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ABSTRACT

In this paper we propose a methodology for localizing acoustic pla-
nar reflectors in a 3D geometry, using acoustic measurements ac-
quired by a set of microphones. An acoustic source emitting a known
signal is placed close to the wall to be identified, and is used for es-
timating the source-to-microphone impulse responses. In a prelim-
inary step, such estimates are employed for localizing the source.
After that, the Times Of Arrival (TOAs) associated to the first order
reflective paths are extracted from the impulse responses and con-
verted into quadratic constraints (ellipsoids) acting on the reflective
plane. The constraints are then collected into a cost function, whose
exact minimization leads to the searched plane. A theoretical anal-
ysis is performed for predicting the impact of measurement errors
on the estimation. Moreover, experimental results in a real meeting
room prove the effectiveness of the method.

Index Terms— Microphone arrays, acoustic reflector localiza-
tion, room geometry estimation

1. INTRODUCTION

In this paper we discuss the problem of the localization of reflec-
tors in a 3D geometry through the use of acoustic measurements.
More specifically, we propose here a technique for the localization
of reflectors using an exact minimization of the cost function that
underlies the localization of the reflector. The problem of estimating
the 3D geometry of environments has been already studied in [1],
[2] and [3]. In [3] the authors localize the reflectors through the lo-
calization of the real and image sources by a compact microphone
array. This methodology is interesting because it is not invasive,
as only a loudspeaker and a small array are used. However, when
the accuracy of the reconstruction is important, this technique could
prove unsuitable. This is because the small size of the microphone
array hinders a sufficient resolution in the localization of the sources,
thus making the overall estimate of the shape of the room inaccurate.
In [1] the authors approach the localization of planar reflectors by
extending the approach originally adopted in [4] to 3D geometries.
However, the cost function employed presents several local minima,
in which the minimization could get trapped into. In order to pre-
vent this problem, a generalized Hough transform is used, which
provides an initial estimate. In [2] a different route is followed. Here
the localization of 3D reflectors is achieved by combining multiple
2D estimates. In particular, a cross-array is decomposed into sub-
arrays, each of which lies on one of the three planes xz, yz and xy.
The localization of the portion of the reflector lying on each of the
three planes (i.e. a line) is performed through the analysis of the
signals coming from each sub-array. In a later stage linear estimates
are combined through a least-squares technique to find the actual pa-

rameters of the 3D reflector. A Hough transform (defined differently
from [1]) is adopted in order to prevent the problem of local minima.

In this paper we intend to remove the need of an initial estimate
for the reflector estimate, thus reducing the computational cost and
making the algorithm more robust against measurement errors. At
this purpose, in [5] the authors have implemented a technique for the
localization of reflectors in 2D which employs an exact minimization
of the cost-function. The key point is that the cost function, a fourth-
order polynomial, can be reformulated as a second-order polynomial
with a single quadratic constraint, which admits an exact solution.
This approach guarantees that the true reflector is found and local
minima are avoided. In this paper we extend the approach proposed
in [5] to 3D geometries. Even if this extension is quite smooth, it
represents a relevant novelty, as it removes the need of an initial esti-
mate. The analysis on the data acquired in a small conference room
confirms that the proposed technique is able to localize the reflec-
tors with a distance error of a few centimeters and an angular error
below one degree. In [5] the authors also presented a methodology
for the analytical prediction of the impact of errors on measurements
on the localization error. This research theme is becoming increas-
ingly important, as demonstrated by recent publications (e.g. [6] and
[7]) where the authors study the problem of the propagation of error
measurements into the estimation process, taking inspiration from
the Information Geometry [8].

The novel contributions of this work with respect to the litera-
ture are: the extension of the closed-form solution to 3D geometries;
and the extension to the 3D case of the prediction of the impact of
measurement errors on the localization accuracy.

The rest of the paper is structured as follows: section 2 formu-
lates the problem of localization of reflectors in 3D; section 3 briefly
explains how the acoustic source is localized prior to localizing re-
flectors, adopting the same approach introduced in [9]. Section 4
proposes the solution adopted for the localization of reflectors. The
theoretical analysis of error propagation and some experimental re-
sults based on real data are proposed in section 5. Finally, section 6
draws some conclusions.

2. PROBLEM FORMULATION

We consider an acoustic scene in which a set of M microphones, lo-
cated at xm = [xm, ym, zm]T ,m = 1, . . . ,M , possibly organized
in an array, capture, after A/D conversion, the time-discrete sound
xms(n),m = 1, . . . ,M produced by a source s(n), which occu-
pies the positions xs = [xs, ys, zs]

T , s = 1, . . . S. We assume that
the number of source positions S is equal to the number of planar re-
flective surfaces to be localized. In the illustrative example in Fig.1,
a single reflector and source are present in the acoustic scene. Re-
flectors are represented by the coordinates of the plane on which they
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lie. In particular, points on the plane P = [p1, p2, p3, p4]
T satisfy

the equation

p1x+ p2y + p3z + p4 = P
T
x = 0,

where x = [x, y, z, 1]T are the homogeneous coordinates of the
generic point x = [x, y, z]T lying on the plane.

P1
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M
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R s
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Fig. 1. Geometry of the problem of reflector localization

The signal xms(n) can be modeled as the convolution of s(n)
with the discrete acoustic impulse response (AIR) of the room from
xs to xm, denoted by hms(n),

xms(n) = s(n) ∗ hms(n) . (1)

We assume that the line of sight between microphones and sources
is not occluded by obstacles. Therefore, the direct path between
xs, s = 1, . . . , S and xm,m = 1, . . . ,M is present in the impulse
responses. Along with the direct path, reflective paths are also vis-
ible in the AIR. Let us now consider a specific source location xs.
For this location we assume that in hms(n) the first echo after the
direct-path is related to the same reflector for m = 1, . . . ,M . This
assumption is satisfied if i) xs is sufficiently close to the reflector
of interest and ii) microphones are compactly organized in space. If
both conditions apply, we can write that

hms(n) = α(0)
msδ(n−n

(0)
ms)+α(1)

msδ(n−n
(1)
ms)+

K∑
k=2

α(k)
msδ(n− n(k)

ms) ,

where α
(k)
ms is the attenuation along the direct (k = 0) or reflective

(k ≥ 1) path; n(k)
ms is the propagation delay; and K is the number

of relevant reflections. Moreover, n(0)
ms < n

(1)
ms < . . . < n

(k)
ms for

k ≥ 2. The direct and the shortest reflective paths have been kept out
the summation, as they constitute the input of the algorithm proposed
in this paper.

The estimation ĥms(n) of the AIR is obtained using a super-
vised approach, by means of a MLS sequence. In order to enable
the use of uncontrolled sources, we do not assume that the source is
synchronized with the microphones. We can write, therefore, that

ĥms(n) = hms(n−Ds) + νms(n) ,

where Ds is an unknown delay, and νms(n) are independent iden-
tically distributed realizations of a zero-averaged Gaussian noise,
modeling the estimation error.

The problem of localizing reflectors in 3D corresponds to find-
ing the parameters P of the planes on which the reflectors lie, given
the noisy and delayed AIRs ĥms(n).

We notice that in ĥms(n) the Time Of Arrival (TOA) of echoes
(direct and reflective ones) are not preserved due to the presence of
the unknown delay Ds. However, the Time Difference of Arrival
(TDOA) of echoes at all microphone pairs are preserved, as Ds is
equal for all microphones. We start from this observation to localize
the source using the TDOAs related to the direct path (see section

3). Once the source has been localized, we convert the TDOAs of
the reflective paths into TOAs, as already presented in [9]. TOAs
are then used to estimate the location of the reflectors in the room
(section 4).

When multiple reflectors are present in the acoustic scene, mul-
tiple independent estimations are performed, by sequentially placing
the source in the proximity of each wall to be localized, so that the
first-order reflection from the desired wall immediately follows the
direct-path echo.

3. SOURCE LOCALIZATION

In this section we show how the sound source can be localized using
TDOA information captured by the microphones. In particular, we
adopt the least-squares passive localization algorithm proposed in
[10]. This algorithm was already adapted to the 2D case in [9].

Assume that the reference microphone (m = 1) is placed at the
origin of the coordinate system, i.e., x1 = [0 0 0]T . The distances
from the origin to the mth microphone and the source are denoted
by Rm and Rs, respectively, where

Rm � ‖xm‖ =
√

x2
m + y2

m + z2m, m = 2, . . . ,M

Rs � ‖xs‖ =
√

x2
s + y2

s + z2s .

The difference in the distances of microphones m and n from the
source is the range difference, dm,n, and is proportional to the
TDOA of the direct-path between the mth and nth microphone,
denoted τmn. If the speed of sound is c, then

dmn = c τmn. (2)

The acoustic source location, as well as its range, can be estimated
using least-squares. We observe that the correct source location
should be at the intersection of a group of spheres. The centre of
each sphere is equal to the location of the microphone and the radius
of each sphere is related to the source-microphone distance. There-
fore, the best estimate of the source location will be the point that
yields the shortest distance to those spheres defined by the range dif-
ferences and the hypothesized source range. From [10] we establish
the distance Dm from the mth microphone to the source

D̂m = Rs + d̂m1, (3)

where ˆ( · ) denotes an observation based on the measured range dif-
ference. The error function is then defined as the difference between
the measured and true values, which when putting the M − 1 errors
together and writing them in a vector form gives

e(rs) = Kθ − l (4)

where K �

[
S | d̂

]
and S | d̂ indicates that S and d̂ are stacked

side-by-side with d̂ = [d̂21, d̂31, . . . , d̂M1]
T and

S �

⎡
⎢⎢⎢⎣

x2 y2 z2
x3 y3 z3
...

...
xM yM zM

⎤
⎥⎥⎥⎦ , θ �

⎡
⎢⎣
xs

ys
zs
Rs

⎤
⎥⎦ , l �

1

2

⎡
⎢⎢⎢⎣

R2
2 − d̂221

R2
3 − d̂231

...
R2

M − d̂2M1

⎤
⎥⎥⎥⎦ .

The solution for θ is given by θ̂ = K‡l, where ( · )‡ defines the
pseudo-inverse [10].



4. REFLECTOR LOCALIZATION

In this Section we describe the methodology for localizing the reflec-
tor associated to the source located at xs, whose coordinates come
from the source localization technique outlined in Section 3. Without
loss of generality, we now translate the reference frame at the source,
so that its position becomes xs = [0, 0, 0]T . This simple transfor-
mation will turn out useful in determining an exact solution to the
reflector localization problem. We notice, however, that the result-
ing estimate P̂ of the reflective plane refers to the source position,
which changes for the different walls to be localized. Afterwards,
therefore, we convert the estimated plane vectors to the original co-
ordinate system.

Let τm = nms/Fs be the TOA associated to the first-order re-
flective path between the mth microphone and the source, and Fs the
sample frequency. As noticed in [1], the reflection point x(P )

m on the
reflector is located on an ellipsoid having foci at xm and xs, and ma-
jor axis equal to rm = c τm. Since xs = [0, 0, 0]T , a generic point
x = [x, y, z]T on the ellipsoid satisfies ‖x − xm‖ + ‖x‖ = rm.
After some manipulations, as in [1, 5], the ellipsoid can be rewrit-
ten in the form xTQmx = 0, which represents a quadric surface in
3D. In particular, x = [x, 1]T is the homogeneous representation of
x; and Qm is a symmetric matrix containing the quadric parameters
(see [1] for additional details). Since the plane of reflection is bound
to be tangential to the ellipsoid Qm at x(P )

m [1], it is convenient to
adopt the dual representation of the quadric, namely PTQ∗

mP = 0,
which is satisfied by all the planes P = [p1, p2, p3, p4]

T of equation
p1x + p2y + p3y + p4 = 0 tangential to the ellipsoid. Computing
Q∗

m = det(Qm)Q−1
m we obtain

Q∗

m=

⎡
⎢⎢⎢⎢⎢⎢⎣

a∗

m 0 0
d∗m
2

0 a∗

m 0
g∗m
2

0 0 a∗

m

i∗m
2

d∗m
2

g∗m
2

i∗m
2

l∗m

⎤
⎥⎥⎥⎥⎥⎥⎦
,

a∗

m = 16r4m(‖xm‖2−r2m)2 ,

d∗m = 64r4mxm(‖xm‖2−r2m) ,

g∗m = 64r4mym(‖xm‖2−r2m) ,

i∗m = 64r4mzm(‖xm‖2−r2m) ,

l∗m = 64r4m(‖xm‖2−r2m) .

The combination of M TOA measurements leads to the defini-
tion of the minimization problem

P̂ = argmin
P

J(P) = argmin
P

M∑
m=1

(
P

T
Q

∗
mP

)2

, (5)

where the plane of reflection is estimated as the global minimum of
the cost function J(P), which is the sum of the squared residuals of
all the quadratic constraints. Following the same approach proposed
in [5] for reflector line estimation, we restrict the search space to
planes having p4 = 1. This means discarding all the planes passing
through the origin, which can not generate any reflective path since
they contain the source. As a result, we obtain

P̂=argmin
P

∑M
m=1[a

∗

m(p2
1
+p2

2
+p2

3
)+d∗mp1+g∗mp2+i∗mp3+l∗m]2 . (6)

By posing w = p21 + p22 + p23, (6) can be rewritten as the following
generalized trust region subproblem (GTRS) [11]

ŵ = argmin
w

{
‖Aw − b‖2 : wT

Dw + 2fTw = 0
}

, (7)

where w = [w, p1, p2, p3]
T and

A =

⎡
⎢⎣
a∗
1 d∗1 g∗1 i∗1
...

...
...

...
a∗
M d∗M g∗M i∗M

⎤
⎥⎦ ,

b = −[l∗1 . . . l∗M ]T ,
D = diag(0, 1, 1, 1) ,
f = [−0.5 0 0 0]T .

The exact solution ŵ = [ŵ p̂1 p̂2 p̂3]
T to (7) can be found effi-

ciently as in [11, 5], and the searched plane of reflection is given by
P̂ = [p̂1 p̂2 p̂3 1]T , which is expressed in the source reference sys-
tem. The solution in the original reference system is finally obtained
as ˆ̄P = (T−1

s )T P̂, where

Ts =

⎡
⎢⎣
1 0 0 xs

0 1 0 ys
0 0 1 zs
0 0 0 1

⎤
⎥⎦

denotes the translation from the original reference frame to that cen-
tered at xs = [xs, ys, zs]

T .

5. RESULTS

In this Section we test the accuracy of the proposed 3D reflector
localization technique. In particular, first we analyze the effect of the
error on TOA measurements on the estimation. This is accomplished
by means of the theoretical error propagation analysis proposed in
[12] and adopted in [5] for the case of 2D reflector localization. After
that, the algorithm is tested in a real meeting room, by comparing the
estimated wall positions with the hand-measured ground truth.

5.1. Theoretical analysis

The theoretical analysis has been performed using the setup shown
in Figure 2. For the sake of clarity in the analysis of the results,
in this section we parametrize the reflective plane by its distance
d from the origin (coincident with the source position xs); the az-
imuth φ; and the co-elevation θ. The plane parametrization adopted
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Fig. 2. Evaluation setup

in section 2 is related with the current one through P = [nT , d]T ,
n = [cosφ sin θ , sinφ sin θ , cos θ]T being the unit vector normal
to the plane. The microphone array accommodates 7 sensors de-
ployed as in Figure 2. In particular, the central microphone is located
at x1 = [0.5 , 0.5 , 0]T , and the remaining sensors are all located at
a distance r = 0.25m from x1. If d̂, φ̂ and θ̂ are the estimated plane
parameters, then the localization accuracy is assessed in terms of the
distance error εd = d − d̂; the azimuth error εφ = φ − φ̂; and the
co-elevation error εθ = θ − θ̂.

The theoretical analysis has been carried out for a set of 1500
test reflector positions, whose parameters vary on a multidimen-
sional grid defined by: 25 values for the distance d in the range
[1m ∼ 4m]; 30 values for the azimuth φ the range [0 ∼ 2π]; and
2 points for the co-elevation, namely θ = π/2 and θ = π/6. We



assumed the error on TOA measurements to be zero-mean and Gaus-
sian distributed with standard deviation σ = 0.01m/c, independent
on each microphone.

Figure 3 shows the resulting theoretical standard deviation of
the distance error, for all the tested reflector planes. In particular,
Fig. 3-(a) is relative to the case of θ = π/2; and Fig. 3-(b) to
θ = π/6. Similarly, Figures 4 and 5 depict the theoretical stan-
dard deviation of the azimuth error and the co-elevation error, re-
spectively. Interestingly, for the setup under analysis, the local-

d [m]

φ
 [d

eg
]

1 2 3 4
0

90

180

270

360

       [cm]

0.2
0.4
0.6
0.8
1
1.2

(a) θ = π/2

d [m]

φ
 [d

eg
]

1 2 3 4
0

90

180

270

360

       [cm]
1.0

1.1

(b) θ = π/6

Fig. 3. Theoretical standard deviation of εd.
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Fig. 4. Theoretical standard deviation of εφ.
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Fig. 5. Theoretical standard deviation of εθ .
ization accuracy is almost independent from the distance d of the
reflector, while being highly variable with the azimuth φ. In partic-
ular, from Fig. 3 we observe that, for planes having φ ∈ [0◦, 90◦]
or φ ∈ [180◦, 270◦], εd tends to be low while being higher for the
other azimuth angles. Conversely, we notice from Fig. 4 that εφ
exhibits an opposite behaviour, being higher when φ ∈ [0◦, 90◦] or
φ ∈ [180◦, 270◦]. Fig. 5 reveals that εθ has a smoother behaviour,
but still presents higher values for planes with φ ∈ [180◦, 270◦].
Finally, we observe that the accuracy tends to decrease for elevated
planes, especially for the azimuth error εφ, whose average is 1.74◦

for θ = π/2 and 3.34◦ for θ = π/6.

5.2. Experimental evaluation

The algorithm has been tested in a small shoebox-shaped meeting
room, with concrete walls and dimensions 2.77m × 3.55m ×
3.17m. The floor is covered with linoleum panels. The microphone
array used in the experiment has the same geometry of that in Figure
2, and the central microphone was placed at a distance of 1.2m
from the West wall; 1.91m from the South wall; and 1.59m from
the floor. A pc-loudspeaker was moved in 6 positions (one for each
wall to be localized), emitting a MLS-sequence sampled at 48 kHz.

Consequently, N = 7 impulse responses are measured for each
wall.

The experimental results are shown in Table 1, giving on a per
wall basis, the distance error |εd|; the azimuth error |εφ|; and the
co-elevation error |εθ|. The results are expressed with respect to the
central microphone position x1. All the reflectors are localized with
high accuracy. On average, the distance error is 1.5 cm, the azimuth
error 0.87◦, and the co-elevation error is 0.76◦. It is important to
note that, for reflectors having θ = 0◦ and θ = 180◦ (ceiling and
floor), the azimuth is not defined and therefore the co-elevation error
fully characterizes the angular accuracy.

Table 1. Experimental results.
REF. (d , φ , θ) |εd| [cm] |εφ| [

◦] |εθ| [
◦]

West (1.20m , 180◦ , 90◦) 1.3 0.49 0.62
South (1.91m , 270◦ , 90◦) 0.1 1.81 1.89
East (1.57m , 0◦ , 90◦) 1.1 1.09 0.22
North (1.64m , 90◦ , 90◦) 4.3 0.10 0.71
Ceiling (1.58m ,− , 0◦) 0.9 − 0.72
Floor (1.59m ,− , 180◦) 1.3 − 0.38

6. CONCLUSIONS

An exact methodology for the localization of planar acoustic reflec-
tors has been proposed. In particular, in this paper the 2D technique
proposed in [5] has been extended to the case of 3D geometries. The
results of the theoretical analysis reveal the applicability of the pro-
posed method using a small number of measurements. Moreover,
experimental results in a real meeting room prove that the proposed
method is suitable for estimating the room geometry with high de-
gree of accuracy.
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