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1-D Walsh Transform

This transform is slightly different from the ones
you have met so far!
Suppose we have a function f(x),x=0,...,N =1,

where N =2".
We use binary representation for xand u.
We need nbits to represent them.

X0 = (bn—1(x) ...by (X))z
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Exampie: 1-D Walsh Transform

Suppose f(x) has N =8 samples.

In that casen=3since N =2".

Consider f (6):
X9 =6=X, =110=Db,(6) =0,b,(6) =1,b,(6) =1
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1-D Walsh Transform

We define now the 1-D Walsh transform as follows:

W (U) — i Nz_:l f (X)l:nnl(—]_)bi (X)Py_y.; (U):|

N x=0 =0

The above is equivalent to:
n-1

1 N-1 Zbi(x)bn—l—i (u)
W (u) = N 20 FO)ED=

The transform kernel values are obtained from:

n-1 nz_ibi (X)bp_y_j (u)
T (U, X) =T (X, U) = %[l_g(_l)bl (X)By_y. (U):| _ %(_1) )
=

Therefore, the array formed by the Walsh matrix is a real symmetric
matrix. It is easily shown that it has orthogonal columns and rows.
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1-D Walsh Transform

We would like to write the Walsh transform in matrix form.
We define the vectors

f=[f(0) f@ .. f(N-Df
W=W(@©O) W@ ... WN-DJ

The Walsh transform can be written in matrix form

w=T.-f

As mentioned in previous slide, matrix T is a real, symmetric matrix
with orthogonal columns and rows. We can easily show that it is
unitary and therefore:

T*=N-T' =N-T, Nis thesize of thesignal
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1-D Inverse Waish Transform

Base on the last equation of the previous slide we can show that the
Inverse Walsh transform is almost identical to the forward transform!

=0

f (X) — Nz_llw (U)|:nH1(—]_)bi (¥)bn4i (U):|

The above is again equivalent to .

Zbi (X)bp_y_j (U)

f(x) = zvv (U)(-)

The array formed by the inverse Walsh matrix is identical to the one
formed by the forward Walsh matrix apart from a multiplicative factor

N.
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2-D Waish Transform

We define now the 2-D Walsh transform as a straightforward
extension of the 1-D transform:

W(U V) = — Z_ll Nz_lf ()( y)I:H( 1)bi(x)bn—1—i (u)+b; (y)by 4 (V):|

xOyO =0

The above is equivalent to:

n-1
N-1N-1 D (0 ()b g (U)+b; (X)by 45 (W)

W(u, V)——Z 2 T y)(=D)+~

xOyO
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2-D Inverse Walsh Transform

« We define now the Inverse 2-D Walsh transform. It is identical to the
forward 2-D Walsh transform!

Fy) =— 3 SW(u, V){H( 1)b(x)bn1.(u>+b(y)bnl.(v)}

X=0 y=0 =0

 The above is equivalent to:

n-1
N-1N-1 Z(b (X)Pn_g_i (U)+0; (X) b4 (U))

F(x, Y)—— 2, 2W(u,v)(=D)+

xOyO
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Implementation of the 2-D Waish Transform

 The 2-D Walsh transform is separable and
symmetric.

« Therefore it can be implemented as a sequence of
two 1-D Walsh transforms, in a fashion similar to that
of the 2-D DFT.
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Basis Functions of Walsh Transiorm

Remember that the Fourier transform is based on trigonometric
terms.

The Walsh transform consists of basis functions whose values are
only 1 and -1.

They have the form of square waves.

These functions can be implemented more efficiently in a digital
environment than the exponential basis functions of the Fourier
transform.
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Kernels of Forward and Inverse Walsh Transiorm

« For 1-D signals the forward and inverse Walsh kernels
differ only in a constant multiplicative factor of N .

« This is because the array formed by the kernels is a
symmetric matrix having orthogonal rows and columns, so
Its inverse array Is the same as the array itself!

 In 2-D signals the forward and inverse Walsh kernels are
identicall
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The Goncept of Sequency

« The concept of frequency exists also in Walsh transform
basis functions.

« We can think of frequency as the number of zero
crossings or the number of transitions in a basis vector
and we call this number sequency.
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Computation of the Waish Transform

« For the fast computation of the Walsh transform
there exists an algorithm called Fast Walsh

Transform (FWT).

« This is a straightforward modification of the FFT.
Advise any introductory book for your own interest.
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2-D Hadamard Transform

« We define now the 2-D Hadamard transform. It is similar to the 2-D
Walsh transform.

H(u,v) = Z_: i f(x, y)|:ﬁ-(_l)bi(x)bi (u)+b; (y)by (V)}

=0

15
N

 The above is equivalent to:

n—

N-1N-1 Z(b (x)by (u)+b; (x)b; (u))

H (u, V)——Z 2 T y)=h=

xOyO
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2-D Inverse Hadamard Transform

« We define now the Inverse 2-D Hadamard transform. It is identical to
the forward 2-D Hadamard transform.

f(x,y) —_I\IlefH (u, V){H( —1)P 0B @+ ()b (v)}

x=0 y=0 1=0

 The above is equivalent to:

n—

N-1N-1 Z(b (x)by (u)+b; (x)b; (u))

t(x, Y)——Z 2 Huv)(=D)+~

xOyO



Imperial College

Properties of the Hadamard Transform

« Most of the comments made for Walsh transform are valid here.

 The Hadamard transform differs from the Walsh transform only in the
order of basis functions. The order of basis functions of the Hadamard

transform does not allow the fast computation of it by using a
straightforward modification of the FFT.
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Recursive Relationship of the Hadamard Transform

e An important property of Hadamard transformis that,
letting H |, represent the Hadamard matrix of order N
the recursiverelationship holds :

H H
H2N — {H " HN }
N o N
e Therefore, starting from a small Hadamard matrix

we can compute a Hadamard matrix of any size.
e This is a good reason to use the Hadamard transform!
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Ordered Walsh and Hadamard Transforms

Modified versions of the Walsh and Hadamard transforms
can be formed by rearranging the rows of the
transformation matrix so that the sequency increases as
the index of the transform increases.

These are called ordered transforms.

The ordered Walsh/Hadamard transforms do exhibit the
property of energy compaction whereas the original
versions of the transforms do not.

Among all the transforms of this family, the Ordered
Hadamard is the most popular due to recursive matrix
property and also energy compaction.
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Images of 1-D Hadamard matrices
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More images of 1-D Hadamard matrices

8x8 Hadamard matrix (non-ordered) 8x8 Hadamard matrix (ordered)
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More images of 1-D Hadamard matrices

32x32 Hadamard matrix (non-ordered) 32x32 Hadamard matrix (ordered)
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Superiority of DCT in terms of energy compaction in comparison with Hadamard

The 256x256 DCT matrix
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The ordered Hadamard Transform
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Question: In the bottom figures which of the two transforms is related to each curve?



