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ABSTRACT

In this paper we discuss a method for localizing acoustic reflectors
in space based on acoustic measurements on source-to-microphone
reflective paths. The method converts Time of Arrival (TOA)
and Time Difference of Arrival (TDOA) into quadratic constraints
on the line corresponding to the reflector. In order to be robust
against measurement errors we derive an exact solution for the min-
imization of a cost function that combines an arbitrary number of
quadratic constraints. Moreover we propose a new method for the
analytic prediction of reflector localization accuracy. This method
is sufficiently general to be applicable to a wide range of estimation
problems.

Index Terms— Microphone arrays, space-time audio process-
ing, environment reconstruction, acoustic reflector localization

1. INTRODUCTION

Knowing the geometry of the acoustic environment can be very use-
ful for numerous space-time processing applications. For example,
in [1] source localization is approached using a maximum likeli-
hood estimator whose data model incorporates the prediction of the
early reflections. In [2] an environment-aware acoustic rendering
system is proposed, in which early reflections are included in the
propagation model from the loudspeakers to the listening area. This
has the result of making their rendering system robust to mild re-
verberation. Consequently, the problem of estimating the geometry
of the environment through acoustic acquisitions is an area of in-
creasing interest. In [3] a method is proposed for estimating the
reflectors based on the inverse mapping of the acoustic multi-path
propagation problem. In [4] the parameters of a constrained room
model are estimated through ℓ1-regularized least-squares. In [5]
the problem of the estimation of the room geometry is approached
through the measurement of the Times of Arrival (TOAs) of the re-
flective path from the source to the microphone. Here TOAs are
converted into geometric constraints that locate the line that the re-
flector lies upon. For a single source-microphone pair such con-
straints express that this line should be tangential to an ellipse that
is parameterized by the locations of the source and the microphone
and by the TOA. Using multiple observations with a microphone
array, the reflector is found as the common tangent to all such el-
lipses, which is estimated through the iterative minimization of a
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fourth-order polynomial cost function. In [6] the authors generalize
this approach with a two-step process based on a single source and
multiple microphones. The source is first localized through the esti-
mation of the Time Differences Of Arrival (TDOAs) on microphone
pairs. The source location is then used for converting TDOAs of re-
flective paths into TOAs. The localization of the reflector is then
approached in a similar fashion as in [5].

The cost functions defined in [5, 6] are inherently nonlinear,
therefore they exhibit numerous local minima in which adaptive
optimization algorithms could easily become trapped, particularly
in the presence of relevant measurement errors. In this paper we
propose an exact minimization procedure that determines the cor-
rect global minimum of the cost function while circumventing the
problem of local minima. The problem is reformulated as the con-
strained minimization of a second-order polynomial, which admits
an exact solution. This reformulation is inspired by [7], where a
source localization problem is approached with an exact minimiza-
tion of a constrained least-squares cost function. This algorithm is
particularly useful when TOAs are estimated from TDOAs using
information on the source location, as TOAs could be affected by
a relevant error. In this paper we also propose a methodology for
error propagation analysis, which aims to characterize the error that
the reflector localization is affected by using some prior information
on the error on TOA measurements. The ideas behind this analy-
sis are partially borrowed from catastrophe theory [8], which allows
us to derive an approximate linear relationship between the error in
the distance of the acoustic path and the error on the localization
of reflectors. This technique turns out to be general enough to be
applicable whenever the estimation of the variable of interest is ac-
complished through the minimization of a cost function, under the
hypothesis of a small bias in the estimated variable. Moreover, this
method is more general than the well-known Cramer-Rao Lower
Bound (CRLB). In fact, while CRLB provides a bound for an esti-
mation problem, the proposed approach gives the theoretical limit
for a specific cost function applied to that problem. Moreover, it
can be shown that CRLB corresponds to the error propagation anal-
ysis applied to a maximum-likelihood cost function, and therefore it
can be seen as a particular case of the method based on catastrophe
theory. A Matlab toolbox is available [9], which can be used for
assessing the accuracy of this class of estimation procedures.

The paper is organized as follows: in Section 2 we introduce
the relevant notation and summarize the procedure used in [5, 6] to
derive the cost function. In Section 3 we reformulate the cost func-
tion in order to be able to find an exact solution. Section 4 concerns
the error propagation analysis. In Section 5 we show some simula-
tion results that prove the validity of the error propagation analysis
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as well as the improvement brought by the exact formulation over
the iterative one. Conclusions are drawn in Section 6.

2. REFLECTOR LOCALIZATION

2.1. Notation

In this Section we describe the data model and the notation used
throughout the paper. The microphones of the array are assumed to
be placed in x1, . . .xN . The acoustic source is in s and, with no
loss of generality, we can assume the origin of the reference frame
to be placed in that location. Let us consider a single planar reflector
lying on the line of equation l1x+l2y+l3 = 0, described by the pa-
rameters l = [l1 l2 l3]

T . With reference to Fig.1, the image source
s
′ is obtained by mirroring s over l. The vector τ = [τ1, . . . τN ]T

x1

x2

xN

r1

r2

rN

l

s
s
′x

y

Figure 1: An acoustic source located at s is reflected over the line l to its
image position s

′. The microphones at x1, . . .xN estimates their distances
r1, . . . rN from the image source in s

′.

contains the TOAs of the reflective paths between the image source
and the sensors, which are either measured [5] or estimated from
the TDOAs [6]. The length of the reflective paths can be estimated
as ri = τic and arranged in the vector r = τ c = [r1, . . . rN ]T ,
where c is the speed of sound.

2.2. Cost function

As shown in [5, 6], the TOA measures corresponding to the reflec-
tive paths can be converted into quadratic constraints (in the homo-
geneous space) describing an ellipse. More specifically, as shown
in Fig. 2, the ellipse has foci in xi = [xi yi]

T and s, and its ma-
jor axis is ri. This ellipse is tangential to the reflector line l at the
reflection point pi. In order to find the equation of this ellipse we

xi

l

s s
′

pi

ri

Figure 2: The length of the reflected path ri from the image source in s
′ to

the microphone at xi constrains the reflector line l to be tangent to an ellipse
whose major axis is ri and whose foci are s and xi. pi is the reflection point
on l.

start from constraint ‖x − xi‖ + ‖x‖ = ri, which can be written
as

√

(x− xi)2 + (y − yi)2 = ri −
√

x2 + y2 . (1)
After taking the square power of both sides of eq. (1) we derive

√

x2 + y2 − 2xxi − 2yyi = r2
i − x2

i − y2
i . (2)

Squaring again both the sides of eq. (2), we derive the implicit
form of the ellipse described by the homogeneous parameter vector
[ai bi ci di ei fi]

T , which is given by

aix
2 + bix + ciy

2 + dix + eiy + fi = 0 , (3)

where
ai = −4(r2

i−x2
i ) ,

bi = 8xiyi ,

ci = −4(r2
i−y2

i ) ,

di = 4[xir2
i−xi(x

2
i +y2

i )] ,

ei = 4[yir2
i−yi(x

2
i +y2

i )] ,

fi = r4
i−2r2

i (x2
i +y2

i )+(x2
i +y2

i )2 .

Eq. (3) can be expressed in matrix form as

xT Cix = 0 , Ci =





ai bi/2 di/2

bi/2 ci ei/2

di/2 ei/2 fi



 (4)

where x = [x 1]T is the homogeneous representation of a point
x lying on the ellipse; and Ci is the point-conic matrix. The dual
form of the conic expresses the conic as the set of lines l tangent to
it, i.e. lT C∗i l = 0, where l = [l1 l2 l3]

T is the homogeneous rep-
resentation of a line tangent to the ellipse; and C∗i = det(Ci)C

−1
i

represents the line-conic matrix. Considering the set of N TOA
measurements, a cost function collecting the corresponding N con-
straints can be defined as

J(l, r) =

N
∑

i=1

(

lT C∗i l
)2

. (5)

The reflector line is then estimated as the common tangent to all the
ellipses by minimizing J(l, r). As all the vectors kl, k 6= 0, form
a class of equivalence, an infinite number of solutions turns out to
minimize the cost function. In order to find an unique solution and
avoid the trivial solution l = [0 0 0]T , some additional constraint
needs to be used. For example, in [5], the minimization problem is
formulated on the sub-space lα = [l1 = cos α, l2 = sin α, l3]

T ,
and the reflector is estimated as

l̂α = argmin
lα

N
∑

i=1

(

lTαC∗i lα
)2

. (6)

3. EXACT SOLUTION

We now need to reformulate the cost function of Section 2.2 in order
to turn the optimization problem into a linear Least-Squares (LS)
one. As noted in [7], these problems are referred to as generalized
trust region subproblems (GTRS), whose exact solution can be de-
rived quite efficiently.
We first analyze the structure of the dual-conic, whose matrix

C∗i =





a∗i b∗i /2 d∗i /2
b∗i /2 c∗i e∗i /2
d∗i /2 e∗i /2 f∗i



 (7)

is symmetric, and its parameters can be written as

a∗i = 4r2
i (r2

i−x2
i−y2

i )2 ,

b∗i = 0 ,

c∗i = a∗i ,

d∗i = 16r2
i xi(r

2
i−x2

i−y2
i ) ,

e∗i = 16r2
i yi(r

2
i−x2

i−y2
i ) ,

f∗
i = 16r2

i (r2
i−x2

i−y2
i ) .

(8)

By replacing eq. (8) into the cost function (6), after some manipu-
lation we obtain

J(l, r) =
N
∑

i=1

[

a∗i (l
2
1 + l22) + d∗i l1l3 + e∗i l2l3 + f∗i l23

]2
. (9)
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In order to find a unique minimum for J(l, r), we focus on the
subspace defined by l′ = [l1 l2 1]T , and look for minima of the
cost function lying on l3 = 1. This leads to

l̂′ = argmin
l′

N
∑

i=1

[

a∗i (l
2
1 + l22) + d∗i l1 + e∗i l2 + f∗i

]2
. (10)

Notice that the condition l3 = 1 rules out the potential reflectors
passing through the origin. As the origin is the location of the
source, this does not constitute a serious limitation. The simple
substitution w = l21 + l22 allows us to rewrite the vector of the un-
knowns as w = [w l21 l22]

T , therefore the optimization problem can
be written as

ŵ = argmin
w

{

‖Aw − b‖2 : wT Dw + 2fT w = 0
}

(11)

where

A =







a∗1 d∗1 e∗1
...

...
...

a∗N d∗N e∗N






, b =







−f∗1
...

−f∗N







and
D = diag(0, 1, 1) , f =

[

−0.5 0 0
]T

.

Assuming that A has full column rank, the problem can be solved
quite efficiently, and the exact solution is readily found using the
approach described in [7]. In particular, the minimum is found as

ŵ(λ) = (AT A + λD)−1(AT b− λf) ,

where λ is the unique solution of ŵ(λ)T Dŵ(λ) + 2fT ŵ(λ) = 0
on the interval for which AT A + λD is positive definite [7]. From
the solution ŵ = [ŵ l̂1 l̂2]

T , the estimated reflector line is finally
given by l̂′ = [l̂1 l̂2 1]T .

4. ERROR PROPAGATION ANALYSIS

In this Section we propose a method for predicting the impact of the
error on TOAs on the localization of reflectors using a formulation
based on Catastrophe Theory [8].
Let l0 be the true reflector and r0 be the theoretical propagation
distances of the reflective paths. In a real scenario the measurement
of r0 is affected by noise δr, and noisy measurements are denoted
by r = r0 + δr. Consequently, the new position of the minimum of
J(l; r) becomes l = l0+δl. Assuming the error δr to be sufficiently
small, we want to find a relationship between δr and δl. We do so
by computing the second-order Taylor expansion of J(l; r) centered
about (l0; r0). The term (∇lJ)T |l0,r0 is zero, as the function with
the true TOAs r0 has a minimum in l0. We can thus take the first-
order derivative of the Taylor expansion and set it to zero to obtain

Hl,l(J)|l0,r0δl + Hl,r(J)|l0,r0δr = 0 , (12)

where

Hl,l(J)=









Jl1l1 Jl1l2 Jl1l3
Jl2l1 Jl2l2 Jl2l3
Jl3l1 Jl3l2 Jl3l3









, Hl,r(J)=









Jl1r1 . . . Jl1rN

Jl2r1 . . . Jl2rN

Jl3r1 . . . Jl3rN









and
Jlilj =

∂2J

∂li∂lj
, Jlirj =

∂2J

∂li∂rj
.

From (12) we finally obtain

δl = Gδr , (13)

where G = −Hl,l(J)|−1
l0,r0

· Hl,r(J)|l0,r0 In a real scenario we
cannot assume δr to be known. However, some statistical informa-
tion could be available in advance or could be estimated from the
data. It is therefore important to find a relation between statistical
descriptors of the noise δr and of δl. The relationship between the
covariance matrix Ml of the estimation, and the covariance matrix
Mr of δr is

Ml = GMrG
T , (14)

where

Ml =





σ2
l1 σl1σl2 σl1σl3

σl1σl2 σ2
l2 σl2σl3

σl1σl3 σl2σl3 σ2
l3





and

Mr =











σ2
r1 0 . . . 0
0 σ2

r2 . . . 0
...

...
. . .

...
0 0 . . . σ2

rN











under the assumption of statistical independence of the measure-
ment errors.

5. EVALUATION AND DISCUSSION

In order to test the solutions proposed in this paper, we first com-
pared the accuracies of the exact and iterative techniques; and
then we validated the error propagation analysis by comparing the
RMSE of the exact solution and that predicted by eq. (14).

5.1. Setup

All the simulations were conducted with reference to the setup of
Fig. 3. The microphone array was made of 5 sensors uniformly

x1

x2

x3

x4

x5

ρ

α

l

s x

y

30 cm

Figure 3: Simulation setup.

spaced on a circle of radius 30 cm centered in the origin of the ref-
erence frame (corresponding to the acoustic source). TOAs between
microphones and source were calculated. The simulations were per-
formed on a set of 9000 test reflector lines l = [cos α, sin α, −ρ]T

defined by their distance ρ and angle α with respect to the origin, as
shown in Figure 3. The test reflectors were defined by distances in
the range [1 m ∼ 4 m] and angles in the range [0 ∼ 2π].
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5.2. Comparison between exact and iterative methods

Using the above setup we compared the performance of the exact
and iterative methods for minimizing the cost function of Section
2.2. The iterative method considered for the comparison is that pro-
posed in [5], with a cost function of the form (6). For each reflector
position, the distance measurements r were corrupted by 1000 real-
izations of independent identically distributed zero-mean Gaussian
noise with standard deviation σ. The performance was evaluated
by considering the distance error ǫρ = ρ − ρ̂ and the angular er-
ror ǫα = α − α̂ of the estimated reflector represented by the pair
(ρ̂, α̂) with respect to the true reflector position (ρ, α). Figs. 4-(a)
and 4-(b) show the standard deviation of the distance error and of
the angular error as a function of σ, respectively, averaged over all
the tested locations and repetitions. As far as the distance error is
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Figure 4: Comparison between the iterative and the exact solutions.

concerned, the iterative and the exact solutions turned out to exhibit
almost identical errors, which were proportional to the standard de-
viation σ of the measurement error. As for the angular error, for
values of σ below 0.05 m, the two approaches had the same re-
sults, but for higher values of σ, the iterative method was affected
by larger errors. This was due to the presence of multiple local min-
ima in the cost function. For large measurement errors, the risk of
encountering local minima increases as the cost function becomes
less smooth. Although this phenomenon occurs occasionally, its
impact on the standard deviation of the angular error is quite no-
ticeable. The exact solution is therefore preferable over the iterative
one, especially for large measurement errors.

5.3. Validation of the error propagation analysis

We now validate the method for the error propagation analysis pro-
posed in Section 4. In this case the standard deviation of the mea-
surement noise is kept to σ = 0.01 m. The standard deviation of
the error predicted with the analytic method is compared with the
results of the simulations conducted on the same testing reflector
positions. The results shown in Fig. 5 show the distance error for
theoretical (a) and simulated (b) analysis, respectively. Similarly,
Fig. 5 shows the theoretical (c) and simulated (d) results relative to
the angular error. The results of the simulations accurately match
the theoretical ones: they present the same mean error of the ex-
pected values (2.5 mm for the distance and 1.3◦ for the angle). The
patterns of local maxima (i.e. diagonal white lines) correspond to
configurations where two or more reflective paths are collinear, thus
producing similar ellipses. In this situation, therefore, two measure-
ments yield the same information, thus reducing the robustness of
the estimation.
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Figure 5: Comparison between the theoretical standard deviation of the
error (predicted with the error propagation analysis) and the simulation re-
sults.

6. CONCLUSIONS

In this paper we proposed an exact technique for the localization of
acoustic reflectors and a new method for the prediction of the re-
lated accuracy, which is valid also for other estimation problems.
Simulations showed that the exact solution brings performance im-
provements over the iterative one, especially in the presence of large
error on TOA measures. We also proved the accuracy and the effec-
tiveness of the error propagation analysis.

7. REFERENCES
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