
Discrete Cosine TransformDiscrete Cosine Transform

Nuno Vasconcelos
UCSD

Discrete Fourier Transform
• last classes, we have studied the DFT
• due to its computational efficiency the DFT is very

popular
• however, it has strong disadvantages for some

applicationsapplications
– it is complex
– it has poor energy compaction

• energy compaction
– is the ability to pack the energy of the spatial sequence into as

few frequency coefficients as possibleq y p
– this is very important for image compression
– we represent the signal in the frequency domain

if compaction is high we only have to transmit a few coefficients

2

– if compaction is high, we only have to transmit a few coefficients
– instead of the whole set of pixels

Discrete Cosine Transform
• a much better transform,

from this point of view, is the DCT
– in this example we see the

amplitude spectra of the image above
– under the DFT and DCT
– note the much more

concentrated histogram
obtained with the DCT

• why is energy compaction
important?
– the main reason is– the main reason is

image compression
– turns out to be beneficial

in other applications

3

in other applications

Image compression
• an image compression system has three main blocks

– a transform (usually DCT on 8x8 blocks)
– a quantizer

()– a lossless (entropy) coder

• each tries to throw away information which is not
essential to understand the image, but costs bits

4

g ,

Image compression
• the transform throws away correlations

– if you make a plot of the value of a pixel as a function of one of
its neighborsits neighbors

– you will see that the pixels are highly correlated (i.e. most of the
time they are very similar)

– this is just a consequence of the fact that surfaces are smooth

5

j q

Image compression
• the transform eliminates these correlations

– this is best seen by considering the 2-pt transform
– note that the first coefficient is always the DC-value

[]]1[]0[0 xxX +=

– an orthogonal transform can be written in matrix form as

ITTTxX T == ,
– i.e. T has orthogonal columns
– this means that

[]]1[]0[1 xxX −=

– note that if x[0] similar to x[1], then

[]]1[]0[1 xxX =

[]⎧ ≈+=]0[2]1[]0[0 xxxX

6

[]
[]⎩

⎨
⎧

≈−=
≈+=

 0]1[]0[1
]0[2]1[]0[0

xxX
xxxX

Image compression
• the transform eliminates these correlations

– note that if x[0] similar to x[1], the

[]
[]⎩

⎨
⎧

≈−=
≈+=

 0]1[]0[1
]0[2]1[]0[0

xxX
xxxX

– in the transform domain we only have to transmit one number
without any significant cost in image quality
by “decorrelating” the signal we reduced the bit rate to ½!– by decorrelating” the signal we reduced the bit rate to ½!

– note that an orthogonal matrix

ITT T =
applies a rotation to the pixel space

– this aligns the data with the canonical axes

7

Image compression
• a second advantage of working in the

frequency domain
– is that our visual system is less sensitive

to distortion around edges
– the transition associated with the edge

masks our ability to perceive the noise
– e.g. if you blow up a compressed picture,

it is likely to look like this
– in general, the

compression
errors are more
annoying in the
smooth image
regions

8

Image compression
• three JPEG examples

36KB 5.7KB 1.7KB
– note that the blockiness is more visible in the torso

9

Image compression
• important point: by itself, the transform

– does not save any bits
– does not introduce any distortion

• both of these happen when we throw away information
• this is called “lossy compression” and implemented by• this is called lossy compression and implemented by

the quantizer
• what is a quantizer?

– think of the round() function, that rounds to the nearest integer
– round(1) = 1; round(0.55543) = 1; round (0.0000005) = 0
– instead of an infinite range between 0 and 1 (infinite number ofinstead of an infinite range between 0 and 1 (infinite number of

bits to transmit)
– the output is zero or one (1 bit)

we threw away all the stuff in between but saved a lot of bits

10

– we threw away all the stuff in between, but saved a lot of bits
– a quantizer does this less drastically

Quantizer
• it is a function of this type

– inputs in a given range are mapped
to the same o tp tto the same output

• to implement this, we
– 1) define a quantizer step size Q) q p
– 2) apply a rounding function

⎞
⎜⎜
⎛

=
xroundx

– the larger the Q, the less reconstruction levels we have

⎠
⎜⎜
⎝

=
Q

roundxq

g
– more compression at the cost of larger distortion
– e.g. for x in [0,255], we need 8 bits and have 256 color values
– with Q = 64 we only have 4 levels and only need 2 bits

11

– with Q = 64, we only have 4 levels and only need 2 bits

Quantizer
• note that we can quantize some frequency coefficients

more heavily than others by simply increasing Q
• this leads to the idea of a quantization matrix
• we start with an image block (e.g. 8x8 pixels)

12

Quantizer
• next we apply a transform (e.g. 8x8 DCT)

DCT

13

Quantizer
• and quantize with a varying Q

DCT

Q mtx

14

Quantizer
• note that higher frequencies are quantized more heavily

Q mtxQ mtx increasing frequency

– in result many high frequency coefficients are simply wiped out– in result, many high frequency coefficients are simply wiped out
DCT quantized DCT

15

Quantizer
• this saves a lot of bits, but we no longer have an exact

replica of original image block
DCT quantized DCTDCT quantized DCT

inverse DCT original pixels

≠

16

Quantizer
• note, however, that visually the blocks are not very

different
i i l d doriginal decompressed

f “ ”– we have saved lots of bits without much “perceptual” loss
– this is the reason why JPEG and MPEG work

17

Image compression
• three JPEG examples

36KB 5.7KB 1.7KB
– note that the two images on the left look identical

18
– JPEG requires 6x less bits

Discrete Cosine Transform
• note that

– the better the energy compaction
– the larger the number of coefficients

that get wiped out
– the greater the bit savings for the same

loss

• this is why the DCT is
importantimportant

• we will do mostly
the 1D-DCT
– the formulas are simpler

the insights the same
– as always, extension to

19

2D is trivial

Discrete Cosine Transform
• the first thing to note is that there are various versions of

the DCT
– these are usually known as DCT-I to DCT-IV
– they vary in minor details
– the most popular is the DCT-II,

01⎪⎧ kalso known as even symmetric
DCT, or as “the DCT”

⎧ ⎞⎛−N 1

[] ,
1,1

0,2
1

⎪⎩

⎪
⎨
⎧

<≤
==

Nk
kkw

[] []
⎪⎩

⎪
⎨
⎧

<≤⎟
⎠
⎞

⎜
⎝
⎛ += ∑

−

=

otherwise

Nknk
N

nxkC
N

nx

0

0,)12(
2

cos2
1

0

π

[] []
⎪

⎪
⎨
⎧

<≤⎟
⎠
⎞

⎜
⎝
⎛ +=

⎩

∑
−

=

Nnnk
N

kCkw
Nnx

N

k
x 0)12(

2
cos][1 1

0

π

20

⎪⎩ otherwise0

Discrete Cosine Transform

[] []⎪
⎨
⎧

<≤
⎠
⎞

⎜
⎝
⎛ += ∑

−

Nknk
N

nxkC
N

0,)12(
2

cos2
1 π

[] []
⎪⎩
⎨ ⎠⎝= ∑

=

otherwise
NkC nx

0
20

• from this equation we can immediately see that the DCT
coefficients are real

• to understand the better energy compactionto understand the better energy compaction
– it is interesting to compare the DCT to the DFT
– it turns out that there is a simple relationship

• we consider a sequence x[n] which is zero outside of
{0, …, N-1}

• to relate DCT to DFT we need three steps

21

• to relate DCT to DFT we need three steps

Discrete Cosine Transform
• step 1): create a sequence

[] −−+= nNxnxny]12[][

⎩
⎨
⎧

<≤−−
<≤

=
NnNnNx

Nnnx
2],12[

0],[

• step 2): compute the 2N-point DFT of y[n]

[] NkkY
N kn

N
j

20][
12

2
2

≤∑
− −

π

• step 3): rewrite as a function of N terms only

[] NkenykY
n

N 20 ,][
0

2 <≤= ∑
=

p) y

[] ∑∑
−

=

−−

=

−
+=

12
2
21

0

2
2

][][
N

Nn

kn
N

jN

n

kn
N

j
enyenykY

ππ

22

Discrete Cosine Transform
• step 3): rewrite as a function of N terms only

[] ∑∑
− −− − 12

2
21

2
2

]12[][
N kn

N
jN kn

N
j

NkY
ππ

[]

()
∑∑
==

=−−=−−==

−−+= 2

0

2

12,12

]12[][
Nn

N

n

N

mNnnNm

enNxenxkY

∑∑
−

=

−−−−

=

−

⎫⎧

+=

2222

1

0

)12(
2
21

0

2
2

][][
N

m

mNk
N

jN

n

kn
N

j
emxenx

ππ

∑
−

=

−−

⎫⎧
⎭
⎬
⎫

⎩
⎨
⎧

+=

222

1

0

2
2

1

2
2
2

2
2

2
2

][
N

n

k
N

jNk
N

jkn
N

jkn
N

j
eeeenx

ππππ

43421

∑
−

=

−

⎭
⎬
⎫

⎩
⎨
⎧

+=
1

0

2
2

2
2

2
2

][
N

n

k
N

jkn
N

jkn
N

j
eeenx

πππ

23
– to write as a cosine we need to make it into two “mirror”

exponents

Discrete Cosine Transform
• step 3): rewrite as a function of N terms only

[] ∑
− −

⎬
⎫

⎨
⎧1

2
2

2
2

2
2

][
N k

N
jkn

N
jkn

N
j

kY
πππ

[]

∑

∑
− −−

=

⎬
⎫

⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

+=

1
22

2
22

2
2

0

222

][

][

N k
N

jkn
N

jk
N

jkn
N

jk
N

j

n

N
j

N
j

N
j

eeenxkY

πππππ

∑

∑
−

=

⎞
⎜
⎛ +

⎭
⎬

⎩
⎨ +=

1
2

0

22222

)12(cos][2

][

N k
N

j

n

NNNNN

nkenx

eeeeenx

ππ

∑

∑
−

=

⎞
⎜
⎛ +=

⎠
⎜
⎝

+=

1
2

0

2

)12(cos][2

)12(
2

cos][2

Nk
N

j

n

N

nknxe

nk
N

enx

ππ

– from which

∑
= ⎠

⎜
⎝

+
0

)12(
2

cos][2
n

nk
N

nxe

kj π

24

[] NkkCekY x

k
N

j
20],[2 <≤=

Discrete Cosine Transform
• it follows that

⎪⎧ kj π

[]
,0

0,][2

⎪⎩

⎪
⎨
⎧

<≤=
−

otherwise
NkkYekC

k
N

j

x

π

• in summary, we have three steps

[] [] [] []
DFT

[]{ []{ []{ []
321
ptN

x
ptNptNptN

kCkYnynx
−−−−

↔↔↔
22

• this interpretation is useful in various ways
– it provides insight on why the DCT has better energy compaction

it provides a fast algorithm for the computation of the DFT

25

– it provides a fast algorithm for the computation of the DFT

Energy compaction

[]{ []{ []{ []
31x

DFT
kCkYnynx ↔↔↔

• to understand the energy compaction property
t t b id i th [] [] [2N 1]

{ { { 321
ptNptNptNptN −−−− 22

– we start by considering the sequence y[n] = x[n]+x[2N-1-n]
– this just consists of adding a mirrored version of x[n] to itself

x[n] y[n]

– next we remember that the DFT is identical to the DFS of the

x[n]

next we remember that the DFT is identical to the DFS of the
periodic extension of the sequence

– let’s look at the periodic extensions for the two cases
• when transform is DFT: we work with extension of x[n]

26

• when transform is DFT: we work with extension of x[n]
• when transform is DCT: we work with extension of y[n]

Energy compaction

[]{ []{ []{ []
31x

DFT
kCkYnynx ↔↔↔

• the two extensions are

{ { { 321
ptNptNptNptN −−−− 22

DFT DCT

– note that in the DFT case the extension introduces
discontinuities

– this does not happen for the DCT, due to the symmetry of y[n]
– the elimination of this artificial discontinuity, which contains a lot

of high frequencies

27

of high frequencies,
– is the reason why the DCT is much more efficient

Fast algorithms
• the interpretation of the DCT as

[] [] [] []
DFT

kCkY ↔↔↔

[]{ []{ []{ []
321
ptN

x
ptNptNptN

kCkYnynx
−−−−

↔↔↔
22

– also gives us a fast algorithm for its computation
– it consists exactly of the three steps
– 1) y[n] = x[n]+x[2N-1-n]– 1) y[n] = x[n]+x[2N-1-n]
– 2) Y[k] = DFT{y[n]}

this can be computed with a 2N-pt FFT
3) ⎧– 3)

[]
,0

0,][2

⎪⎩

⎪
⎨
⎧

<≤=
−

otherwise
NkkYekC

k
N

j

x

π

28
– the complexity of the N-pt DCT is that of the 2N-pt DFT

2D DCT
• the extension to 2D is trivial
• the procedure is the same

[] [] [] []
43421434214342143421

ptNN

x

ptNN

DFT

ptNNptNN

kkCkkYnnynnx
−×−×−×−×

↔↔↔
21212121

21

22

21

 2D

22

2121 ,,,,

• with
pppp 21212121

[] [] []2112121 ,12,, nnNxnnxnny −−+=

• and

[] [] []
[] []2211221

2112121

12,1212,
,,,

nNnNxnNnx
y

−−−−+−−+

and

[] 0
0

,,],[
22

11
21

22

21

2
2

1
1⎪

⎨
⎧

<≤
<≤

=
−−

Nk
Nk

kkYeekkC
k

N
jk

N
j

x

ππ

29
,0

0],[
2221

⎪⎩

⎨ <≤
otherwise

Nkx

2D DCT
• the end result is the 2D DCT pair

[]⎪
⎧ <≤⎞

⎜⎜
⎛

+
⎞

⎜⎜
⎛

+∑∑
− − Nk

nknknnx
N N 0

)12()12(4 11
1 11 2 ππ

[] []

[] []⎪
⎧ <≤⎞

⎜⎜
⎛

+
⎞

⎜⎜
⎛

+

⎪⎩

⎪
⎨ <≤⎠

⎜⎜
⎝

+
⎠

⎜⎜
⎝

+=

∑∑

∑∑

− −

= =

Nn
nknkkkCkwkw

otherwise
Nk

nk
N

nk
N

nnxkkC

N N

n nx

0
)12(cos)12(cos][][1

0
0

,)12(
2

cos)12(
2

cos,4,

11
1 1

22
22

2
11

10 0
21

21

1 2

1 2

ππ

with

[] []
⎪⎩

⎪
⎨ <≤⎠

⎜⎜
⎝

+
⎠

⎜⎜
⎝

+= ∑∑
= =

otherwise
Nn

nk
N

nk
N

kkCkwkw
NNnnx k k

x

0
0

)12(
2

cos)12(
2

cos,][][,
22

22
2

11
10 0

212211
2121 1 2

with

[] []
⎪⎩

⎪
⎨
⎧

<≤
=

=
⎪⎩

⎪
⎨
⎧

<≤
=

=
22

2
22

11

1
11 1,1

0,2
1

 ,
1,1

0,2
1

Nk
kkw

Nk
kkw

• it is possible to show that the 2DCT can be computed
with the row-column decomposition (homework)

⎩⎩

30

p ()

2D-DCT
• 1) create

intermediate
sequence by

n2n2

sequence by
computing
1D-DCT of

1D-DCT

rows

• 2) compute

k1n1

],[21 nkf],[21 nnx

2) compute
1D-DCT of
columns

n2
k2

1D-DCT

k1
k1

1D DCT

31

1

],[21 nkf],[21 kkC x

32

