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Jason Filos, Emanuël A. P. Habets and Patrick A. Naylor†

Department of Electrical and Electronic Engineering, Imperial College London, UK
Email: {jason.filos, e.habets, p.naylor}@imperial.ac.uk

Abstract—An approach to blindly infer the geometry of an acoustic
enclosure by estimating the location of reflective surfaces based on
at least three channel estimates and relative microphone positions is
presented. While blind system identification processes can be used to
estimate the impulse responses of a single-input-multiple-output system,
the propagation time of the direct sound cannot be directly observed.
Because this propagation time is essential to infer the location of
reflective surfaces, we propose a two-step approach. As a first step the
time differences of arrival of the direct-paths are used to estimate the
propagation time of the direct sound from the source to a reference
microphone. Subsequently, the propagation times of all other arrivals
can be inferred. In the second step the propagation times associated
with the path of each first-order reflection are constrained to estimate
the location of the reflectors and hence infer the geometry of the room.
Preliminary results obtained using simulated acoustic impulse responses
show that the proposed approach can be used to infer the room geometry
when the propagation times of the first-order reflections can be identified.

I. INTRODUCTION

Recently, the problem of reconstructing the geometry of an acoustic
enclosure using microphone arrays has become an active area of
research [1], [2], [3]. Knowledge gained about the acoustic environ-
ment, such as the location of sound reflectors, can be advantageous for
applications such as sound source localization [1], [4] and adaptive
echo cancellation by assisting in tracking environment changes and
helping the initialization of such algorithms.

Recently Antonacci et al. [3] proposed a method to reconstruct
the geometry of an environment through successive acquisitions of
a controlled emission. Specifically, a loudspeaker is moved along a
pre-defined trajectory. For each position a single-input-single-ouput
system is identified and used to extract the time of arrivals (TOAs) of
reflected signals. This information is subsequently used to determine
the location of reflectors.

In contrast, for the applications we consider in our work, it is
desirable to locate the reflectors passively, i.e., without controlled
emissions. Due to the duality of the acoustic system, we can use a
single source and multiple sensors (i.e. a single-input-multiple-output
(SIMO) system) to deduce the location of reflectors. Such a SIMO
system can be identified blindly using techniques described in [5],
[6]. The missing but important piece of information in this scenario is
the source range, i.e. the distance from the sound source to the closest
microphone, which is initially unknown. However, the source range
can be extracted from the identified acoustic SIMO system using the
time differences of arrival (TDOAs) associated with the direct paths.

In this paper we consider the problem of localizing the reflective
boundaries (i.e. walls) of a two-dimensional (2-D) enclosure, based
on estimates of at least three acoustic impulse responses (AIRs) be-
tween stationary microphones located at arbitrary but known relative
positions and a sound source located at an unknown position. Using
a two-step approach we first estimate the range and location of the

†The authors acknowledge the financial support of the Future and Emerging
Technologies (FET) programme within the Seventh Framework Programme
for Research of the European Commission, under FET-Open grant number:
226007 SCENIC.

source relative to the position of a reference microphone using a
closed-form estimator [7]. Secondly, we use the relative position of
the source along with estimates of the TOAs related to first-order
reflections, to constrain the possible reflector locations. Assuming that
the reflective surfaces are at a unique distance from each microphone,
the propagation delay of the sound associated with each reflector will
appear as a distinct peak in each AIR. By grouping together peaks
that are associated with a specific reflector, it is possible to localize
this reflector. Finally we show that it is possible to infer the geometry
of the acoustic environment from the AIRs and relative microphone
positions alone.

II. PROPOSED APPROACH

Working in a 2-D space, we assume one spatially stationary
source, at an unknown location, and multiple stationary microphones,
arranged at arbitrary but known relative positions inside the acoustic
enclosure. Our task then is to infer the geometry of the enclosed
space. The emitted wavefront undergoes various reflections off walls,
and other reflective surfaces, and so each microphone will receive the
sum of the direct-path signal and scaled replicas of the source signal
with various time delays. However, the estimation accuracy of blind
system identification processes for a SIMO system is limited, and it is
important to note that the identified AIRs do not directly disclose the
propagation time of the direct path between the source and the closest
microphone. This propagation time is however directly linked to the
source-microphone distance (i.e. range) which can be estimated using
at least three TDOAs of the direct-paths. Thus, by first estimating the
range with respect to one microphone we are able to infer the time
of arrival of the direct propagation to each other microphone.

Every peak in the estimated AIR, except for the first peak that
is related to the direct-path, is associated with a reflector present
in the room. The TOA of a first-order reflection is composed of
the propagation time associated with the path between source and
reflector along with the path between reflector and microphone.
Note that the angle of reflection and incidence are assumed equal
from Snell’s law. This means that we can geometrically constrain
the possible trajectories of the sound and observe that the locus of
candidate reflection points is an ellipse. By using the estimated source
range along with the TOA of a reflective path we can specify the
scaling of the major and minor axes of each ellipse. Furthermore,
using the information about the relative position between source and
microphones, it is possible to translate and rotate these estimated
ellipses within our reference framework. We note that if the reflective
points lie on a line (i.e. a wall), then we can estimate this reflector line
as the common tangent to all associated ellipses [3]. If we assume
that only the walls are the reflective boundaries of the enclosure,
then our channel estimates contain the TOAs associated with these
walls. Assuming a rectangular room we obtain four distinct TOAs
due to first-order reflections in each AIR, from which the location
of the walls and thus the geometry of the room can be inferred. Our
current method considers only first-order reflections though extension
to higher-order is potentially feasible.
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Fig. 1: Localization in a 2-D plane.
In Section III we will show how the range estimate between the

source and a reference microphone can be obtained. The associated
TOAs of direct-path and first-order reflections can be estimated using
this range. Section IV outlines how the reflectors can be localized
based on the TOA estimates. In Section V we present experimental
results and finally draw conclusions in Section VI.

III. RANGE ESTIMATION

In this section we show how the sound source can be localized
using three or more microphones. The passive source localization
algorithm outlined in [8] is based on a least squares estimator
employing a spherical least squares (LS) error criterion defined in
three-dimensional (3-D) space. For our purposes this algorithm is
modified for a 2-D space. Consequently, the spherical LS error
function is modified to a circular LS error criterion.

Assume that there are M microphones distributed arbitrarily in a
2-D plane located at positions

ri � [xi yi]
T , i = 0, . . . , M − 1 (1)

with the reference microphone (i = 0) placed at the origin of the
coordinate system, i.e., r0 = [0 0]T , and a source located at rs �
[xs ys]

T . The distances from the origin to the ith microphone and the
source are denoted by Ri and Rs, respectively, where

Ri � �ri� =
�

x2
i + y2

i , i = 1, . . . , M − 1

Rs � �rs� =
�

x2
s + y2

s .

The difference in the distances of microphones i and j from the
source is the range difference, di,j , and is proportional to the TDOA
of the direct-path between the ith and jth microphone, denoted τi,j .
If the speed of sound is η, then

di,j = η · τi,j . (2)

The acoustic source location, as well as its range, can be estimated
using least-squares. We observe that the correct source location
should be at the intersection of a group of circles. The center of
each circle is equal to the location of the microphone and the radius
of each circle is related to the source-microphone distance. Therefore,
the best estimate of the source location will be the point that yields
the shortest distance to those circles defined by the range differences
and the hypothesized source range. From [8] we establish the distance
Di from the ith microphone to the source

D̂i = Rs + d̂i0, (3)

where ˆ( · ) denotes an observation based on the measured range
difference. The error function is then defined as the difference
between the measured and true values, which when putting the M +1
errors together and writing them in a vector form gives

e(rs) = Aθ − b (4)

where

A �
�
S | d̂

�
, S �





x1 y1

x2 y2

...
...

xN yN




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�

xs

ys

Rs

�
, b � 1

2


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R2
1 − d̂2
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R2
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...
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and S | d̂ indicates that S and d̂ are stacked side-by-side with d̂ =
[d̂10, d̂20, . . . , d̂N0]

T . The corresponding LS criterion is then given
by

J = eT e = [Aθ − b]T [Aθ − b] . (5)

The solution for θ is given by [8]

θ̂ = A‡b, (6)

where ( · )‡ defines the pseudo-inverse. Note that the final output in
(6) can be additionally improved using an iterative method as shown
in [8]. Using the estimated range between the source and the first
microphone (given by Rs) and the estimated AIRs, the TOA of each
first-order reflection can be computed.

IV. REFLECTOR LOCALIZATION

In the following section we use the TOAs of the first-order reflec-
tions to determine the location of the reflectors. First we determine
the parameters of the ellipses that describe possible reflector locations
for a given source-microphone pair and reflection. On the basis of
these ellipses we can search for a common tangent that represents a
reflector present in the acoustic enclosure. Finally we estimate which
of these tangents yield a true solution to the localization problem of
the four walls of a rectangular room.

A. Ellipse Parametrization

In homogenous coordinates we can define a conic in two dimen-
sions using the parameters {a, b, c, d, e, f} as [9]

C =
�
(x, y) ∈ R2|ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0

�
.
(7)

By setting v = [x y 1]T and C =

�
a b d
b c e
d e f

�
this can be written

as
vT Cv = 0. (8)

This is an ellipse after constraining

det(C) �= 0,

����
a b
b c

���� > 0, det(C)/(a + c) < 0. (9)

Using the results of the range estimation from Section III we wish
to directly assign values to the parameters a,b,c,d,e,f . In order to do
this we first note that the points on a unit circle satisfy

vT CIv = 0, (10)

where CI =

�
1 0 0
0 1 0
0 0 −1

�
. We observe that for matrix CI the

positive index of inertia is equal to two and that the negative index of
inertia is equal to one [10]. In other words CI has one negative and
two positive eigenvalues. This justifies the following decomposition



for the ellipse associated with the ith microphone (i ∈ {1, · · · , M}),
and the kth reflector (k ∈ {1, · · · , N}):

Ci,k = T−T
i R−T

i S−T
i,k CIS

−1
i,kR−1

i T−1
i , (11)

where we can define a translation, rotation and scaling matrix such
that

Ti =

�
1 0 ∆xi

0 1 ∆yi

0 0 1

�
, (12)

Ri =

�
cos γi − sin γi 0
sin γi cos γi 0

0 0 1

�
, (13)

Si,k =




Qmaj

i,k 0 0
0 Qmin

i,k 0
0 0 1



 . (14)

The quantities ∆xi, ∆yi, γi, Qmaj
i,k and Qmin

i,k are defined as follows.
The point at (∆xi, ∆yi) can be seen as the geographic midpoint
between rs and ri and is defined by

∆xi � xs +
Di cos(γi)

2
; ∆yi � ys +

Di sin(γi)

2
,

with γi � tan−1
�

ys−yi
xs−xi

�
. If we assume N reflectors in our

environment, then every channel estimate contains information about
the N TOAs due to the reflective sound path. Consequently we can
define pi,k as the TOA associated with the ith microphone and the
kth reflector. The scaling of the semi-major and semi-minor axes of
each ellipse is then given by

Qmaj
i,k �

�
(η · pi,k)2 −D2

i

2
; Qmin

i,k � η · pi,k

2
,

respectively. For N reflectors we can therefore construct M × N
ellipses for all source-microphone pairings.

B. Common Tangent Estimation

We can define a line as [9]

l =
�
(x, y) ∈ R2|l1x + l2y + l3 = 0

�
, (15)

which after setting l = [l1 l2 l3]
T can be written as

lT v = 0. (16)

As stated in [9] this line is tangential to an ellipse if

lT · adj(C) · l = 0, (17)

where
adj(C) = det(C) · C−1. (18)

The line that is tangential to a set of ellipses coincides with the
reflector. The three unknown parameters of l can be estimated by min-
imizing the following cost function for a particular k ∈ {1, · · · , N}:

Je
�
l, {Ci,k}M

i=1

�
=

M�

i=1

��lT · adj(Ci,k) · l
��2

, (19)

where M ≥ 3, with

l̂k = arg min
l

Je
�
l, {Ci,k}M

i=1

�
. (20)

Note however that the objective function in (19) is non-convex.
Consequently, when employing an optimization algorithm to find l, it
is possible to get trapped in a local minimum rather than finding the
global minimum. As proposed in [3], this problem can be alleviated

by imposing that l1 and l2 lie on a circle of radius 1:

l1 = cos(α), l2 = sin(α). (21)

We can find l̂α = [cos(α), sin(α), l3]
T by minimizing Je in (19)

using lα rather than l and thus estimate the location of the reflector
as the common tangent to all ellipses associated with that particular
reflector.

C. Localization

Prior knowledge is needed to correctly group together related
ellipses, as our search space spans up to (N·M)!

M !(N·M−M)! combinations
of possible ellipses used in (19). Since we assume that our channel
estimates only yield the TOAs due to first-order reflections, then
for a rectangular room (considering only four walls) we obtain four
distinct TOAs (i.e. N = 4) for each source-microphone pair. We
can therefore construct M × 4 ellipses using (11). However in order
to estimate the location of a particular reflector, only the ellipses
associated with that particular reflector should be employed in (19).
We therefore iteratively localize each reflector, starting with the
geometrically closest reflector to the reference, gradually minimizing
the total search space by discarding ellipses associated with already
localized reflectors.

The TOA associated with the closest wall to the reference micro-
phone (r0) is described by p0,1. The ellipse constructed on basis
of this TOA needs to be grouped together with all combinations of
ellipses due to other source-microphone pairings and their associated
TOAs, i.e.

pi,k, i ∈ {1, · · · , M − 1} ; k ∈ {1, · · · , 4} .

This results in (4·M)!
M !(4·M−M)! possible combinations. We can directly

use (19) for each combination. The combination with the smallest
value for Je is obtained when all ellipses belong to the same
reflector (i.e. pi,1). All ellipses associated with that particular reflector
can henceforth be discarded from the search space for subsequent
iterations. This means that the reflector associated with p0,2 can be
estimated by employing (19) for the reduced set of (3·M)!

M !(3·M−M)!

different combinations. Consequently the search space for the third
reflector, associated with p0,3, is reduced to (2·M)!

M !(2·M−M)! combina-
tions while the final reflector, associated with p0,4, is localized using
the last M ellipses.

In this way we can iteratively localize all common reflective lines,
i.e. the walls of the room.

V. PERFORMANCE EVALUATION

In order to simulate real acoustic environments, the source-image
method [11] is employed to simulate the room response for a chosen
geometry with an arbitrary source and microphone arrangement. The
floor and ceiling are assumed completely absorbing such that only
the walls are reflecting. In this experimental study only the first-order
reflections are simulated.

A. Experimental Setup

To evaluate the performance of the proposed algorithm, we car-
ried out Monte Carlo simulations for blind source localization and
geometry reconstruction of an arbitrary rectangular room. Two sets
of experiments are conducted using an omnidirectional source and
four to five omnidirectional microphones.

• Room A: (Room dimension; 4× 3 m).
• Room B: (Room dimension; 3× 6 m).

The test environment is depicted in Figure 2. The sound source (rs)
and the microphones (ri) are uniformly distributed within the shaded
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Fig. 2: Geometry of test environment.
region inside the room, constraining the positions to be at a distance
of at least 0.5 m away from each wall and with each microphone
being kept at a minimum distance of 0.5 m away from the source.

B. Results

We assess the accuracy of our method by averaging the results
of 100 Monte Carlo runs. For the first step of the algorithm (source
localization), the Euclidean distance between the estimated source
location and the actual source location is used as an error measure.
The mean and variance of this error, denoted ed, are calculated.
The second part of the algorithm, namely the wall localization, is
assessed as outlined in [3]. Namely if l̂ and l are, respectively, the
actual and estimated reflector lines, we measure erl=(̂lT l)/(�̂l��l�):
a value close to 1 indicates that the angle between the lines is small.
Similarly, mean and variance for this error are calculated for each
wall separately.

The results of the source localization are presented in Table I.
The source is well localized for both test environments, with an
average error of only a few cm’s. As the number of microphones is
increased, we observe a concurrent increase of localization accuracy.
As expected from [8], the mean and variance are larger for room B,
which is bigger than room A, particularly for M = 4. However the
results are almost identical for M = 5.

TABLE I: Source localization results.

Room M µ(ed) [cm] σ(ed) [cm]
A 4 3.51 7.67
A 5 1.25 2.10
B 4 4.37 10.34
B 5 1.34 2.01

TABLE II: Reflector localization results.

Room M µ(erl) σ(erl)

A 4 0.983 0.059
A 5 0.986 0.052
B 4 0.978 0.054
B 5 0.985 0.051

The accuracy of the wall localization is first presented by aver-
aging erl for all four walls. These results are shown in Table II
and are comparable to [3]. We additionally considered a particular
arrangement of source and microphones and assessed the error for
each wall (as indexed in Figure 2) separately. As an example, the
exact localization results for room A are shown in Table III. It is
observable that the deviations from the ground-truth values are very
small. Figure 3 shows that the walls are accurately localized for this
particular arrangement of source and microphones in room A.

VI. CONCLUSION

We presented a two-step approach for blindly estimating the sound
source position and reconstructing the geometry of an acoustic enclo-
sure using channel estimates from multiple microphones. Preliminary
simulation results demonstrate that we can accurately identify the
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Fig. 3: A particular reconstruction result for room A.

TABLE III: Comparison of actual and estimated localization results
for a particular experiment in room A.

Wall (α [◦] , l3[m]) (α̂ [◦] , l̂3[m]) erl

1 (90,0) (90.282, 0.015) 0.999
2 (180,4) (179.751, 3.998) 1.000
3 (-90,3) (-89.663, 2.991) 1.000
4 (0,0) (0.249,0.008) 1.000

reflectors when the TDOAs associated with the first-order reflections
can be detected. On basis of these promising results our approach
can be used as a starting point for future research in which blindly
estimated AIRs and higher order reflections are used and non-
rectangular room geometries are considered.
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