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ABSTRACT

A roomprint is a quantifiable description of an acoustic environ-
ment which can be measured under controlled conditions and es-
timated from a monophonic recording made in that space. We here
identify the properties required of a roomprint in forensic audio ap-
plications and review the observable characteristics of a room that,
when extracted from recordings, could form the basis of a room-
print. Frequency-dependent reverberation time is investigated as a
promising characteristic and used in a room identification experi-
ment giving correct identification in 96% of trials.

Index Terms— roomprint, acoustic impulse response, speech,
forensic audio

1. INTRODUCTION

The field of forensic audio continues to grow in importance. Re-
searchers in this field have hitherto concentrated on analysing
speech recordings to identify the speaker (i.e. the “who”) or the
time it was made (i.e. the “when”). We now consider the task of
identifying the acoustic environment (i.e. the “where”).

It is well known that spaces sound different and effort has been
dedicated to understanding those properties of a soundfield which
lead to the differences in human perception (acoustic parameters),
and the architectural structures which cause them (geometric fea-
tures). Of course, a recording of speech will frequently pick up
background noise from interfering sound sources (environmental
sounds) which may be peculiar to the specific location. Thus, there
is a plethora of information for forensic analysis.

To formalise this analysis we propose the concept of a room-
print. In an analogy to fingerprints, we envisage collecting a
database of reference roomprints, equivalent to rolled fingerprints,
against which a similar description derived from a recording, equi-
valent to a latent fingerprint, can be compared. This comparison
will target two questions in particular:

1. Verification: If it is claimed that a recording was made in
a particular room, is there sufficient evidence to reject the
claim?

2. Identification: If it is known that a recording was made in
one of a number of rooms, can we determine which one is
most likely?

Question 2 has recently been considered for cataloging archive ma-
terial [1]. Using MFCC-based classification of signals convolved
with measured room impulse responses (RIRs), an equal error rate
(EER) of 15% was obtained, indicating that these features capture
some of the differences between the rooms. An analysis of the con-
fusion matrix using multidimensional scaling showed that the first
two dimensions of dissimilarity between the rooms were correlated
with the early decay time and the bass ratio. However it was also

observed that the rooms formed clusters according to the database
they originated from, which suggests differences in measurement
systems or technique may have caused some of the between-room
variability.

For our intended application in law enforcement we would like
to explicitly select the features of the roomprint based on quanti-
fiable characteristics of the room. Hence, the contribution of this
paper is three-fold. First we introduce the concept of a roomprint
as a quantifiable description of an acoustic environment. Second
we formulate a roomprint based on frequency-dependent reverbera-
tion time. Third we compare formulations based on alternative data
transformations and show that taking the logarithm of reverberation
time offers the best identification performance.

The remainder of this paper is organised as follows. In Sec. 2
we state the desired properties of a roomprint and consider the mer-
its of geometric, acoustic and environmental information. In Sec. 3
we develop third-octave reverberation time as the basis for room-
prints, present a room identification experiment and discuss the res-
ults. Finally, we draw conclusions in Sec. 4.

2. ROOMPRINTS

2.1. Requirements

A roomprint must exploit features of a room which allow it to be dis-
tinguished from other potentially similar rooms. A reference room-
print is obtained under ideal conditions with access to the room of
interest. Thus it can include any aspect of the room which can be
explicitly measured. On the other hand, a latent roomprint must
be derived from an uncontrolled, usually single channel, recording
of speech. Thus in classification, some measured features of a ref-
erence roomprint need to be inferred for a latent roomprint. The
accuracy of this inference will dictate the utility of any employed
feature.

A roomprint should ideally be invariant to the location of the
talker and microphone in the room. Given that some variation is
practically inevitable and the locations of talker and microphone
are not necessarily known, the extent of variation expected should
be quantified in the reference roomprint.

A roomprint should ideally be invariant with time. This may
be harder to achieve than initially expected since many aspects of
rooms are not time-invariant, such as the arrangement of furniture
and the states of doors and windows. Moreover, the time of day will
affect the types and level of environmental sound that are present in
a recording.

2.2. Geometric features

The size and shape of a room are ideal features for inclusion in
a roomprint because they are time-invariant and unrelated to the
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talker or microphone position. They are also difficult features to
infer from a single channel recording. Geometry inference has re-
ceived a lot of attention recently but current methods typically re-
quire multiple microphones [2]. There is however some evidence to
suggest that useful information about the volume of the space can
be extracted from single channel impulse responses [3] and from re-
verberant speech [4]. Also, by making assumptions about the shape
of the room, individual dimensions of a room can be inferred from
a limited number of reflection time of arrivals [5]. Thus, system
identification or reflection time of arrival estimation would enable
the latent roomprint to include at least partial geometric features.

2.3. Room acoustics parameters

Room acoustics parameters are determined by the room geometry
and the surface materials so are promising features . Within-room
and between-room variations for five relatively uncorrelated para-
meters were reported in [6]. Early decay time (EDT) and reverber-
ation time (T60) are the most promising as they do not require a
special microphone arrangement nor do they depend on the source
directivity and orientation. The within-room standard deviation for
T60 was found to be approximately half that of EDT in absolute
terms. The extraction of T60 from reverberant speech is described
in [7, 8]. However, the overall reverberation time alone is unlikely
to be sufficient to distinguish between rooms. We therefore invest-
igate frequency-dependent reverberation time. This is supported by
the observation in [1] that the bass ratio (ratio of low and high fre-
quency reverberation times) was a source of dissimilarity in their
confusion matrix.

2.4. Environmental sounds

Environmental sounds (e.g. fans, building services) are not directly
related to the properties of the room itself and often vary over time.
Nevertheless, their presence in or absence from a speech recording
could be used to verify a roomprint, especially if the date and time
of the recording are known.

3. T60-BASED ROOM IDENTIFICATION

To demonstrate the concept of roomprints, we next formulate the
problem and illustrate roomprinting using a frequency dependent
measure of reverberation time under a number of alternative trans-
formations.

3.1. Problem formulation

The room impulse response (RIR) for room i measured at source-
receiver configuration j is given by hi,j(t). T60 is the time taken
for the acoustic energy in a room to decay by 60 dB after the source
is turned off and it can be estimated from the slope of the normal-
ised energy decay curve, which is found by reverse integrating the
squared RIR [9].

According to Sabine’s equation [10], T60 varies directly with
the volume of the room, V , and inversely with the surface area of
the room, S, and average absorption coefficient, α. Whilst V and
S are determined by the geometry, α is determined by the surface
material properties and is a function of frequency so it is common
to calculate T60 separately within octave or 1/3-octave bands. We
define ψi,j,k as the reverberation time in the 1/3-octave frequency
band k of room i, measured at source-receiver configuration j.

A single RIR measurement yields the reverberation time in each
of K bands

ψi,j = [ψi,j,1, . . . , ψi,j,K ]T . (1)

Combining the RIR measurements for J configurations of source-
microphone position gives a K × J matrix

ψi =
[
ψi,1, . . . ,ψi,J

]
(2)

and combining measurements across I rooms gives anK×IJ mat-
rix

ψ = [ψ1, . . . ,ψI ] . (3)

From a statistical point of view, each row of ψi represents a
variable and each column an observation. Thus we can represent
the observed values for a room using aK-dimensional multi-variate
Gaussian distribution with mean µi = [µi,1, ..., µi,K ]T and diag-
onal covariance matrix Σi = diag

(
σ2
i,1, ..., σ

2
i,K

)
.

Assuming that the reverberation times in different frequency
bands are uncorrelated, the probability that a vector of 1/3-octave
band reverberation times ψi′,j′ observed at an unknown location j′

in an unknown room i′ was observed in a room with mean µi and
covariance Σi is given by

p(ψi′,j′ |µi,Σi) =

K∏
k=1

p(ψi′,j′(k)|µi(k), σ
2
i,k) (4)

=

K∏
k=1

1

σi,k

√
2π
e

(
−
ψ
i′,j′ (k)−µi(k)

2σ2
i,k

)
. (5)

For the closed-set room identification task considered here, the
room, i, which maximises p(ψi′,j′ |µi,Σi) is chosen.

In (5) it is assumed that the variables used for room identifica-
tion are the 1/3-octave band reverberation times. However, these are
not uncorrelated and may not follow a normal distribution. There-
fore, we also consider transforming the data to some other repres-
entation,ψ′, before fitting the statistical model. Six transformations
are considered.

ψ′ = ψ (6)
ψ′ = ln(ψ) (7)
ψ′ = KLT (ψ) (8)
ψ′ = KLT (ln(ψ)) (9)
ψ′ = DCT (ψ) (10)
ψ′ = DCT (ln(ψ)) (11)

where KLT (·) denotes the Karhunen–Loève (KL) transform and
DCT (·) denotes the Discrete Fourier Transform (DCT).

Equation (6) is a direct mapping while (7) potentially gives a
more even distribution by spreading out low values and compress-
ing high ones.

The values of ψi,j are correlated (due to the smoothly varying
nature of surface material absorption) so the assumption of inde-
pendence in (5) is not valid. The KL transform used in (8) and
(9) expresses a matrix as the coefficients of a set of basis-functions
which are calculated such that the transformed coefficients are un-
correlated. As a result the variance in the data is compressed into
the lower dimensions of the transformed coefficients.
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Figure 1: Distribution of T60 for each room in ascending order of
mean T60.

The KL transform is data-dependent such that the transformed
coefficients used in a roomprint depend on which other roomprints
are in the database. The DCT used in (10) and (11) expresses a mat-
rix as the coefficients of data-independent orthogonal basis func-
tions. This avoids the problem with the KLT but is sub-optimal in
removing correlation between the variables.

3.2. Experiment

The RIRs for a total of 22 rooms, with volumes varying from
29 m3to 9500 m3, were sourced from a combination of publicly
available data and measurements made by the authors. The distri-
bution of T60 for each room is shown in Fig. 1. Room labels are
prefixed to indicate their attribution: BGU [11], QMUL [12], UoY
[13]. Rooms prefixed IC were measured specifically for this study.

For each room 22 RIRs were selected, downsampled, where
necessary, to 8 kHz and filtered into 14 1/3-octave bands with centre
frequencies in the range 160 Hz to 3.15 kHz. From these ψi was
estimated using the method from [14], which is more robust to noisy
measurements than [9].

The dataset of 484 observations were transformed according to
each of (6)-(11) to give six alternative representations. For each
representation, a 14-dimensional Gaussian distributions was estim-
ated for each room. A leave-one-out cross-validation procedure
was used where, on each iteration, a single observation was omitted
from the dataset used to train the models and assigned a (predicted)
room label according to the maximum likelihood criterion. This
was repeated for each observation in turn. A confusion matrix was
compiled by counting the number of observations from each room
(out of 22) that were assigned each of the possible labels. As a
baseline comparison, the same cross-validation classification pro-
cedure was also applied to the overall reverberation time, T 60, as a
one-dimensional feature.

Figure 2: Confusion matrix for room identification experiment us-
ing (a) T60 and (b) ln(ψ) as features.

3.3. Results and Discussion

The confusion matrix for room identification based solely on T60

is shown in Fig. 2(a). The overall error rate is 32.6%. Most of the
confusions are between rooms with similar mean T60, with errors
arising from mis-classification of rooms with similar T60 and the
highest score in each room lies on the diagonal in all but 6 cases.

Using frequency-dependent reverberation time-based features
the error rates were ln(ψ): 3.9%, ψ: 4.1%, KLT (ψ): 5.4%,
KLT (ln(ψ)): 5.5%, DCT (ln(ψ)): 6.6% and DCT (ψ): 7.6%.
Fig. 2(b) shows the confusion matrix using the best of these, ln(ψ).
The remaining identification errors are mostly caused by confusions
between two pairs of rooms B_34/003 with B_34/103 and B_26/5
with B_26/6.
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Figure 3: Comparison of distribution of ψi for rooms B_34/003
and B_34/103. Confusion in identification occurs in 30% of trials
because they are very similar.

The measured reverberation times, ψi, for the confusable
rooms B_34/003 and B_34/103 are shown in Fig. 3. We see that,
since the two rooms are in the same building and are built to the
same plan, they have almost identical distributions in each fre-
quency bin. Despite this, our classifier is able to distinguish even
these rooms correctly 70% of the time.

The fact that transforming the ψ data using either the KLT or
the DCT was detrimental to classification performance is thought to
be due to the fact that the variance in ψi is lower at higher frequen-
cies than at low frequencies. Transforming into alternative domains,
especially using the DCT, spreads the low frequency variance into
all the dimensions of the transformed domain and so makes the dis-
tributions less separable.

4. CONCLUSIONS

We have presented the concept of roomprints in which a set of fea-
tures of a room are inferred from a recording made in the room
and are compared to a set of reference roomprints in order to per-
form identification or verification of the recording location. The fre-
quency dependent reverberation time has been selected as a feature
to illustrate the concept of roomprinting and a number of potential
transformations of this feature set have been investigated. We have
presented roomprinting results using the logarithm of frequency-
dependent reverberation time as a roomprinting feature, for which
an error rate of 3.9% has been obtained in a room identification ex-
periment over 22 rooms.
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