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ABSTRACT
Geometric inference is an approach for localizing reflectors in a
closed acoustic space. It is based on a simple observation that turns
time differences of arrival (TDOA) or time of arrival (TOA) mea-
surements from the signals of a microphone array into a geometric
constraint. The reflector localization methodology relies on accu-
rate TDOA which is directly dependent on speed of sound informa-
tion. Estimating the actual speed of sound at the ambient temper-
ature therefore greatly improves the accuracy of the reflector local-
ization in uncontrolled environments. This manuscript shows how
to use the geometric inference jointly with the speed of sound esti-
mation for a more accurate reflector localization. Simulations and
experiments show the validity of the proposed approach.

Index Terms— Geometric inference, speed of sound estima-
tion, channel estimation, TDOA, TOA

1. INTRODUCTION

Inferring information about the environment conditions in which
space-time processing algorithms operate is an emerging research
topic. It has been recently considered by several authors [1, 2, 3, 4, 5,
6, 7]. Estimating the room geometry can be advantageous for appli-
cations such as wavefield rendering [1], source localization [8] and
dereverberation [9]. Environmental properties, such as the ambient
temperature, directly influence the propagation speed of the sound
waves. Most acoustic processing algorithms assume a known prop-
agation speed, which is a reliable assumption only under controlled
laboratory conditions. Accurately estimating the speed of sound is
therefore highly desired.

Geometric inference is an approach for localizing reflectors in
a closed acoustic space [2, 3, 4]. It is based on a technique that
turns time differences of arrival (TDOA) or time of arrival (TOA)
measurements from the signals of a microphone array into geomet-
ric constraints. By exploiting such geometric constraints and using
the tools of projective geometry, the line parameters of the reflectors
can be inferred. As a first step, considering a sound source and a mi-
crophone array, the acoustic impulse response (AIR) is estimated for
each acoustic channel. The peaks in the AIRs correspond to TOAs
that are related to the direct-path propagation and the propagation
due to reflections. In many practical cases the TOA of the signal cor-
responding to the source-receiver path is not available due to lack of
synchronization. In this case the TDOAs between different receivers
can be exploited to localize the sound source as long as the propa-
gation speed is known. In fact the source localization is commonly
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carried out by using a standard speed of sound value to convert the
TDOAs in source’s Range Differences (RDs) [8, 10]. Then the esti-
mated source range together with the propagation speed turns TDOA
measurements into TOAs. As a next step the geometric constraint
is formed where each reflective TOA is shown to correspond to an
ellipse, with foci in source and receiver locations, and major axis
equal to the length of the reflective path. Under ideal conditions,
combining the ellipses related to the reflector and source-receiver
pairs uniquely identifies the desired line parameters describing the
reflectors.

It is evident that the reflector localization methodology relies on
accurate TDOA or TOA information which is therefore dependent on
accurate source localization and consequently accurate knowledge
of the actual speed of sound. In fact, in uncontrolled environments,
the use of the standard speed value might lead to inaccuracy in the
source localization due to temperature variations [11].

This paper presents a geometric inference framework which in-
cludes the estimation of the actual speed of sound to improve the
accuracy under temperature variations. The paper is structured as
follows. Sec. 2 gives a description of the basis for the geometric
inference, from the estimation of the acoustic channels to the con-
version of TDOAs and TOAs into geometric constraints. Sec. 3
shows how to calibrate the geometric estimation to the actual prop-
agation speed which can be estimated from the measured TDOAs.
Sec. 4 is devoted to experimental results and in Sec. 5 conclusions
are drawn.

2. ROOM INFERENCE

Let M sensors be distributed in a 2-D plane at positions ai !
[xi yi]

T , i = 0, . . . ,M − 1, and a source at x ! [xs ys]
T . Each

sensor receives the output signal given by

xi(t) = hT
i s(t) + bi(t), (1)

where hi is the ith channel acoustic impulse response, s(t) the
source signal at time t and bi(t) is the additive noise at the ith out-
put. This output is composed of the sum of the direct-path signal
and scaled replicas of the source signal. The delay of each replica
is determined by the respective positions of reflectors, source and
receivers. Accordingly, the AIRs are given by

hi(t) =
Q
∑

q=0

αi,qδ(t− τi,q), (2)

where Q is the total number of reflections of all orders, αi,q is an
attenuation term and τi,q is defined as the TOA associated with the
ith sensor and the qth reflection. In vector/matrix form the model is
expressed as

x(t) = Hs(t) + b(t), (3)
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Fig. 1. Direct-path and three first-order reflections for (a) measured
impulse response, (b) modified impulse response according to (6).
Red ‘◦’ mark the estimated peak locations.

where

x(t) = [x0(t) x1(t) · · · xM−1(t)]
T ,

H =





h0,0 h0,1 · · · h0,L−1

h1,0 h1,1 · · · h1,L−1

...
...

. . .
...

hM−1,0 hM−1,1 · · · hM−1,L−1





M×L

,

s(t) = [s(t) s(t− 1) · · · s(t− L+ 1)]T ,

b(t) = [b0(t) b1(t) · · · bM−1(t)]
T ,

and L is the length of the longest channel impulse response. For
the remainder of this paper, we will not consider all reflections Q
but only TOAs that are related to direct-paths and the single first-
order reflection in each channel. The single first-order reflection is
called the dominant reflection and is assumed to coincide with the
first dominant peak after the direct-path peak.

2.1. Peak Detection from Acoustic Impulse Responses

Let hi(n) be samples of hi(t) at sample index n. Fractional delays
result from path lengths that are not integer multiples of the distance
propagated by sound in one sample period. Detection of impulsive
events can be achieved to within one sample by considering local
centres of energy with algorithms such as the sliding group delay
function [12].

AIRs measured in real acoustic environments present a more
challenging problem as the loudspeaker impulse response hs(n) is
convolved with the AIR hi(n). Assuming supervised identification
with which estimation error can be ignored, the measured AIR is

ĥi(n) = hs(n) ∗ hi(n). (4)

An example impulse response for a measured system is seen in Fig. 1
(a), showing respectively the direct-path and three first-order reflec-
tions for a single channel. The centres of each event are marked by
red ‘◦’, each of which are surrounded by nearby ripples caused by
hs(n). The ripples cause ambiguity in determining the exact time
corresponding to the peak and therefore a matched filter is proposed
to alleviate this problem.

The length of hs(n) is usually sufficiently short that it has de-
cayed before the arrival of the first-order reflections [13]. There-
fore, hs(n) can be observed from the first few nonzero taps in ĥi(n).
Let nDP

i be the propagation time of the direct-path signal from the
source to microphone i and Ls be the approximate length of the loud-
speaker impulse response. The loudspeaker impulse response can be
estimated by ĥs

i(n) = ĥi(n+ nDP
i )wi(n), where

wi(n) =

{
1 if 0 ≤ n < Ls

0 otherwise.
(5)

The filter ĥs(n) can be equalized by finding a filter gs(n) such that
ĥs(n)gs(n) % δa(n), i.e. approaching the unit impulse function
δa(n), in a least-squares sense. Although this is an optimal solu-
tion it has been found unreliable in our experience in most practical
situations. A suboptimal but more robust approach is given by the
sliding correlation or matched filter [14],

h̃i(n) =
Ls−1∑

j=0

ĥs
i(j)hi(n+ j), (6)

that equalizes ĥs
i to a sinc function as demonstrated in Fig. 1 for a

measured AIR. In (b) the mean group delay of ĥs
i has been compen-

sated. The detected peaks are denoted by ni,k where i and k are the
microphone and reflector index respectively. In the case of synchro-
nized measurements, ni,k = τi,kfs.

2.2. Geometric Constraint

Under the hypothesis of specular reflection, the angle of reflection
and incidence are assumed equal such that the locus of possible so-
lutions for the reflector forms an ellipse. The focal points of the
ellipses coincide with the microphone positions ai and the source
position xs. The scaling of the minor and major axes of each ellipse
are proportional to τi,k. In homogenous coordinates a conic in two
dimensions using parameters {a, b, c, d, e, f} can be expressed as

C =
{
(x, y) ∈ R2|ax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0

}
.
(7)

or by setting v = [x y 1]T and C =




a b d
b c e
d e f



 as vTCv = 0,

which parameterises an ellipse after constraining

det(C) '= 0,

∣∣∣∣
a b
b c

∣∣∣∣ > 0, det(C)/(a+ c) < 0. (8)

The ellipse associated with the ith microphone and the dominant
reflector is defined as Ci. The estimation of the unknown parameters
of Ci is outlined in detail in [3]. Furthermore a line in homogeneous
coordinates can be expressed as

L =
{
(x, y) ∈ R2|l1x+ l2y + l3 = 0

}
, (9)

which after setting l = [l1 l2 l3]
T can be written as lTv = 0. If

we group together M ellipses that are associated with a particular
reflector, then the line parameters of this reflector can be estimated
using the following cost function:

J
(
l, {C∗

i }M−1
i=0

)
=

M−1∑

i=0

∥∥lT C∗
i l

∥∥2
, (10)

where M ≥ 3 and C∗
i = det (Ci)C

−1
i is the adjoint of the conic-

matrix Ci.



3. GEOMETRIC INFERENCE UNDER TEMPERATURE
VARIATIONS

Under temperature variations a standard value for the speed of sound
might yield an inaccurate estimation of τi,k impairing the reflector
localization, in this case an estimate of the actual speed of sound is
necessary. The authors proposed in [15] a novel method to estimate
the speed of sound. Such a method relies merely on TDOA mea-
surements and therefore it is suited for geometric inference when no
synchronization between source and receiver is available.

3.1. Speed of Sound Estimation from TDOAs

Consider the two-dimensional inference problem of the previous
section, i.e. an acoustic source lies in an unknown position xs and M
sensors are distributed at the known positions ai with i = 0, · · · , N
and N = M − 1. From the M estimated AIRs a spherical set of
N TDOAs can be obtained as time differences between the direct-
path peaks and the direct-path peak of the reference microphone. If
the first microphone a0 is chosen as reference such a set may be
represented by the following N -vector

τ =
1
fs





n1,0 − n0,0

n2,0 − n0,0

. . .
nN,0 − n0,0



 . (11)

According to [15] the following scalar function of the assumed sig-
nal propagation speed c can be written

δ(c) = ||Γb(c)||− 1
c
Θb(c) , (12)

where the constant matrices Θ, Γ and the N -vector b(c) depend
only on the microphone positions ai, , i = 1, · · · , N and the vec-
tor τ . The zero of the above function is an estimate of the actual
propagation speed, in this case the actual speed of sound.

Unfortunately such a function δ(c) involving the Euclidean
norm of Γb(c) is nonlinear, therefore applying a root-finding al-
gorithm might be intractable. This issue can be overcome by
linearizing δ(c) near to its zero-crossing as it has been shown to
be approximately linear in that range. In acoustic applications, the
standard value of speed of sound at 20 ◦C may be chosen as a reli-
able linearization point c̄, leading to the following first order Taylor
expansion

δ(c) ≈ δlin(c) = δ̄ + δ̄′(c− c̄) , (13)

with

δ̄ = δ(c̄) and δ̄′ =
dδ(c)
dc

∣∣∣∣
c=c̄

. (14)

Finally, the estimated propagation speed value is given by the
zero-crossing point ĉ of the linearized function δlin(c), i.e.

ĉ =
δ̄ − δ̄′c̄

δ̄′
, (15)

where the value of the first order derivative δ̄′ at c̄ can be calculated
with derivation rules from (12).

3.2. Multiple Sources Approach

As reported in [15], the above speed estimate can be improved in
noisy conditions by exploiting the full TDOA set. However here
the TDOAs are not obtained by signal correlation, rather they are

extracted from the M estimated AIRs. As a consequence the con-
struction of the full TDOA set will not add any useful information
for the speed estimation. Moreover the microphone array used for
the geometric inference experiments (see Sec. 4) uses only M = 5
microphones, i.e. only one microphone provides redundant infor-
mation to counteract the effect of the measurement noise since the
minimum number of sensors required for the two dimensional speed
estimation problem is 4. Nevertheless the robustness of the algo-
rithm can be still improved by assuming that for a small-size array
the speed of sound in a reasonable time interval is the same regard-
less of the source position. Following this idea the scalar function
δ(c) in (12) can be built using TDOA sets generated by different
acoustic sources. For a rectangular room, four differently located
acoustic sources are used (see Fig. 2). Hence for each source xj

(j = 1, 2, 3, 4) a function δj(c) is derived. In noisy conditions a
robust speed of sound estimate can be found from the minimization
in the least-squares sense of such functions. The corresponding cost
function is given by

4∑

j=1

δj(c)
2 =

4∑

j=1

(
||Γjbj(c)||−

1
c
Θjbj(c)

)2

, (16)

where the index j indicates that the matrices Θ, Γ and the vector
b(c) are obtained using the vector τj corresponding to the source
xj . Again the linear approximation described in Sec. 3.1 can be
applied to perform the minimization efficiently.

The resulting speed of sound estimate can be now used to accu-
rately estimate the TOAs τi,k by means of source localization algo-
rithms and perform the reflector localization according to Sec. 2.2.

4. EXPERIMENTAL RESULTS

The effects of temperature variation on the speed of sound within
the reflector localization framework have been evaluated in a real
conference room measuring 3.31 × 3.58 × 3.00 m, with concrete
walls and two flush-mounted wooden doors in the south and east
walls. A microphone array consisting of four microphones spaced
by 0.5 m in a ‘+’ configuration and a fifth placed in the centre was
positioned at (1.75,1.5) m from the south-west corner. A Genelec
8030A loudspeaker was placed at four distinct source positions. The
microphone signals were sampled at 96 kHz. At each position, the
acoustic impulse response between the source and microphone array
was estimated using the MLS method [16].

At first, geometric inference has been performed without knowl-
edge of the true speed of sound. As usual a value for the speed of
sound has to be assumed to convert estimated time differences into
range differences. Here a value of c = 375 m

s has been adopted cor-
responding to a temperature of ϑ = 72 ◦C. This rather high value
has been chosen to demonstrate the effect of an erroneous assump-
tion.

Next the same set of TDOAs has been used for geometric infer-
ence, but this time the speed of sound at the time of measurement
has been infered from these TDOAs. The resulting speed of sound
was ĉ = 345 m

s corresponding to a temperature of ϑ = 23 ◦C.
The results in Fig. 2 and Table 1 show not only the increase of

the distance error εd and the angular error εa with an erroneously as-
sumed temperature resp. speed of sound. Fig. 2 displays also clearly
the effect of a temperature increase on the inference of the wall po-
sitions: A higher value of the speed of sound virtually increases the
size of the room by upscaling all involved distances.

A variation of the room temperature by ∆ϑ ≈ 50K may seem
excessive except in spaces exposed to seasonal variations of the am-
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Fig. 2. Room inference results using a microphone array, placed
centrally in a small conference room, capturing a MLS sequence
from 4 source positions in turn. Red lines: assumed speed of sound
c = 375 m

s . Blue lines: estimated speed of sound c = 345 m
s .

Dashed black rectangle: actual geometry of the room.

Table 1. Reflector Localization Results with Real-World Data
c = 345 m

s

Wall εd [cm] εa [◦]
North 1.890 0.056
East 0.770 0.388

South 5.220 0.429
West 0.650 0.138

c = 375 m
s

Wall εd [cm] εa [◦]
North 19.440 1.253
East 16.150 0.400

South 16.910 1.168
West 11.980 1.101

bient temperature. However the room available for the experiment
in Fig. 2 is rather small. Larger rooms with a larger travel time of
the reflections are more sensitive to speed of sound variations and
exhibit the same absolute errors at smaller temperature variations.

5. CONCLUSIONS

A technique for inferring the geometry of a room under tempera-
ture variations has been presented. Since existing methods rely on
either synchronized measurements or often inaccurate estimates of
the speed of sound, the propagation speed is estimated before the
dominant reflectors are localized. In this way the room geometry
can be reconstructed even when there are fluctuations in the ambient
temperature. Improvements in accuracy are demonstrated in a real
conference room that is exposed to strong temperature variations.

6. REFERENCES

[1] F. Antonacci, A. Calatroni, A. Canclini, A. Galbiati, A. Sarti,
and S. Tubaro, “Soundfield rendering with loudspeaker arrays
through multiple beam shaping,” in Proc. of IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics,
WASPAA ’09, 2009.

[2] F Antonacci, A Sarti, and S Tubaro, “Geometric reconstruc-
tion of the environment from its response to multiple acoustic
emissions,” in Proc. of IEEE Int. Conf. on Acoustics, Speech

and Signal Processing (ICASSP), Dallas, Tx, Mar. 2010, pp.
2822–2825.

[3] J. Filos, E. A. P. Habets, and P. A. Naylor, “A two-step ap-
proach to blindly infer room geometries,” in Proc. of Int. Work-
shop Acoust. Echo Noise Control (IWAENC), Tel Aviv, Israel,
Sept. 2010.

[4] J. Filos, A. Canclini, M. R. P. Thomas, F. Antonacci, A. Sarti,
and P. A. Naylor, “Robust inference of room geometry from
acoustic measurements using the Hough transform,” in Proc.
of European Signal Processing Conf. (EUSIPCO), Barcelona,
Spain, Aug. 2011, pp. 161–165.

[5] A. Canclini, P. Annibale, F. Antonacci, A. Sarti, R. Rabenstein,
and S. Tubaro, “A methodology for evaluating the accuracy of
wave field rendering techniques,” in Proc. of IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), Prague,
Czech Republic, May 2011, pp. 69–72.

[6] E. Mabande, Haohai Sun, K. Kowalczyk, and W. Kellermann,
“On 2D localization of reflectors using robust beamforming
techniques,” in Proc. of IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP), Prag, Czech Republic, May
2011, pp. 153–156.

[7] I. Dokmanic, Y.M. Lu, and M. Vetterli, “Can one hear the
shape of a room: The 2-D polygonal case,” in Proc. of
IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), May 2011, pp. 321 –324.

[8] Yiteng Huang, J. Benesty, G. W. Elko, and R. M. Mersereati,
“Real-time passive source localization: a practical linear-
correction least-squares approach,” Trans. on Speech and Au-
dio Processing, vol. 9, no. 8, pp. 943–956, August 2002.

[9] P. A. Naylor and N. D. Gaubitch, Eds., Speech Dereverbera-
tion, Springer, 2010.

[10] P. Stoica and Jian Li, “Lecture notes - source localization
from range-difference measurements,” IEEE Signal Process-
ing Magazine, vol. 23, no. 6, pp. 63–66, November 2006.

[11] P. Annibale and R. Rabenstein, “Accuracy of time-difference-
of-arrival based source localization algorithms under temper-
ature variations,” in Proc. of Int. Symposium on Communi-
cations, Control and Signal Processing, (ISCCSP), Limassol,
Cyprus. IEEE, 2010.

[12] Mike Brookes, Patrick A. Naylor, and Jon Gudnason, “A quan-
titative assessment of group delay methods for identifying glot-
tal closures in voiced speech,” IEEE Trans. on Speech Audio
Process., vol. 14, 2006.

[13] L. R. Fincham, “Refinements in the impulse testing of loud-
speakers,” Journal Audio Eng. Soc., vol. 33, no. 3, pp. 133–
140, Mar. 1985.

[14] G. Turin, “An introduction to matched filters,” IRE Trans. on
Information Theory, vol. 6, no. 3, pp. 311–329, June 1960.

[15] P. Annibale and R. Rabenstein, “Acoustic source localization
and speed estimation based on time-differences-of-arrival un-
der temperature variations,” in Proc. of European Signal Pro-
cessing Conference (EUSIPCO), Aalborg, Denmark, August
2010.

[16] J. Vanderkooy, “Aspects of MLS measuring systems,” Journal
Audio Eng. Soc., vol. 42, pp. 219–231, 1994.


