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Abstract—We study the dynamic service migration problem in
mobile edge-clouds that host cloud-based services at the network
edge. This offers the benefits of reduction in network overhead
and latency but requires service migrations as user locations
change over time. It is challenging to make these decisions in an
optimal manner because of the uncertainty in node mobility as
well as possible non-linearity of the migration and transmission
costs. In this paper, we formulate a sequential decision making
problem for service migration using the framework of Markov
Decision Process (MDP). Our formulation captures general
cost models and provides a mathematical framework to design
optimal service migration policies. In order to overcome the
complexity associated with computing the optimal policy, we
approximate the underlying state space by the distance between
the user and service locations. We show that the resulting MDP
is exact for uniform one-dimensional mobility while it provides a
close approximation for uniform two-dimensional mobility with
a constant additive error term. We also propose a new algorithm
and a numerical technique for computing the optimal solution
which is significantly faster in computation than traditional
methods based on value or policy iteration. We illustrate the
effectiveness of our approach by simulation using real-world
mobility traces of taxis in San Francisco.

Index Terms—Cloud technologies, edge computing, Markov
decision process (MDP), mobility, optimization, wireless networks

I. INTRODUCTION

Mobile applications that utilize cloud computing technolo-
gies have become increasingly popular over the recent years,
with examples including data streaming, real-time video pro-
cessing, etc. Such applications generally consist of a front-
end component running on the mobile device and a back-end
component running on the cloud [1], [2], where the cloud
provides additional data processing and computational capa-
bilities. With this architecture, it is possible to run complicated
applications on handheld devices that have limited processing
power. However, it also introduces new challenges to com-
munication networks due to increased network overhead. The
concept of mobile edge-cloud (MEC) has recently emerged as
a promising technique to address these challenges. The core
idea of MEC is to move computation closer to users, where
small servers or data-centers that can host cloud applications
are distributed across the network and connected directly to
entities (such as cellular basestations) at the network edge, as
shown in Fig. 1. This idea received notable commercial interest
recently [3], and is expected to develop rapidly with the growth
of new mobile applications and more advanced smartphones.
MECs are also more robust than traditional centralized cloud
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Figure 1. Application scenario of mobile edge-clouds (MECs).

computing systems [4], because they are distributed and are
thus less impacted by failures at a centralized point. The
idea of distributing cloud servers at the network edge is also
known as cloudlets [4], edge computing [5], fog computing
[6], follow me cloud [7], etc. In all these techniques, each
server is responsible for a small geographical area, although
some servers may not be directly connected to the basestation.
In this paper, we focus on the case where MECs are colocated
with the basestation, while noting that our proposed solution
can be easily extended to the more general scenario.

One of the new challenges that MEC brings in is dynamic
service placement/migration. As a user moves across different
geographical areas, should its service be migrated out of the
original MEC that hosts the service? If so, where should it be
migrated? There is a tradeoff between the service migration
cost and the transmission cost (such as communication delay
and network overhead) between the user and the MEC. It is
challenging to find the optimal decision also because of the
uncertainty in user mobility as well as possible non-linearity
of the migration and transmission costs.

Most existing work on service migration focuses on tradi-
tional cloud environments without explicitly considering the
impact of user mobility. However, user mobility becomes a
key factor in MECs. The performance of MECs with the
presence of user mobility is studied in [8], but decisions on
whether and where to migrate the service is not considered. A
preliminary work on mobility-driven service migration based
on Markov Decision Processes (MDPs) is given in [9], which
mainly considers one-dimensional (1-D) mobility patterns
with a specifically defined cost function. Standard solution
procedures are used to solve this MDP, which can be time-
consuming especially when the MDP has a large number of
states. Due to real-time dynamics, the cost functions and tran-
sition probabilities of the MDP may change rapidly over time,
thus it is desirable to solve the MDP in an effective manner.
With this motivation, a more effective solution to the 1-D
mobility case was proposed in [10], where the transmission
and migration costs are assumed to be constants whenever
transmission/migration occurs. To the best of our knowledge,© 2015 IFIP



two-dimensional (2-D) mobility has not been considered in the
literature, which is a much more realistic case compared to
1-D mobility. The service migration problem is also different
from handover policies in cellular networks, because users can
connect to MECs that are located at remote basestations (see
[11] for more discussions).

In this paper, we use the MDP framework to study service
migration in MECs. We provide novel contributions compared
to [9] and [10], by considering general cost models, 2-D user
mobility, and application to real-world traces. The details are
summarized as follows.

1) Our formulation captures general cost models and pro-
vides a mathematical framework to design optimal service
migration policies. We note that the resulting problem be-
comes difficult to solve due to the large state space. In order
to overcome this challenge, we propose an approximation
of the underlying state space by defining the states as the
distance between the user and the service locations1. This
approximation becomes exact for uniform 1-D mobility2. We
prove several structural properties of the distance-based MDP,
which includes a closed-form solution to the discounted sum
cost. We leverage these properties to develop an algorithm for
computing the optimal policy, which reduces the complexity
from O(N3) (by policy iteration [12, Section 6]) to O(N2),
where the number of states in the distance-based MDP is
N + 1.

2) We show how to use the distance-based MDP to ap-
proximate the solution for 2-D mobility models, which allows
us to efficiently compute a service migration policy for 2-D
mobility. For uniform 2-D mobility, the approximation error
is bounded by a constant. Simulation results comparing our
approximation solution to the optimal solution (where the
optimal solution is obtained from a 2-D MDP) suggest that
it performs very close to optimal, and the proposed approxi-
mation approach obtains the solution significantly faster.

3) We demonstrate how to apply our algorithms in a
practical scenario driven by real mobility traces of taxis in
San Francisco which consist of multiple users. We compare
the proposed policy with several baseline strategies that in-
clude myopic, never-migrate, and always-migrate policies. It
is shown that the proposed approach offers significant gains
over those baseline approaches.

II. PROBLEM FORMULATION

Consider a mobile user that accesses a cloud-based service
hosted on the MECs. The set of possible locations is given
by L, where L is assumed to be finite (but arbitrarily large).
We consider a time-slotted model where the user’s location
remains fixed for the duration of one slot and changes from one
slot to the next according to a Markovian mobility model. The
time-slotted model can be regarded as a sampled version of
a continuous-time model, and the sampling can be performed
either at equal intervals over time or occur right after a cellular
handover instance. In addition, we assume that each location

1Throughout this paper, we mean by user location the location of the
basestation that the user is associated to.

2The 1-D mobility is an important practical scenario often encountered in
transportation networks, such as vehicles moving along a road.
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Figure 2. Timing of the proposed service migration mechanism.

l ∈ L is associated with an MEC that can host the service for
the user. The locations in L are represented as 2-D vectors
and there exists a distance metric ‖l1− l2‖ that can be used to
calculate the distance between locations l1 and l2. Note that the
distance metric may not be Euclidean distance. An example of
this model is a cellular network in which the user’s location is
taken as the location of its current basestation and the MECs
are co-located with the basestations. As shown in Section IV,
these locations can be represented as 2-D vectors (i, j) with
respect to a reference location (represented by (0, 0)) and the
distance between any two locations can be calculated in terms
of the number of hops to reach from one cell to another cell.
We denote the user and service locations at timeslot t as u(t)
and h(t) respectively.

Remark: Although we formulate the problem for the case
of a single user accessing a single service, our solution can be
applied to manage services for multiple users, as long as each
user accesses a separate copy of the service. We will illustrate
such an application in Section V.

The main notations in this paper are summarized in [11].

A. Control Decisions and Costs

At the beginning of each slot, the MEC controller can
choose from one of the following control options:

1) Migrate the service from location h(t) to some other
location h′(t) ∈ L. This incurs a cost cm(x) that is
assumed to be a non-decreasing function of x, where
x is the distance between h(t) and h′(t), i.e., x =
‖h(t) − h′(t)‖. Once the migration is completed, the
system operates under state (u(t), h′(t)). We assume that
the time to perform migration is negligible compared to
the time-scale of node mobility (as shown in Fig. 2).

2) Do not migrate the service. In this case, we have h′(t) =
h(t) and the migration cost is cm(0) = 0.

In addition to the migration cost, there is a transmission cost
incurred by the user for connecting to the currently active ser-
vice instance. The transmission cost is related to the distance
between the service and the user after possible migration, and
it is defined as a general non-decreasing function cd(x), where
x = ‖u(t)− h′(t)‖. We set cd(0) = 0.

B. Performance Objective

Let us denote the overall system state at the beginning
of each timeslot (before possible migration) by s(t) =
(u(t), h(t)). The state s(t) is named as the initial state of
slot t. Consider any policy π that makes control decisions
based on the state s(t) of the system, and we use aπ(s(t))
to represent the control action taken when the system is in
state s(t). This action causes the system to transition to a new



intermediate state s′(t) = (u(t), h′(t)) = aπ(s(t)). We also
use Caπ

(s(t)) to denote the sum of migration and transmission
costs incurred by a control aπ(s(t)) in slot t, and we have
Caπ

(s(t)) = cm(‖h(t)−h′(t)‖)+cd(‖u(t)−h′(t)‖). Starting
from any initial state s(0) = s0, the long-term expected
discounted sum cost incurred by policy π is given by

Vπ(s0) = lim
t→∞E

{
t∑

τ=0

γτCaπ
(s(τ))

∣∣∣∣∣s(0) = s0

}
(1)

where 0 < γ < 1 is a discount factor.
Our objective is to design a control policy that minimizes

the long-term expected discounted sum total cost starting from
any initial state, i.e.,

V ∗(s0) = min
π

Vπ(s0) ∀s0. (2)

This problem falls within the class of MDPs with infinite
horizon discounted cost. It is well known that the optimal
solution is given by a stationary policy and can be obtained
as the unique solution to the Bellman’s equation:

V ∗(s0) = min
a

{
Ca(s0) + γ

∑
s1∈L×L

Pa(s0),s1V
∗(s1)

}
(3)

where Pa(s0),s1 denotes the probability of transitioning from
state s′(0) = s′0 = a(s0) to s(1) = s1. Note that the
intermediate state s′(t) has no randomness when s(t) and a(·)
are given, thus we only consider the transition probability from
s′(t) to the next state s(t+1) in (3). Also note that we always
have h(t+ 1) = h′(t).

C. Characteristics of Optimal Policy
We next characterize some structural properties of the

optimal solution. The following lemma states that it is not
optimal to migrate the service to a location that is farther
away from the user, as one would intuitively expect.

Lemma 1. Let a∗(s) = (u, h′) denote the optimal action at
any state s = (u, h). Then, we have ‖u− h′‖ ≤ ‖u− h‖. (If
the optimal action is not unique, then there exists at least one
such optimal action.)

Corollary 1. If cm(x) and cd(x) are both constants (possibly
of different values) for x > 0, and cm(0) < cm(x) and
cd(0) < cd(x) for x > 0, then migrating to locations other
than the current location of the mobile user is not optimal.

See [11] for the proofs of Lemma 1 and Corollary 1.

D. Simplifying the Search Space
Lemma 1 simplifies the search space for the optimal policy

considerably. However, it is still very challenging to derive
the optimal control policy for the general model presented
above, particularly when the state space {s(t)} is large. One
possible approach to address this challenge is to re-define the
state space to represent only the distance between the user
and service locations d(t) = ‖u(t) − h(t)‖. The motivation
for this comes from the observation that the cost functions in
our model depend only on the distance. Note that in general,
the optimal control actions can be different for two states s0
and s1 that have the same user-service distance. However,
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Figure 3. An example of distance-based MDP with the distances {d(t)}
(before possible migration) as states. In this example, migration is only
performed at state N , and only the possible action of a(N) = 1 is shown
for compactness. The solid lines denote state transitions without migration.

it is reasonable to use the distance as an approximation of
the state space for many practical scenarios of interest, and
this simplification allows us to formulate a far more tractable
MDP. We discuss the distance-based MDP in the next section,
and show how the results on the distance-based MDP can be
applied to 2-D mobility models and real-world mobility traces
in Sections IV and V.

In the remainder of this paper, where there is no ambiguity,
we reuse the notations P , Ca(·), V (·), and a(·) to respec-
tively represent transition probabilities, one-timeslot costs,
discounted sum costs, and actions of different MDPs.

III. OPTIMAL POLICY FOR DISTANCE-BASED MDP

In this section, we consider a distance-based3 MDP where
the states {d(t)} represent the distances between the user and
the service before possible migration (an example is shown in
Fig. 3), i.e., d(t) = ‖u(t) − h(t)‖. We define the parameter
N as an application-specific maximum allowed distance, and
we always perform migration when d(t) ≥ N . We set the
actions a(d(t)) = a(N) for d(t) > N , so that we only need to
focus on the states d(t) ∈ [0, N ]. After taking action a(d(t)),
the system operates in the intermediate state d′(t) = a(d(t)),
and the value of the next state d(t+ 1) follows the transition
probability Pd′(t),d(t+1) which is related to the mobility model
of the user. To simplify the solution, we restrict the transition
probabilities Pd′(t),d(t+1) according to the parameters p0, p,
and q as shown in Fig. 3. Such a restriction is sufficient when
the underlying mobility model is uniform 1-D random walk
where the user moves one step to the left or right with equal
probability r1 and stays in the same location with probability
1− 2r1, in which case we can set p = q = r1 and p0 = 2r1.
It is also sufficient to approximate the uniform 2-D random
walk model, as will be discussed in Section IV-B.

For an action of d′(t) = a(d(t)), the new service location
h′(t) is chosen such that ‖h(t) − h′(t)‖ = |d(t) − d′(t)| and
‖u(t) − h′(t)‖ = d′(t). This means that migration happens
along the shortest path that connects u(t) and h(t), and h′(t)
is on this shortest path (also note that d′(t) ≤ d(t) according
to Lemma 1). Such a migration is possible for the 1-D case
where u(t), h(t), and h′(t) are all scalar values. It is also
possible for the 2-D case if the distance metric is properly
defined (see Section IV-B for details). The one-timeslot cost
is then Ca(d(t)) = cm(|d(t)−d′(t)|)+cd(d

′(t)). We define the
cost functions cm(x) and cd(x) in a constant-plus-exponential

3We assume that the distance is quantized, as it will be the case with the
2-D model discussed in later sections.
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Figure 4. Example of exponential cost function cd(x).

form (shown in (4) and (5) below). Such a cost function can
have different shapes and are thus applicable to many realistic
scenarios. It also has nice properties allowing obtain a closed-
form solution to the discounted sum cost, based on which we
design an efficient algorithm for finding the optimal policy.

A. Constant-Plus-Exponential Cost Functions
The constant-plus-exponential cost functions are defined as

cm(x) =

{
0, if x = 0

βc + βlμ
x, if x > 0

(4)

cd(x) =

{
0, if x = 0

δc + δlθ
x, if x > 0

(5)

where βc, βl, δc, δl, μ, and θ are real-valued parameters. Note
that x = |d(t)− d′(t)| in cm(x), and x = d′(t) in cd(x). The
values of these parameters are selected such that cm(x) ≥
0, cd(x) ≥ 0, and both cm(x) and cd(x) are non-decreasing
in x for x ≥ 0. Explicitly, we have μ ≥ 0; βl ≤ 0 when
μ ≤ 1; βl ≥ 0 when μ ≥ 1; βc ≥ −βl; θ ≥ 0; δl ≤ 0
when θ ≤ 1; δl ≥ 0 when θ ≥ 1; and δc ≥ −δl. We set
cm(0) = cd(0) = 0 for convenience, because a non-zero cost
for x = 0 can be offset by the values of βc and δc, thus setting
cm(0) = cd(0) = 0 does not affect the optimal decision.

With this definition, the values of βc + βl and δc + δl can
be regarded as constant terms of the costs, at least such an
amount of cost is incurred when x > 0. The parameters μ
and θ specify the impact of the distance x to the costs, and
their values can be related to the network topology and routing
mechanism of the network. The parameters βl and δl further
adjust the costs proportionally.

An example of the cost function is shown in Fig. 4. This
exponential cost function can be used to approximate an
arbitrary cost function as discussed in [11].

B. Closed-Form Solution to the Discounted Sum Cost
1) Problem Formulation with Difference Equations: From

(1), we get the following balance equation on the discounted
sum cost for a given policy π:

Vπ(d(0)) = Caπ
(d(0)) + γ

aπ(d(0))+1∑
d(1)=aπ(d(0))−1

Paπ(d(0)),d(1)Vπ(d(1)).

(6)

In the following, we will omit the subscript π and write
d(0) as d for short.

Proposition 1. For a given policy π, let {nk : k ≥ 0} denote
the series of migration states (i.e. a(nk) �= nk) as specified by

policy π, where 0 ≤ nk ≤ N . The discounted sum cost V (d)
for policy π can be expressed as

V (d)=Akm
d
1+Bkm

d
2+D+

{
H · θd if 1− φ1

θ − φ2θ �= 0

Hd · θd if 1− φ1

θ − φ2θ = 0
(7)

where the coefficients m1, m2, D, and H are expressed as
follows:

m1 =
1 +

√
1− 4φ1φ2

2φ2
,m2 =

1−√
1− 4φ1φ2

2φ2
(8)

D =
φ3

1− φ1 − φ2
(9)

H =

⎧⎨
⎩

φ4

1−φ1
θ −φ2θ

if 1− φ1

θ − φ2θ �= 0

φ4
φ1
θ −φ2θ

if 1− φ1

θ − φ2θ = 0
(10)

where we define φ1 � γq
1−γ(1−p−q) , φ2 � γp

1−γ(1−p−q) , φ3 �
δc

1−γ(1−p−q) , and φ4 � δl
1−γ(1−p−q) .

The constants Ak and Bk are related to the interval [0, n0]
(k = 0) or [nk−1, nk] (k > 0).

Proof. The proof is based on solving a difference equation
according to (6), see [11] for details.

We also note that for two different states d1 and d2, if the
policy π has actions aπ(d1) = d2 and aπ(d2) = d2, then

Vπ(d1) = cm (|d1 − d2|) + Vπ(d2). (11)

2) Finding the Coefficients: The coefficients Ak and Bk are
unknowns in the solution (7) that need to be evaluated using
additional constraints. These coefficients may be different for
states within different intervals of [nk−1, nk]. After these
coefficients are determined, (7) holds for all d ∈ [nk−1, nk].

We assume 1− φ1

θ − φ2θ �= 0 and 1− φ2

θ − φ1θ �= 0 from
now on, the other cases can be derived in a similar way.

Coefficients for 0 ≤ d ≤ n0: One constraint is from the
balance equation (6) for d = 0, which is

V (0) = γp0V (1) + γ(1− p0)V (0). (12)

By substituting (7) into (12), we get

A0(1− φ0m1) +B0(1− φ0m2)=D(φ0 − 1) +H(φ0θ − 1)
(13)

where φ0 � γp0

1−γ(1−p0)
. Another constraint is obtained by

substituting (7) into (11), which gives

A0

(
mn0

1 −m
a(n0)
1

)
+B0

(
mn0

2 −m
a(n0)
2

)
= βc + βlμ

n0−a(n0) −H
(
θn0 − θa(n0)

)
(14)

The values of A0 and B0 can be solved from (13) and (14).

Coefficients for nk−1 ≤ d ≤ nk: Assume that we have
found V (d) for all d ≤ nk−1. By letting d = nk−1 in (7), we
have the first constraint given by

Akm
nk−1

1 +Bkm
nk−1

2 = V (nk−1)−D −H · θnk−1 . (15)

For the second constraint, we consider two cases. If a(nk) ≤



nk−1, then

Akm
nk
1 +Bkm

nk
2

= βc + βlμ
nk−a(nk) + V (a(nk))−D −H · θnk . (16)

If nk−1 < a(nk) ≤ nk − 1, then

Ak

(
mnk

1 −m
a(nk)
1

)
+Bk

(
mnk

2 −m
a(nk)
2

)
= βc + βlμ

nk−a(nk) −H
(
θnk − θa(nk)

)
. (17)

The values of Ak and Bk can be solved from (15) together
with either (16) or (17).

3) Solution is in Closed-Form: We note that A0 and B0

can be expressed in closed-form, and Ak and Bk for all k
can also be expressed in closed-form by substituting (7) into
(15) and (16) where necessary. Therefore, (7) is a closed-form
solution for all d ∈ [0, N ]. Numerically, we can find V (d) for
all d ∈ [0, N ] in O(N) time.

C. Algorithm for Finding the Optimal Policy
Note that standard approaches of solving for the optimal

policy of an MDP include value iteration and policy iteration
[12, Section 6]. Value iteration finds the optimal policy from
the Bellman’s equation (3) iteratively, which may require a
large number of iterations before converging to the optimal
result. Policy iteration generally requires a smaller number of
iterations, because, in each iteration, it finds the exact values
of the discounted sum cost V (d) for the policy resulting from
the previous iteration, and performs the iteration based on the
exact V (d) values. However, in general, the exact V (d) values
are found by solving a system of linear equations, which has
a complexity of O(N3) when using Gaussian-elimination.

We propose a modified policy-iteration approach for finding
the optimal policy, which uses the above result instead of
Gaussian-elimination to compute V (d), and also only checks
for migrating to lower states or not migrating (according to
Lemma 1). The algorithm is shown in Algorithm 1, where
Lines 4–7 find the values of nk, Lines 8–17 find the dis-
counted sum cost values, and Lines 18–20 update the optimal
policy. The overall complexity for each iteration is O

(
N2

)
in Algorithm 1, which reduces complexity because standard4

policy iteration has complexity O(N3), and the standard value
iteration approach does not compute the exact value function
in each iteration and generally has long convergence time.

IV. APPROXIMATE SOLUTION FOR 2-D MOBILITY MODEL

In this section, we show that the distance-based MDP can
be used to find a near-optimal service migration policy, where
the user conforms to a uniform 2-D random walk mobility
model on infinite space. This mobility model can be used
to approximate real-world mobility traces (see Section V).
We consider a hexagon cell structure, but the approximation
procedure can also be used for other 2-D mobility models
(such as Manhattan grid) with some parameter changes. The
user is assumed to transition to one of its six neighboring cells
at the beginning of each timeslot with probability r, and stay
in the same cell with probability 1− 6r.

4We use the term “standard” here to distinguish with the modified policy
iteration mechanism proposed in Algorithm 1.

Algorithm 1 Modified policy-iteration algorithm based on

difference equations

1: Initialize a(d) = 0 for all d = 0, 1, 2, ..., N
2: Find constants φ0, φ1, φ2, φ3, φ4, m1, m2, D, and H
3: repeat
4: k ← 0
5: for d = 1...N do
6: if a(d) �= d then
7: nk ← d, k ← k + 1
8: for all nk do
9: if k = 0 then

10: Solve for A0 and B0 from (13) and (14)

11: Find V (d) with 0 ≤ d ≤ nk from (7) with A0 and

B0 found above

12: else if k > 0 then
13: if a(nk) ≤ nk−1 then
14: Solve for Ak and Bk from (15) and (16)

15: else
16: Solve for Ak and Bk from (15) and (17)

17: Find V (d) with nk−1 < d ≤ nk from (7) with Ak

and Bk found above

18: for d = 1...N do
19: aprev(d) = a(d)

20: a(d) = argmina≤d

{
Ca(d) + γ

∑a+1
j=a−1 PajV (j)

}
21: until aprev(d) = a(d) for all d
22: return a(d) for all d

A. Offset-Based MDP

Define the offset of the user from the service as a 2-D vector
e(t) = u(t) − h(t) (recall that u(t) and h(t) are also 2-D
vectors). Due to the space-homogeneity of the mobility model,
it is sufficient to model the state of the MDP by e(t) rather than
s(t). The distance metric ‖l1− l2‖ is defined as the minimum
number of hops that are needed to reach from cell l1 to cell
l2 on the hexagon model.

We name the states with the same value of ‖e(t)‖ as a ring,
and express the states {e(t)} with polar indexes (i, j), where
the first index i refers to the ring index, and the second index j
refers to each of the states within the ring, as shown in Fig. 5.
For e(t) = (i, j), we have ‖e(t)‖ = i. If u(t) = h(t) (i.e., the
actual user and service locations (cells) are the same), then we
have e(t) = (0, 0) and ‖e(t)‖ = 0.

Similarly as in the distance-based MDP, we assume in the
2-D MDP that we always migrate when ‖e(t)‖ ≥ N , where
N is a design parameter, and we only consider the state
space {e(t)} with ‖e(t)‖ ≤ N . The system operates in the
intermediate state e′(t) = u(t) − h′(t) = a(e(t)) after taking
action a(e(t)). The next state e(t + 1) is determined proba-
bilistically according to the transition probability Pe′(t),e(t+1).
We have Pe′(t),e(t+1) = 1 − 6r when e(t + 1) = e′(t);
Pe′(t),e(t+1) = r when e(t + 1) is a neighbor of e′(t);
and Pe′(t),e(t+1) = 0 otherwise. Note that we always have
e(t) − e′(t) = h′(t) − h(t), so the one-timeslot cost is
Ca(e(t)) = cm(‖e(t)− e′(t)‖) + cd(‖e′(t)‖).

We note that, even after simplification with the offset model,
the 2-D offset-based MDP has a significantly larger number of
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Figure 5. Example of 2-D offset model on hexagon cells, where N = 3.

states compared with the distance-based MDP, because for a
distance-based model with N states (excluding state zero), the
2-D offset model has M = 3N2 + 3N states (excluding state
(0, 0)). Therefore, we use the distance-based MDP proposed
in Section III to approximate the 2-D offset-based MDP,
which significantly reduces the computational time as shown
in Section IV-D.

B. Approximation by Distance-based MDP
In the approximation, the parameters of the distance-based

MDP are chosen as p0 = 6r, p = 2.5r, and q = 1.5r. The intu-
ition of the parameter choice is that, at state (i′0, j

′
0) = (0, 0) in

the 2-D MDP, the aggregate probability of transitioning to any
state in ring i1 = 1 is 6r, so we set p0 = 6r; at any other state
(i′0, j

′
0) �= (0, 0), the aggregate probability of transitioning to

any state in the higher ring i1 = i′0 +1 is either 2r or 3r, and
the aggregate probability of transitioning to any state in the
lower ring i1 = i′0 − 1 is either r or 2r, so we set p and q to
the median value of these transition probabilities.

To find the optimal policy for the 2-D MDP, we first
find the optimal policy for the distance-based MDP with the
parameters defined above. Then, we map the optimal policy
from the distance-based MDP to a policy for the 2-D MDP. To
explain this mapping, we note that, in the 2-D hexagon offset
model, there always exists at least one shortest path from any
state (i, j) to ring i′, the length of this shortest path is |i− i′|,
and each ring between i and i′ is traversed once on the shortest
path. For example, one shortest path from state (3, 2) to ring
i′ = 1 is (3, 2), (2, 1), (1, 0). When the system is in state
(i, j) and the optimal action from the distance-based MDP
is a∗(i) = i′, we perform migration on the shortest path from
(i, j) to ring i′. If there exist multiple shortest paths, one path
is arbitrarily chosen. For example, if a(3) = 2 in the distance-
based MDP, then either a(3, 2) = (2, 1) or a(3, 2) = (2, 2)
in the 2-D MDP. With this mapping, the one-timeslot cost
Ca(d(t)) for the distance-based MDP and the one-timeslot
cost Ca(e(t)) for the 2-D MDP are the same.

C. Bound on Approximation Error
Error in the approximation arises because the transition

probabilities in the distance-based MDP are not exactly the
same as that in the 2-D MDP (there is at most a difference
of 0.5r). In this subsection, we study the difference in the
discounted sum costs when using the policy obtained from
the distance-based MDP and the true optimal policy for the
2-D MDP. The result is summarized as Proposition 2.

Proposition 2. Let Vdist(e) denote the discounted sum cost
when using the policy from the distance-based MDP, and let
V ∗(e) denote the discounted sum cost when using true optimal
policy of the 2-D MDP, then we have Vdist(e)− V ∗(e) ≤ γrk

1−γ

for all e, where k � maxx {cm (x+ 2)− cm (x)}.

Proof. (Outline) The proof is completed in three steps. First,
we modify the states of the 2-D MDP in such a way that the
aggregate transition probability from any state (i′0, j

′
0) �= (0, 0)

to ring i1 = i′0 + 1 (correspondingly, i1 = i′0 − 1) is 2.5r
(correspondingly, 1.5r). We assume that we use a given policy
on both the original and modified 2-D MDPs, and show a
bound on the difference in the discounted sum costs for these
two MDPs. In the second step, we show that the modified
2-D MDP is equivalent to the distance-based MDP. This can be
intuitively explained by the reason that the modified 2-D MDP
has the same transition probabilities as the distance-based
MDP when only considering the ring index i, and also, the
one-timeslot cost Ca(e(t)) only depends on ‖e(t) − a(e(t))‖
and ‖a(e(t))‖, both of which can be determined from the ring
indexes of e(t) and a(e(t)). The third step uses the fact that the
optimal policy for the distance-based MDP cannot bring higher
discounted sum cost for the distance-based MDP (and hence
the modified 2-D MDP) than any other policy. By utilizing the
error bound found in the first step twice, we prove the result.
For details of the proof, see [11].

The error bound is a constant value when the parameters
are given. It increases with γ. However, note that the absolute
value of the discounted sum cost also increases with γ, so the
relative error can remain low.

D. Numerical Evaluation

The error bound derived in Section IV-C is a worst-case up-
per bound of the error. In this subsection, we evaluate the per-
formance of the proposed approximation method numerically,
and focus on the average performance of the approximation.

We consider 2-D random walk mobility with randomly
chosen parameter r. The maximum user-service distance is
set as N = 10. The transmission cost function parameters
are selected as θ = 0.8, δc = 1, and δl = −1. With these
parameters, we have δc+δl = 0, which means that there is no
constant portion in the cost function. For the migration cost,
we choose μ = 0.8 and fix βc+βl = 1 to represent a constant
server processing cost for migration. The parameter βl ≤ 0
takes different values in the simulations, to represent different
sizes of data to be migrated.

The simulations are performed in MATLAB on a computer
with Intel Core i7-2600 CPU, 8GB memory, and 64-bit Win-
dows 7. We study the computation time (i.e., the time used to
run the algorithm) and the discounted sum cost of the proposed
approach that is based on approximating the original 2-D
MDP with the distance-based MDP. For the computation time
comparison, standard value and policy iteration approaches
[12, Section 6] are used to solve the original 2-D MDP. The
discounted sum cost from the proposed approach is compared
with the costs from alternative policies, including the true
optimal policy from standard policy iteration on the 2-D
model, the never-migrate policy which never migrates except
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Figure 6. Simulation result with 2-D random walk: (a) γ = 0.5, (b) γ = 0.9, (c) γ = 0.99.

when at states in the outer ring i = N , the always-migrate
policy which always migrates when the user and the service
are at different locations, and the myopic policy that chooses
actions to minimize the one-timeslot cost.

The simulations are run with 50 different random seeds, and
the overall results are shown in Fig. 6 with different values of
the discount factor γ. We can see that the proposed method
brings discounted sum costs that are very close to the optimum.
Meanwhile, the computation time when using the proposed
method is only about 0.1% of the computation time of standard
value and policy iteration approaches. For further discussion
on the simulation results, see [11].

V. APPLICATION TO REAL-WORLD SCENARIOS

In this section, we discuss how the aforementioned ap-
proaches can be applied to service migration in the real world,
where multiple users and services are involved.

A. Operating Procedure

In the real-world scenario, we assume that each user follows
a sample path of the 2-D hexagon mobility model. The pa-
rameter r is estimated from the sample paths of multiple users
(discussed in details in Section V-A2). The cost parameters βc,
βl, μ, δc, δl, and θ are selected based on the actual application
scenario, and their values vary with the background traffic load
of the network and MEC servers. By appropriately adjusting
the cost functions according to the load, the proposed approach
can be used for load balancing; we will demonstrate how to
achieve load balancing by a proper selection of cost parameters
in Section V-B. The discount factor γ is selected based on the
duration of services, and a larger γ is selected for a longer
service duration. Such a selection is because the discount
factor γ determines the amount of time to look ahead, if a
user only requires the service for a short time, then there is
no need to consider the cost for the long-term future.

1) Initial Service Placement: Upon initialization, the ser-
vice is placed onto the MEC that is connected to the same
basestation as the user is currently connected to. In other
words, when a service starts, the user and the service are in
the same location, i.e., state (0, 0) of the 2-D MDP. This is
due to the consideration that the initialization cost and the cost

of further operation can be minimized by initially placing the
service closest to the user.

2) Dynamic Service Migration: After the initial service
placement, the subsequent actions of possible service migra-
tion is performed according to the optimal policy found from
the mechanisms proposed earlier in this paper.

To facilitate the mapping between the real-world and the
MDP model, we define a timeslot-length T which is the same
for all MECs. The parameter T can be regarded as a protocol
parameter, and different MECs do not need to synchronize
on the timeslots. We also define a window length Tw > T ,
which specifies the amount of time to look back to estimate
the parameter r. We consider the case where the parameter
r is the same across the whole geographical area, which is
a reasonable assumption when different locations within the
geographical area under consideration have similarities (for
example, they all belong to an urban area). More sophisticated
cases can be studied in the future. The optimal policy is
computed by a MEC controller, and a policy update interval
Tu is defined.

The operating procedure is described as follows. Each MEC
obtains the identity of associated users of the cell connected
to the MEC, at the beginning of each timeslot with length
T . Based on this information, the MEC computes the number
of users that have left the cell and the total number of users
in the cell, and stores this information for each timeslot. At
interval Tu, the MEC controller sends a request to all MECs
to collect the current statistics. After receiving the request,
each MEC iMEC computes the empirical probability fiMEC

of
users moving outside of the cell, based on the statistics on
the departed and total users within the duration of Tw. These
empirical probabilities are sent together with other monitored
information (such as current network and server load) to the
controller. The controller then computes the average of the em-
pirical probabilities fiMEC

, denoted by f , and updates parameter
r = f/6. It also computes the transmission and migration cost
parameters based on the current system condition. Based on
these updated parameters, the controller computes the optimal
policy under the current system condition and sends the result
to the MECs.
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Figure 7. Simulation result with real-world traces: (a) average cost per user in each timeslot over a day, where Rt = Rp = 1.5; (b)–(e) average cost reduction
compared with alternative policies (error bars denote the standard deviation); (f) average cost.

B. Trace-Driven Simulation

We perform simulation with real-world mobility traces of
536 taxis in San Francisco, collected on the day of May 31,
2008 [13], [14]. A hexagon cell structure with 500 m cell
separation is assumed and each taxi is assumed to be connected
to the nearest basestation. The parameters for data collection
and policy update are set as T = Tu = 60 s, and Tw = 3600 s.
We choose N = 10, μ = θ = 0.8, and γ = 0.9.

1) Cost definition: It is assumed that the network load is
proportional to the number of taxis in operation, and we denote
the normalized total amount of transmission bandwidth re-
source (correspondingly, processing resource at MEC servers)
with a factor Rt (correspondingly, Rp). Then, we define a

quantity Gt (correspondingly, Gp) as Gt = 1
/(

1− mcur

Rtmmax

)
(correspondingly, Gp = 1

/(
1− mcur

Rpmmax

)
), where mcur de-

notes the number of taxis in operation at the time when
the optimal policy is being computed, and mmax denotes the
maximum number of taxis that may simultaneously operate at
any time instant in the considered dataset. The cost parameters
are then defined as βc = Gp + Gt, βl = −Gt, δc = Gt, and
δl = −Gt. With such a definition, we have βc + βl = Gp

and δc + δl = 0, which means that the constant part of the
migration cost is Gp (to represent the processing cost for
migration) and there is no constant part in the cost for data
transmission. We set βl = δl = Gt because this part of cost
can be regarded as related to data transmission in both cm(x)
and cd(x). The choice of Gt and Gp can serve for the purpose
of load balancing [15] and can also represent the delay of data
transmission (Gt) and processing (Gp).

2) Results: The average cost per user in each timeslot (i.e.,
the Ca(s(t)) values) is collected and shown in Fig. 7. Denote
the cost of the proposed method as C and the cost of the
method under comparison as C0, then the cost reduction is
defined as (C0 − C)/C0. The results show that the proposed
approach is beneficial with cost reductions ranging from 9%
to 54% compared with the never/always migrate or myopic
policy. The results also show that the costs fluctuate (due
to different system load) over the day, and they vary with
different amount of total available resources, which implies
that it is necessary to compute the optimal policy in real-time,
based on recent observations on the system condition.

VI. DISCUSSIONS

We have made some assumptions to make the problem theo-
retically tractable. In this section, we justify these assumptions
from a practical point of view.

Cost Functions: To ease our discussion, we have limited our
attention to transmission and migration costs in this paper. This
can be extended to include more sophisticated cost models.
For example, the transmission cost can be extended to include
the computational cost of hosting the service at an MEC, by
adding a constant value to the transmission cost expression.
As in Section V-B, the cost values can also be time-varying
and related to the background system load. Furthermore, the
cost definition can be practically regarded as the average cost
over all locations, which means that when seen from a single
location, the monotonicity of cost values with distances does
not need to apply. This makes the proposed approach less
restrictive in terms of practical applicability.



We also note that it is generally possible to formulate an
MDP with additional dimensions in cost modeling, such as
one that includes the state of the network, load at each specific
MEC hosting the service, state of the service to avoid service
interruption when in critical state, etc. However, this requires a
significantly larger state space compared to our formulation in
this paper, as we need to include those network/MEC/service
states in the state space of the MDP. There is a tradeoff
between the complexity of solving the problem and accuracy
of cost modeling. Such issues can be studied in the future.

Single/Multiple Users: As pointed out in Section II, al-
though we focused on a single user in our problem modeling,
practical cases involving multiple users running independent
services can be considered by setting cost functions related
to the background traffic generated by other users, as in
Section V-B. For more complicated cases such as multiple
users sharing the same service, or where the placement of
different services is strongly coupled and reflected in the cost
value, we can formulate the problem as an MDP with larger
state space. The details are left for future work where we
envision similar approximation techniques as in this paper can
be used to approximately solve the resulting MDP.

Transition Probability in MDP: In the theoretical modeling,
the transition probabilities in the MDP are assumed to be
known. In practice, these can be estimated from the cell
association history of users, as discussed in Section V-A.

Uniform Random Walk: The uniform random walk mobility
model is used as a modeling assumption, which not only
simplifies the theoretical analysis, but also makes the practical
implementation of the proposed method fairly simple in the
sense that only the empirical probability of users moving
outside of the cell needs to be recorded (see Section V-A2).
This model can capture the average mobility of a large number
of users. The simulation results in Section V-B confirm that
this model provides good performance, even though individual
users do not necessarily follow a uniform random walk.

MEC Controller: The MEC controller does not need to be
a separate cloud entity. Rather, it can be a service running at
one of the MECs. The additional overhead incurred by the
proposed approach is low, because it has low computational
complexity and the interactions between each MEC and the
MEC controller is infrequent (the interval is specified by Tu).

VII. CONCLUSIONS

In this paper, we have studied service migration in MECs.
The problem is formulated as an MDP, but its state space can
be arbitrarily large. To make the problem tractable, we have
reduced the general problem into an MDP that only considers
a meaningful parameter, namely the distance between the user
and the service. The distance-based MDP has several structural
properties that allow us to develop an efficient algorithm to
find its optimal policy. We have then shown that the distance-
based MDP is a good approximation to scenarios where the
users move in a 2-D space, which is confirmed by analytical
and numerical evaluations and also by simulations with real-
world traces of taxis in San Francisco.

For ease of presentation, in this paper we have assumed
that MECs are colocated with basestations. However, our

proposed approach is not restricted to such cases and can easily
incorporate scenarios where MECs are not colocated with
basestations as long as the costs are geographically dependent.

The results in this paper provide an efficient solution to
service migration in MECs. Further, we envision that the
approaches used in this paper can be extended to a range of
other problems that share similar properties. The highlights
of our approaches include: a closed-form solution to the
discounted sum cost of a particular class MDPs, which can be
used to simplify the procedure of finding the optimal policy;
a method to approximate an MDP (in a particular class) with
one that has smaller state space, where the approximation error
can be shown analytically; and a method to collect statistics
from the real-world to serve as parameters of the MDP.
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