Discrete Cosine Transform

Nuno Vasconcelos
UCSD

Discrete Fourier Transform

- last classes, we have studied the DFT
- due to its computational efficiency the DFT is very popular
- however, it has strong disadvantages for some applications
- it is complex
- it has poor energy compaction
- energy compaction
- is the ability to pack the energy of the spatial sequence into as few frequency coefficients as possible
- this is very important for image compression
- we represent the signal in the frequency domain
- if compaction is high, we only have to transmit a few coefficients
- instead of the whole set of pixels

Discrete Cosine Transform

- a much better transform, from this point of view, is the DCT
- in this example we see the amplitude spectra of the image above
- under the DFT and DCT
- note the much more concentrated histogram obtained with the DCT
- why is energy compaction important?
- the main reason is image compression
- turns out to be beneficial in other applications

DFT

DCT

Image compression

- an image compression system has three main blocks

- a transform (usually DCT on 8x8 blocks)
- a quantizer
- a lossless (entropy) coder
- each tries to throw away information which is not essential to understand the image, but costs bits

Image compression

- the transform throws away correlations
- if you make a plot of the value of a pixel as a function of one of its neighbors

- you will see that the pixels are highly correlated (i.e. most of the time they are very similar)
- this is just a consequence of the fact that surfaces are smooth

Image compression

- the transform eliminates these correlations
- this is best seen by considering the 2-pt transform
- note that the first coefficient is always the DC-value

$$
X[0]=x[0]+x[1]
$$

- an orthogonal transform can be written in matrix form as

$$
X=T x, \quad T^{T} T=I
$$

- i.e. T has orthogonal columns
- this means that

$$
X[1]=x[0]-x[1]
$$

- note that if $x[0]$ similar to $x[1]$, then

$$
\left\{\begin{array}{l}
X[0]=x[0]+x[1] \approx 2 x[0] \\
X[1]=x[0]-x[1] \approx 0
\end{array}\right.
$$

Image compression

- the transform eliminates these correlations
- note that if $x[0]$ similar to $x[1]$, the

$$
\left\{\begin{array}{l}
X[0]=x[0]+x[1] \approx 2 x[0] \\
X[1]=x[0]-x[1] \approx 0
\end{array}\right.
$$

- in the transform domain we only have to transmit one number without any significant cost in image quality
- by "decorrelating" the signal we reduced the bit rate to $1 / 2$!
- note that an orthogonal matrix

$$
T^{T} T=I
$$

applies a rotation to the pixel space

- this aligns the data with the canonical axes

Image compression

- a second advantage of working in the frequency domain
- is that our visual system is less sensitive to distortion around edges
- the transition associated with the edge masks our ability to perceive the noise
- e.g. if you blow up a compressed picture, it is likely to look like this
- in general, the compression errors are more annoying in the smooth image regions

Image compression

- three JPEG examples

- note that the blockiness is more visible in the torso

Image compression

- important point: by itself, the transform
- does not save any bits
- does not introduce any distortion
- both of these happen when we throw away information
- this is called "lossy compression" and implemented by the quantizer
- what is a quantizer?
- think of the round() function, that rounds to the nearest integer
$-\operatorname{round}(1)=1 ;$ round $(0.55543)=1$; round $(0.0000005)=0$
- instead of an infinite range between 0 and 1 (infinite number of bits to transmit)
- the output is zero or one (1 bit)
- we threw away all the stuff in between, but saved a lot of bits
- a quantizer does this less drastically

Quantizer

- it is a function of this type
- inputs in a given range are mapped to the same output
- to implement this, we
- 1) define a quantizer step size Q
- 2) apply a rounding function

$$
x_{q}=\operatorname{round}\left(\frac{x}{Q}\right)
$$

- the larger the Q , the less reconstruction levels we have
- more compression at the cost of larger distortion
- e.g. for x in [0,255], we need 8 bits and have 256 color values
- with $Q=64$, we only have 4 levels and only need 2 bits

Quantizer

- note that we can quantize some frequency coefficients more heavily than others by simply increasing Q
- this leads to the idea of a quantization matrix
- we start with an image block (e.g. 8x8 pixels)

$\longleftrightarrow\left[\begin{array}{cccccccc}52 & 55 & 61 & 66 & 70 & 61 & 64 & 73 \\ 63 & 59 & 55 & 90 & 109 & 85 & 69 & 72 \\ 62 & 59 & 68 & 113 & 144 & 104 & 66 & 73 \\ 63 & 58 & 71 & 122 & 154 & 106 & 70 & 69 \\ 67 & 61 & 68 & 104 & 126 & 88 & 68 & 70 \\ 79 & 65 & 60 & 70 & 77 & 68 & 58 & 75 \\ 85 & 71 & 64 & 59 & 55 & 61 & 65 & 83 \\ 87 & 79 & 69 & 68 & 65 & 76 & 78 & 94\end{array}\right]$

Quantizer

- next we apply a transform (e.g. 8x8 DCT)

Quantizer

- and quantize with a varying Q

Quantizer

- note that higher frequencies are quantized more heavily
Q mtx $\left[\begin{array}{llllllll}16 & 11 & 10 & 16 & 94 & 4 n & 51 & 617 \\ 12 & 12 & 14 & 1 & \text { increasing frequency } \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 5 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 128 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99\end{array}\right]$
- in result, many high frequency coefficients are simply wiped out

DCT

$$
\left[\begin{array}{cccccccc}
-415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\
4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\
-47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\
-49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\
12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\
-8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\
-1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\
0 & 0 & -1 & -4 & -1 & 0 & 1 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{cccccccc}
-26 & -3 & -6 & 2 & 2 & -1 & 0 & 0 \\
0 & -2 & -4 & 1 & 1 & 0 & 0 & 0 \\
-3 & 1 & 5 & -1 & -1 & 0 & 0 & 0 \\
-4 & 1 & 2 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Quantizer

- this saves a lot of bits, but we no longer have an exact replica of original image block

$$
\begin{aligned}
& \text { quantized DCT } \\
& \left.\left[\begin{array}{cccccccc}
-415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\
4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\
-47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\
-49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\
12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\
-8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\
-1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\
0 & 0 & -1 & -4 & -1 & 0 & 1 & 2
\end{array}\right] \longrightarrow \longrightarrow \begin{array}{cccccccc}
-26 & -3 & -6 & 2 & 2 & -1 & 0 & 0 \\
0 & -2 & -4 & 1 & 1 & 0 & 0 & 0 \\
-3 & 1 & 5 & -1 & -1 & 0 & 0 & 0 \\
-4 & 1 & 2 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& {\left[\begin{array}{cccccccc}
60 & 63 & 55 & 58 & 70 & 61 & 58 & 80 \\
58 & 56 & 56 & 83 & 108 & 88 & 63 & 71 \\
60 & 52 & 62 & 113 & 150 & 116 & 70 & 67 \\
66 & 56 & 68 & 122 & 156 & 116 & 69 & 72 \\
69 & 62 & 65 & 100 & 120 & 86 & 59 & 76 \\
68 & 68 & 61 & 68 & 78 & 60 & 53 & 78 \\
74 & 82 & 67 & 54 & 63 & 64 & 65 & 83 \\
83 & 96 & 77 & 56 & 70 & 83 & 83 & 89
\end{array}\right]}
\end{aligned}
$$

Quantizer

- note, however, that visually the blocks are not very different

- we have saved lots of bits without much "perceptual" loss
- this is the reason why JPEG and MPEG work

Image compression

- three JPEG examples

36KB

5.7 KB

1.7 KB

- note that the two images on the left look identical
- JPEG requires $6 x$ less bits

Discrete Cosine Transform

- note that
- the better the energy compaction
- the larger the number of coefficients that get wiped out
- the greater the bit savings for the same loss
- this is why the DCT is important
- we will do mostly the 1D-DCT

DFT

DCT

- the formulas are simpler the insights the same
- as always, extension to 2D is trivial

Discrete Cosine Transform

- the first thing to note is that there are various versions of the DCT
- these are usually known as DCT-I to DCT-IV
- they vary in minor details
- the most popular is the DCT-II, also known as even symmetric DCT, or as "the DCT"

$$
w[k]=\left\{\begin{array}{cc}
1 / 2, & k=0 \\
1, & 1 \leq k<N
\end{array},\right.
$$

$$
\begin{aligned}
& C_{x}[k]=\left\{\begin{array}{cc}
\sum_{n=0}^{N-1} 2 x[n] \cos \left(\frac{\pi}{2 N} k(2 n+1)\right), & 0 \leq k<N \\
0 & \text { otherwise }
\end{array}\right. \\
& x[n]=\left\{\begin{array}{cc}
\frac{1}{N} \sum_{k=0}^{N-1} w[k] C_{x}[k] \cos \left(\frac{\pi}{2 N} k(2 n+1)\right) & 0 \leq n<N \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Discrete Cosine Transform

$$
C_{x}[k]=\left\{\begin{array}{cc}
\sum_{n=0}^{N-1} 2 x[n] \cos \left(\frac{\pi}{2 N} k(2 n+1)\right), & 0 \leq k<N \\
0 & \text { otherwise }
\end{array}\right.
$$

- from this equation we can immediately see that the DCT coefficients are real
- to understand the better energy compaction
- it is interesting to compare the DCT to the DFT
- it turns out that there is a simple relationship
- we consider a sequence $x[n]$ which is zero outside of $\{0, \ldots, N-1\}$
- to relate DCT to DFT we need three steps

Discrete Cosine Transform

- step 1): create a sequence

$$
\begin{aligned}
y[n] & =x[n]+x[2 N-n-1] \\
& =\left\{\begin{array}{cc}
x[n], & 0 \leq n<N \\
x[2 N-n-1], & N \leq n<2 N
\end{array}\right.
\end{aligned}
$$

- step 2): compute the $2 N$-point DFT of $\mathrm{y}[\mathrm{n}]$

$$
Y[k]=\sum_{n=0}^{2 N-1} y[n] e^{-j \frac{2 \pi}{2 N} k n}, \quad 0 \leq k<2 N
$$

- step 3): rewrite as a function of N terms only

$$
Y[k]=\sum_{n=0}^{N-1} y[n] e^{-j \frac{2 \pi}{2 N} k n}+\sum_{n=N}^{2 N-1} y[n] e^{-j \frac{2 \pi}{2 N} k n}
$$

Discrete Cosine Transform

- step 3): rewrite as a function of N terms only

$$
\begin{aligned}
Y[k] & =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{2 N} k n}+\sum_{n=N}^{2 N-1} x[2 N-n-1] e^{-j \frac{2 \pi}{2 N} k n} \\
& =(m=2 N-1-n, \quad n=2 N-1-m)= \\
& =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{2 N} k n}+\sum_{m=0}^{N-1} x[m] e^{-j \frac{2 \pi}{2 N} k(2 N-1-m)} \\
& =\sum_{n=0}^{N-1} x[n]\{e^{-j \frac{2 \pi}{2 N} k n}+e^{j \frac{2 \pi}{2 N} k n} \underbrace{e^{-j \frac{2 \pi}{2 N} k 2 N}}_{1} e^{j \frac{2 \pi}{2 N} k}\} \\
& =\sum_{n=0}^{N-1} x[n]\left\{e^{-j \frac{2 \pi}{2 N} k n}+e^{j \frac{2 \pi}{2 N} k n} e^{j \frac{2 \pi}{2 N} k}\right\}
\end{aligned}
$$

- to write as a cosine we need to make it into two "mirror" exponents

Discrete Cosine Transform

- step 3): rewrite as a function of N terms only

$$
\begin{aligned}
Y[k] & =\sum_{n=0}^{N-1} x[n]\left\{e^{-j \frac{2 \pi}{2 N} k n}+e^{j \frac{2 \pi}{2 N} k n} e^{j \frac{2 \pi}{2 N} k}\right\} \\
& =\sum_{n=0}^{N-1} x[n] e^{j \frac{\pi}{2 N} k}\left\{e^{-j \frac{2 \pi}{2 N} k n} e^{-j \frac{\pi}{2 N} k}+e^{j \frac{2 \pi}{2 N} k n} e^{j \frac{\pi}{2 N} k}\right\} \\
& =\sum_{n=0}^{N-1} 2 x[n] e^{j \frac{\pi}{2 N} k} \cos \left(\frac{\pi}{2 N} k(2 n+1)\right) \\
& =e^{j \frac{\pi}{2 N} k} \sum_{n=0}^{N-1} 2 x[n] \cos \left(\frac{\pi}{2 N} k(2 n+1)\right)
\end{aligned}
$$

- from which

$$
Y[k]=e^{j \frac{\pi}{2 N} k} C_{x}[k], \quad 0 \leq k<2 N
$$

Discrete Cosine Transform

- it follows that

$$
C_{x}[k]=\left\{\begin{array}{cl}
e^{-j \frac{\pi}{2 N} k} y[k], & 0 \leq k<N \\
0, & \text { otherwise }
\end{array}\right.
$$

- in summary, we have three steps

$$
\underbrace{x[n]}_{N-p t} \leftrightarrow \underbrace{y[n]}_{2 N-p t} \stackrel{\left.\begin{array}{l}
D F T \\
\leftrightarrow
\end{array} \underbrace{Y[k]}_{2 N-p t} \leftrightarrow \underbrace{C_{x}[k]}_{N-p t} \right\rvert\,}{\substack{x \\
\hline}}
$$

- this interpretation is useful in various ways
- it provides insight on why the DCT has better energy compaction
- it provides a fast algorithm for the computation of the DFT

Energy compaction

$$
\underbrace{x[n]}_{N-p t} \leftrightarrow \underbrace{y[n]}_{2 N-p t} \stackrel{D F T}{\leftrightarrow} \quad \underbrace{Y[k]}_{2 N-p t} \leftrightarrow \underbrace{C_{x}[k]}_{N-p t}
$$

- to understand the energy compaction property
- we start by considering the sequence $y[n]=x[n]+x[2 N-1-n]$
- this just consists of adding a mirrored version of $x[n]$ to itself

- next we remember that the DFT is identical to the DFS of the periodic extension of the sequence
- let's look at the periodic extensions for the two cases
- when transform is DFT: we work with extension of $x[n]$
- when transform is DCT: we work with extension of $y[n]$

Energy compaction

$$
\underbrace{X[n]}_{N-p t} \leftrightarrow \underbrace{y[n]}_{2 N-p t} \stackrel{D F T}{\leftrightarrow} \underbrace{Y[k]}_{2 N-p t} \leftrightarrow \underbrace{C_{x}[k]}_{N-p t}
$$

- the two extensions are

- note that in the DFT case the extension introduces discontinuities
- this does not happen for the DCT, due to the symmetry of $y[n]$
- the elimination of this artificial discontinuity, which contains a lot of high frequencies,
- is the reason why the DCT is much more efficient

Fast algorithms

- the interpretation of the DCT as

$$
\underbrace{x[n]}_{N-p t} \leftrightarrow \underbrace{y[n]}_{2 N-p t} \stackrel{D F T}{\leftrightarrow} \quad \underbrace{Y[k]}_{2 N-p t} \leftrightarrow \underbrace{C_{x}[k]}_{N-p t}
$$

- also gives us a fast algorithm for its computation
- it consists exactly of the three steps
- 1) $y[n]=x[n]+x[2 N-1-n]$
- 2) $\mathrm{Y}[\mathrm{k}]=\operatorname{DFT}\{y[n]\}$
this can be computed with a $2 \mathrm{~N}-\mathrm{pt} \mathrm{FFT}$
- 3)

$$
C_{x}[k]=\left\{\begin{array}{cc}
e^{-j \frac{\pi}{2 N} k} Y[k], & 0 \leq k<N \\
0, & \text { otherwise }
\end{array}\right.
$$

- the complexity of the N-pt DCT is that of the 2 N -pt DFT

2D DCT

- the extension to 2 D is trivial
- the procedure is the same
- with

$$
\begin{aligned}
y\left[n_{1}, n_{2}\right] & =x\left[n_{1}, n_{2}\right]+x\left[2 N_{1}-1-n_{1}, n_{2}\right] \\
& +x\left[n_{1}, 2 N_{2}-1-n_{2}\right]+x\left[2 N_{1}-1-n_{1}, 2 N_{2}-1-n_{2}\right]
\end{aligned}
$$

- and

$$
C_{x}\left[k_{1}, k_{2}\right]=\left\{\begin{array}{cc}
e^{-j \frac{\pi}{2 N_{1}} k_{1}} e^{-j \frac{\pi}{2 N_{2}} k_{2}} Y\left[k_{1}, k_{2}\right], & 0 \leq k_{1}<N_{1} \\
0 \leq k_{2}<N_{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

2D DCT

- the end result is the 2D DCT pair

$$
\begin{aligned}
& C_{x}\left[k_{1}, k_{2}\right]=\left\{\begin{array}{cl}
\sum_{n_{1}=0}^{N_{1}-1 N_{2}-1} \sum_{n_{2}=0} 4 x\left[n_{1}, n_{2}\right] \cos \left(\frac{\pi}{2 N_{1}} k_{1}\left(2 n_{1}+1\right)\right) \cos \left(\frac{\pi}{2 N_{2}} k_{2}\left(2 n_{2}+1\right)\right), & 0 \leq k_{1}<N_{1} \\
0 & 0 \leq k_{2}<N_{2} \\
\text { otherwise }
\end{array}\right. \\
& x\left[n_{1}, n_{2}\right]=\left\{\begin{array}{cl}
\frac{1}{N_{1} N_{2}} \sum_{k_{1}=0}^{N_{1}-1 N_{2}-1} \sum_{k_{2}=0} w_{1}\left[k_{1}\right] W_{2}\left[k_{2}\right] C_{x}\left[k_{1}, k_{2}\right] \cos \left(\frac{\pi}{2 N_{1}} k_{1}\left(2 n_{1}+1\right)\right) \cos \left(\frac{\pi}{2 N_{2}} k_{2}\left(2 n_{2}+1\right)\right) & \begin{array}{l}
0 \leq n_{1}<N_{1} \\
0 \leq n_{2}<N_{2} \\
0
\end{array} \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

with

$$
w_{1}\left[k_{1}\right]=\left\{\begin{array}{ccc}
1 / 2, & k_{1}=0 & w_{2}\left[k_{2}\right]=\left\{\begin{array}{cc}
1 / 2, & k_{2}=0 \\
1, & 1 \leq k_{1}<N_{1}
\end{array},\right. \\
1, & 1 \leq k_{2}<N_{2}
\end{array}\right]
$$

- it is possible to show that the 2DCT can be computed with the row-column decomposition (homework)

2D-DCT

- 1) create intermediate sequence by computing 1D-DCT of rows

- 2) compute 1D-DCT of columns

