, \ldots, N-1
\end{array}\right.
$$

- The inverse transform is:

$$
f(x)=\sum_{u=0}^{N-1} a(u) C(u) \cos \left[\frac{(2 x+1) u \pi}{2 N}\right]
$$

- It can be shown that DCT is a unitary transform.
- The difference with DFT is that the signal is projected onto real sinewaves instead of complex. It is a real transform.

1-D Basis Functions N=8

- For a signal $f(x)$ with 8 samples, the rows of the 8×8 transformation matrix of the DCT are depicted below.

1-D Basis Functions $N=16$

- For a signal $f(x)$ with 16 samples, the rows of the 16×16 transformation matrix of the DCT are depicted below.

Imperial College
London

Example: One-dimensional Discrete Cosine Transiorm [DCT]

- Consider the signal $x[n]= \begin{cases}\frac{1}{5} & 0 \leq n \leq 4 \\ 0 & \text { elsewhere }\end{cases}$
- Its DCT is shown in the figure below.

Imperial College

London

Two-dimensional Discrete Cosine Transform [2D-DCT]

- Consider an image $f(x, y)$ of size $M \times N$.
- The two-dimensional Discrete Cosine Transform (DCT) is defined as:

$$
\begin{aligned}
& C(u, v)=a(u) a(v) \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \cos \left[\frac{[(2 x+1) u \pi}{2 M}\right] \cos \left[\frac{(2 y+1) v \pi}{2 N}\right], \\
& 0 \leq u \leq M-1,0 \leq v \leq N-1
\end{aligned}
$$

- The inverse transform is:

$$
\begin{aligned}
& f(x, y)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} a(u) a(v) C(u, v) \cos \left[\frac{(2 x+1) u \pi}{2 M}\right] \cos \left[\frac{(2 y+1) v \pi}{2 N}\right] \\
& 0 \leq x \leq M-1,0 \leq y \leq N-1
\end{aligned}
$$

- $a(u)$ is defined as previously.

Imperial College

Example: Two-dimensional Discrete Cosine Transiorm [DCT]

- Consider the two-dimensional signal

$$
f(x, y)=\left\{\begin{array}{cc}
1 & 0 \leq x \leq 2,0 \leq y \leq 4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

- Its DCT is shown in the figure below.

Advantages of the Discrete Cosine Transform

- The DCT is a real transform.
- The DCT has excellent energy compaction properties.
- There are fast algorithms to compute the DCT similar to the FFT.

Imperial College
London

How to visualise 2D Basis Functions $N=4$

Imperial College
London

2-D Basis Functions $N=8$

Imperial College

Separability of DCT

- The implementation 2D-DCT requires the sequential implementation of the corresponding one-dimensional transform row-by-row and then column-by-column (or the inverse), as with the case of 2D-DFT.

$\underset{\substack{\text { DCTs } \\ \text { (horiz) }}}{\stackrel{8 \times 1 D}{ }}$

Example: 8×8 Block DCT

- The image below left is divided in patches (blocks) of size 8×8 pixels.
- The 2D-DCT is applied in each block.
- The result is depicted in the image below right.
- This is a standard way to use 2D-DCT in Image Compression Standards (JPEG). Details will be presented in Part 4 of the course.

Imperial College
London

Example: Energy Compaction

- Observe the excellent compaction property of 2D-DCT.
- Lena is shown on the left and its 2D-DCT on the right.

