
Timing is everything: Sparse sampling 
based on time-encoding machines

Pier Luigi Dragotti, Imperial College London
1 July 2019



2

Ack.

Joint work with 
Roxana Alexandru (ICL) 

Interaction
Vincent Leung (ICL) 



3

The Problem

• Your primary school child has been assigned a nasty summer homework

• He needs to estimate rainfall over the summer break 

• He is desperate because the summer vacation is at stake 
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The Problem
Approach 1

July 10 July 20 July 30 August 9 August 19 August 29

• Put a bucket in the back garden and record rainfall at regular intervals 
(e.g. every 10 days record rainfall and empty bucket)
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The Problem
Approach 1

July 10 July 20 July 30 August 9 August 19 August 29

• Advantage: Easy estimation
• Disadvantage: inefficient (need to check and empty the bucket regularly 

even during the dry season and so…no summer vacations!)
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• Only record the day when the bucket is full and then empty it

The Problem
Approach 2

July 18 July 28 September 2
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The Problem
Approach 2
• Advantage: Very efficient (we can go on holiday in August!)
• Disadvantage: estimation of rainfall over the period is more complicated

July 18 July 28 September 2
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Sampling
• These two approaches represent two very different ways to sample a 

continuous phenomenon
• Approach 1 is what we engineers do and is equivalent to the traditional 

amplitude-based uniform sampling

! "
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Sampling

• Approach 2 maps analogue information into a time sequence and is used 
by nature (e.g., integrate-and-fire neurons)

Time Encoding 
Machine
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Motivation
Time encoding appears in nature, as a mechanism used by neurons to represent 
sensory information as a sequence of action potentials, allowing them to process 
information very efficiently.

Input signal
Action potentials
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Time-Based Sampling
• Acquisition systems inspired by time-based sampling, such as event-

based vision sensors, are emerging in a variety of new scenarios (e.g. 
see Toby Delbruck web page)

Videos taken from Inivation.com (see also Toby Delbruck web page) 
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Time-encoding machines
Integrate-and-fire System
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Time-encoding machines
Comparator System

!" !# !$ !%!& !' !(

)(!)

• At the crossing times, ,(!-) − / !- = 0 hence ,(!-) = / !- .

+,(!) !", !#,…, !-
+

−

Zero-crossing 
detector

/(!)

34 =
1
64



14

Reconstruction from time-encoded information
• Given the retrieved non-uniform samples ! "# , ! "% , … , !("() can we reconstruct 

!(")?

• This is a classical problem in non-uniform sampling

• Assume that !(") belongs to a shift-invariant space (e.g., !(") is bandlimited, 
! " = ∑, -,. " − 0 ) then, if the density of samples D ≥ 1, perfect reconstruction 
is possible1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• Key result:1 if the density of samples D ≥ 1 then perfect reconstruction 
can be using an iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001

July 18 July 28 September 2
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Reconstruction from time-encoded information

• Key result:1 if the density of samples D ≥ 1 then perfect reconstruction 
can be using an iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001

July 18 July 28 September 2
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001

+
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information
• Key result:    if the density of samples D ≥ 1 then $%& ' form a basis

• Key Issue 1: In the case of uniform sampling the density is ( = 1. This 
means that current TEMs are less energy efficient than uniform sampling!

• Key Issue 2: Cannot sample sparse (non-bandlimited) signals with the 
current methods.



31

• For integrate-and-fire machines exact reconstruction proved here: A. A. Lazar and 
L. T. Toth, “Time encoding and perfect recovery of bandlimited signals”, ICASSP 
2003  

Reconstruction from time-encoded information

y(")f(")$(")
+
−
+ Threshold 

Detector
Integrator

−'(

'(

") "* "+ ",
"

See also: Gauntier-Vetterli-2014, Adam et al 2019,
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Sparse Sampling - Signals 
• We consider sparse parametric signals (i.e., signals with finite rate of 

innovation2). 
• Key issue is how to retrieve the free parameters of these signals for time-based 

information

2Vetterli Marziliano Blu, Sampling Signals with Finite Rate of Innovation, IEEE Trans. on Signal Processing, June 2002
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Sparse Sampling - Acquisition 

• In sparse sampling, the acquisition device is used to ‘spread the innovation’
• Reconstruction process is non-linear
• These two ingredients are necessary to time-encode sparse non-bandlimited 

signals

Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements yn = hx(t), '(t/T � n)i, you want to reconstruct x(t).

T

x(t)
!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Natural questions:

I When is there a one-to-one mapping between x(t) and yn?

I What signals can be sampled and what kernels '(t) can be used?

I What reconstruction algorithm?

Pier Luigi Dragotti
Approximate Strang-Fix: Sparse Sampling with any Acquisition Device
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Sparse Sampling 

• We leverage two main ideas from sampling sparse signals with finite rate of 
innovations:
– The sampling kernels can reproduce polynomials or exponentials 
– Reconstruction is achieved using Prony’s method

Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements yn = hx(t), '(t/T � n)i, you want to reconstruct x(t).

T

x(t)
!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Natural questions:

I When is there a one-to-one mapping between x(t) and yn?

I What signals can be sampled and what kernels '(t) can be used?

I What reconstruction algorithm?

Pier Luigi Dragotti
Approximate Strang-Fix: Sparse Sampling with any Acquisition Device



B-splines Reproduce Polynomials
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β1(t) c0,n = (1, 1, 1, 1, 1, 1, 1) c1,n = (−3,−2,−1, 0, 1, 2, 3)

The linear spline reproduces polynomials up to degree L=1:
P

n cm,nβ1(t − n) = tm m = 0, 1, for a proper

choice of coefficients cm,n (in this example n = −3,−2, ..., 1, 2, 3).

Notice: cm,n = ⟨ϕ̃(t − n), tm⟩ where ϕ̃(t) is biorthogonal to ϕ(t): ⟨ϕ̃(t), ϕ(t − n)⟩ = δn.

18

Reproduction of Polynomials 



Reproduction of Polynomials 
B-splines Reproduce Polynomials
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The cubic spline reproduces polynomials up to degree L=3:
P
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Reproduction of Exponentials Exponential Reproducing Kernels
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Reproduction
Scaled and shifted E−splines
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Reproduction
Scaled and shifted E−splines

Here the E-spline is of second order and reproduces the exponential e↵0t , e↵1t : with

↵0 = �0.06 and ↵1 = 0.5.

Pier Luigi Dragotti
Sampling and Reconstruction driven by Sparsity Models: Theory and Applications

Exponential Reproducing Kernels

Here the E-spline is of second order and reproduces the exponential e↵0t , e↵1t : with

↵0 = �0.06 and ↵1 = 0.5.

Pier Luigi Dragotti
Sampling and Reconstruction driven by Sparsity Models: Theory and Applications



From Samples to Signals From Samples to Signals

I Compute a linear combination of the samples: sm =
P

n cm,nyn for
some choice of coe�cients cm,n that reproduce polynomials or
exponentials

I Because of linearity of inner product, we have that

sm =
P

n cm,nyn

=
P

m cm,nhx(t), '(t/T � n)i m = 0, 1, ..., L.

= hx(t),
P

n cm,n'(t/T � n)i m = 0, 1, ..., L.

I Given the proper choice of coe�cients, we have thatP
n cm,n'(t/T � n) = e j!mt/T

Pier Luigi Dragotti
Sparsity and Sampling: at the Heart of Hybrid Analogue/Digital Processing



From Samples to Signals 
From Samples to Signals

Then
sm =

P
n cm,nyn

= hx(t),
P

n cm,n'(t/T � n)i

=
R 1

�1 x(t)e j!mtdt, m = 0, 1, ..., L.

Pier Luigi Dragotti
Sparsity and Sampling: at the Heart of Hybrid Analogue/Digital Processing



Sampling a stream of DiracsSampling Streams of Diracs

I Assume x(t) is a stream of K Diracs on the interval of size N:

x(t) =
PK�1

k=0 xk�(t � tk), tk 2 [0,N).
I We restrict j!m = j!0 + jm� m = 1, ..., L and L � 2K .
I We have N samples: yn = hx(t), '(t � n)i, n = 0, 1, ...N � 1:
I We obtain

sm =
PN�1

n=0 cm,nyn

=
R 1

�1 x(t)e j!mtdt,

=
PK�1

k=0 xke j!mtk

=
PK�1

k=0 x̂ke j�mtk =
PK�1

k=0 x̂kumk , m = 1, ..., L.

Pier Luigi Dragotti
Sensing the physical world: Sparse Sampling meets Strang-Fix and Baron de Prony
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• The quantity 

!" = ∑%&'( )%*+",-./ = ∑%&'( )%0%" 1 = 1,… , 5

is a sum of exponentials

• Retrieving the locations 0% and the amplitudes )% from {!"}"&'8 is a classical 
problem in spectral estimation  and was first solved by Gaspard de Prony in 
1795.3

• Given the pairs )%, 0% then 9% = (ln 0%)/ ?@A.

Prony’s Method

3P. Stoica and R. Moses. Spectral Analysis of Signals. 2005.
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Our approach for time decoding of signals
Signals
• We consider sparse continuous-time signals like streams of diracs, stream of 

pulses or piecewise constant signals
Sensing Systems
• We filter before using a TEM

!(−$)

Non-bandlimited 
input signal

Compact-support filter
(polynomial/exponential spline)

TEM

Time Encoding Machine
(zero-crossing detector/

integrate-and-fire system)

Timing Information

$& $' $( $)



43

Our approach for time decoding of signals
• Reconstruction of !(#) depends on the

– sampling kernel %(#)
– the density of time instants {#'}

• We achieve a sufficient density of output samples by imposing conditions on:
– The frequency of the comparator's sinusoidal signal (crossing TEM ).
– The trigger mark of the integrator (integrate-and-re TEM ).
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Our approach for time encoding of signals
Comparator System

• At the crossing times, ! "# − % "# = 0 hence ! "# = % "# .
• Moreover:

! "# = ∫)(+)-(+ − "#) .+ = ) " , -(" − "#)

+-(−")
)(")

"1, "2,…, "#
+

−

Zero-crossing 
detector

%(")

34 =
1
64

!(")
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Sampling Kernels (B-splines)
Sampling Kernels

Polynomial Splines

The anti-causal version of the zero-order B-spline is defined as:

�0(t) =

(
1, �1  t  0,

0, otherwise.

The P-order B-spline can be computed as:

�P(t) = �0(t) ⇤ �0(t).... ⇤ �0(t)| {z }
P+1 times

,

The P-order B-spline satisfies the Strang-Fix condition:
X

n2Z
cm,n�P(t � n) = tm,

where m 2 {0, 1, ...,P}, and for a proper choice of coe�cients cm,n.

R. Alexandru, P.L. Dragotti Time-based sampling and reconstruction of non-bandlimited signals 17
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Sampling Kernels (B-splines)
Polynomial Splines
• Linear combinations of uniform shifts of B-splines reproduce polynomial 

because the ‘knots’ overlap and ‘compensate’ each other. 

• Key insight: in the case of non-uniform shifts, reproduction of 
polynomials is still possible locally in ‘knot-free’ regions
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Sampling Kernels (B-splines)

Key insight: in the case of non-
uniform shifts, reproduction of 
polynomials is still possible 
locally in ‘knot-free’ regions

Sketch of the argument:
• Each ‘knot-free’ piece of a 

spline of order ! is a 
polynomial of degree !

• ! overlapping splines can 
reproduce polynomial of 
maximum degree ! in a 
‘knot-free’ region "# "$
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!
"#ℤ

%&,"( ) − + = -./01

• The first-order E-spline of support L is defined as:

( ) =

-/2./3

45 − 46
7.89: +

-./2</3

46 − 45
7.8=:, −> ≤ ) ≤

−>
2

1
46 − 45

7.89: +
1

45 − 46
7.8=:,

−>
2
≤ ) ≤ 0

0, C)ℎ-EFGH-

• This function can reproduce exponentials 7.89: and 7.8=:. 

Sampling Kernels (E-splines)

• Exponential Splines (E-splines) can reproduce exponentials:
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• Reproduction of exponentials using uniform shifts of the first-order E-spline:

!
"#ℤ

%&,"( ) − + = -./01

Sampling Kernels 

)[3]

∆) = 1 ∆) = 1

0 1 2 3 4 5 6 7 8
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• Reproduction of exponentials can be achieved locally in !, using at least two 
non-uniform shifts of the E-spline:

"
#$%

&
'(,#* + − +# = ./012, 3 ≥ 2

• The kernels should be continuous within that local interval !.

Sampling Kernels

+% +6+7% +76

!

+7% - discontinuity of * + − +%
+76 - discontinuity of * + − +6
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Comparator System – One Input Spike

+"(−%)
'(%)

%(, %),…, %*
+

−

Zero-crossing 
detector

+(%)

,- =
1
0-

1(%)
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Crossing Time Encoding Machine

Estimation of an Input Spike

y(t1) = hx(t),'(t � t1)i.
y(t2) = hx(t),'(t � t2)i.

R. Alexandru, P.L. Dragotti Time-based sampling and reconstruction of non-bandlimited signals 25

Comparator System – One Input Spike

! "# = % " , '(" − "#)

! "+ = % " , '(" − "+)
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Crossing Time Encoding Machine

Estimation of an Input Spike

y(t1) = hx(t),'(t � t1)i.
y(t2) = hx(t),'(t � t2)i.

R. Alexandru, P.L. Dragotti Time-based sampling and reconstruction of non-bandlimited signals 25

Comparator System – One Input Spike

We assume:

• Amplitude of the Dirac !" < 1
• The sampling kernel % & and its non-uniform shifts reproduce '()*+and ',()*+

and 0 < ./ ≤ 1
2 where 3 is the support of % & . 

• The frequency of the sinusoidal signal satisfies 45 > 7
82.
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Crossing Time Encoding Machine

Estimation of an Input Spike

y(t1) = hx(t),'(t � t1)i.
y(t2) = hx(t),'(t � t2)i.

R. Alexandru, P.L. Dragotti Time-based sampling and reconstruction of non-bandlimited signals 25

Comparator System – One Input Spike

Under these assumptions:
• The first two timing locations satisfy  !", !$ ∈ ['", '" + )

$]. This means that       

'" ∈ !$ − )
$ , !"

• This is useful since in the interval , = !$ − )
$ , !" , the shifted kernels .(! − !")

and .(! − !$) have no knots (so can reproduce exponentials or polynomials)
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Comparator System – One Input Spike

• We know we can find coefficients !",$% such that: 

∑$'(
) !",$

% * + − +$ = ./012, for + ∈ 4,5 = 0,1.

• We then have:

9: = ;
$'(

)

!:,$
% < +$ = ;

$'(

)

!:,$
% = + , * + − +$ = >

?@

@

=(+);
$'(

)

!:,$
% * + − +$ = =(./0CDE,

9( = ;
$'(

)

!(,$
% < +$ = ;

$'(

)

!(,$
% = + , * + − +$ = >

?@

@

=(+);
$'(

)

!(,$
% * + − +$ = =(./0EDE,

• Then F( =
(

/ 0E?0C
ln

IE
IJ

and =( = s:/e
N0CDE
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Crossing Time Encoding Machine

Estimation of an Input Spike

y(t1) = hx(t),'(t � t1)i.
y(t2) = hx(t),'(t � t2)i.

R. Alexandru, P.L. Dragotti Time-based sampling and reconstruction of non-bandlimited signals 25

Comparator System – One Input Spike

• We use Bolzano’s intermediate value theorem to show that !", !$ ∈ ['", '" + )
$]

• Denote with ℎ ! = - ! − / ! , assume - '" > 0 and 2" > 0 then ℎ '" > 0 and 
ℎ '" + 34

$ = - '" + 34
$ − / '" + 34

$ < 0, this implies ℎ !" = 0 for some !" ∈ ['", '" + 3
$]

• Similarly !$ ∈ ['" + 34
$ , '" +

634
7 ]

• Since 89 = "
:4
< $)

6 then !", !$ ∈ ['", '" + )
$]
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Comparator System – Example

Crossing Time Encoding Machine

Estimation of a Stream of Spikes

Figure 7: The input is shown in (a), the filtered input and comparator’s reference
signal in (b), the output non-uniform samples in (c), and the reconstructed signal
in (d).

R. Alexandru, P.L. Dragotti Time-based sampling and reconstruction of non-bandlimited signals 31



58

Summary on Sparse Sampling with Comparator  

• We can sample and perfectly reconstruct non-bandlimited signals  !

• Number of time samples still large (time information provided also when 
signal is zero)  "

• Use the new framework but with the Integrate-and-Fire TEM !!!
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Integrate and Fire TEM  

y(")f(")$(−")&(") Threshold 
Detector

Integrator

−'(

'(

") "* "+ ",
"

spike triggered reset

!

"# "$"%&%

(φ ∗ *+,)(" − "#)
(φ ∗ *+/)(" − "%)

0%φ(&% − ")

0%1(" − &%)

• The sampling kernel ! " and its non-uniform shifts reproduce #$%&'and #($%&'
and 0 < +, ≤ .

/ where 0 is the support of ! " . 

• What is the minimum value of the trigger mark 12 that would allow the perfect 
reconstruction of stream of pulses or piecewise constant signals?
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Integrate and Fire TEM  

y(")f(")$(−")&(") Threshold 
Detector

Integrator

−'(

'(

") "* "+ ",
"

spike triggered reset

!

"# "$"%&%

(φ ∗ *+,)(" − "#)
(φ ∗ *+/)(" − "%)

0%φ(&% − ")

0%1(" − &%)

• Given the times !", !$, … , !&, the amplitude values are

Acquisition Models

Integrate-and-fire Time Encoding Machine

The output spikes can be computed as:

yn = y(tn) = ±CT =

Z tn

tn�1

f (⌧)d⌧ =

Z tn

tn�1

Z
x(↵)'(↵� t)d↵d⌧.

R. Alexandru, P.L. Dragotti Time-based sampling and reconstruction of non-bandlimited signals 13
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Integrate and Fire TEM  

y(")f(")$(−")&(") Threshold 
Detector

Integrator

−'(

'(

") "* "+ ",
"

spike triggered reset

!

"# "$"%&%

(φ ∗ *+,)(" − "#)
(φ ∗ *+/)(" − "%)

0%φ(&% − ")

0%1(" − &%)

• Equivalently the output samples can be expressed as: 

Acquisition Models

Integrate-and-fire Time Encoding Machine

Equivalently, the output samples can be expressed as:

y(tn) = hx(t), (' ⇤ q✓n)(t � tn�1)i,
where ✓n = tn � tn�1 and q✓n(t) is defined as:

q✓n(t) =

(
1, 0  t  ✓n,

0, otherwise.
R. Alexandru, P.L. Dragotti Time-based sampling and reconstruction of non-bandlimited signals 14
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Integrate and Fire TEM  

y(")f(")$(−")&(") Threshold 
Detector

Integrator

−'(

'(

") "* "+ ",
"

spike triggered reset

!

"# "$"%&%

(φ ∗ *+,)(" − "#)
(φ ∗ *+/)(" − "%)

0%φ(&% − ")

0%1(" − &%)

• The equivalent kernel (" ∗ $%&)(( − (*+,) is still able to reproduce 
exponentials 

• So trigger mark must guarantee enough samples in a short interval

• Proposition:  when -. < 012&
3456

1 − cos 45;
< then (,, (<, (> ∈ @,, @, + ;

< and 
perfect reconstruction is possible
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Integrate and Fire – Reconstruction of Pulses  
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Integrate and Fire – Reconstruction of Pulses  
Integrate-and-fire Time Encoding Machine

Estimation of a Stream of Pulses

Figure 11: The input is shown in (a), the filtered input and integrator output in
(b), the output non-uniform samples used to retrieve the first pulse in (c), and
the reconstructed signal in (d).

R. Alexandru, P.L. Dragotti Time-based sampling and reconstruction of non-bandlimited signals 35
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10

Fig. 13: Universal sampling of a sequence of bursts of Diracs using
the integrate-and-fire TEM. The input signal is shown in (a), the
output non-uniform samples of one channel used for estimation in
(b), and the reconstructed signal in (c).

B. Robustness of the Integrate-and-fire TEM to Noise

In many practical circumstances, the input signal is cor-
rupted by noise, which is typically assumed to be white,
additive Gaussian noise. When this happens, the non-uniform
times {tn} change which means that the sequence of moments
sm is also corrupted, and perfect reconstruction may no longer
be possible. Suppose we filter the noisy input with h(t) to
obtain:

f(t) =

Z +1

�1
[x(⌧) + e(⌧)]h(t� ⌧)d⌧

=

Z t+L

t

x(⌧)h(t� ⌧)d⌧ +

Z t+L

t

e(⌧)h(t� ⌧)d⌧

(a)
⇡

Z t+L

t

x(⌧)h(t� ⌧)d⌧,

where e(t) is white Gaussian noise, and (a) holds assuming
e(t) has average value equal to 0 and L is sufficiently large.

In Fig. 14 we show the reconstruction of a piecewise
constant signal corrupted by white, additive Gaussian noise,
using the method in Section IV-E. The filter is the derivative
of a fourth-order E-spline of support L = 4 which can
reproduce the exponentials e±j ⇡

3 t and e
±j ⇡

6 t, the trigger mark
of the comparator is CT = 0.001, the standard deviation of
the noise is � = 0.1 (SNR= 21.56dB), and the separation
between consecutive discontinuities of the input is larger than
L. The reconstruction of the input from noisy samples is very
accurate. A quantitative analysis of the effect of noise on the
retrieval of this piecewise constant signal is presented in Table
I. The table shows the error of the estimated locations and the
relative error of the estimated amplitudes of the discontinuities
in the input signal, averaged over 10000 experiments.

Fig. 14: Estimation of a piecewise constant signal from noisy samples,
obtained using the integrate-and-fire TEM. The noisy input is shown
in (a), and the reconstruction in (b).

VI. DENSITY OF NON-UNIFORM SAMPLES OBTAINED
WITH AN INTEGRATE-AND-FIRE TEM

In the previous sections, we have presented techniques for
estimation of non-bandlimited signals from timing informa-
tion. We have seen that perfect estimation can be achieved
using simple algorithms, and physically realisable kernels. In
this section we outline the fact that in many settings sampling

TABLE I: Effect of noise on the estimation of a piecewise
constant signal, from spikes obtained using the integrate-and-
fire TEM. The error ✏t is the average absolute difference
between the true and estimated locations, and ✏A is the relative
error of the estimated amplitudes of the input discontinuities.

� ✏t ✏A
0.01 2.61⇥ 10�4 6.21⇥ 10�5

0.05 0.0015 2.1509⇥ 10�4

0.1 0.0042 0.0026

based on timing using our integrate-and-fire system is an
efficient way to acquire signals, resulting in a smaller density
of samples, compared to classical sampling.

As a case in point we consider the retrieval of bursts of K
Diracs, described in Section IV-D. We have seen that perfect
reconstruction from timing information can be achieved, pro-
vided the separation between consecutive bursts is at least L,
and that the Diracs within any burst are sufficiently close. In
particular, let us denote the maximum separation between the
last and first Dirac within a burst with � = max(⌧K � ⌧1) <
L
2 , which can be determined according to Eq. (32) and (33).
Moreover, let us assume the input is sufficiently sparse, such
that the average separation between consecutive bursts is L+S,
with S > 0. Under these assumptions, the results in [6]
show that in order to retrieve the K Diracs from uniform
samples, we need at least 2K samples within the interval
L�� following the burst of Diracs. As a result, the uniform
sampling period must satisfy T  L��

2K . Then, the number
of uniform samples we record within an interval of length
L + S is L+S

T = 2K(L+S)
L�� . On the other hand, in the case

of time encoding using the integrate-and-fire TEM in Fig. 3,
the results in Section IV-D show that we need to record 4
output samples for each of the K channels (or equivalently,
4K samples for the case of single-channel sampling), for
each burst of K Diracs. We note that Eq. (33) shows that
in many situations, the TEM outputs more than 4 spikes per
channel. Nevertheless, these samples can be discarded since
they are not used in estimation. For example, one way to stop
recording spikes once we have obtained 4 non-zero samples,
is to increase the trigger mark CT of the comparator in Fig.
3, for a duration of L��.

Moreover, when the input is constant (zero), the integrate-
and-fire TEM does not fire, and hence there are no output
samples. Therefore, in an interval of size L + S, the number
of stored samples from a K-Dirac burst is 4K, 8S.

Furthermore, 2K(L+S)
L�� > 4K for S � L�2� > 0 and 8K,

which shows that the average number of non-uniform spikes
required for the retrieval of K Diracs is lower than the number
of uniform samples required to estimate the same number of
free input parameters, when the input is sufficiently sparse.

VII. CONCLUSIONS

In this work we established time encoding as an alternative
sampling method for some classes of non-bandlimited signals.
The proposed sampling scheme is based on first filtering
the input signal, before retrieving the timing information
using a crossing or integrate-and-fire TEM. We demonstrated
sufficient conditions for the exact recovery of streams of

Reconstruction with Arbitrary Kernels
• Sufficient conditions for perfect reconstruction may appear restrictive, but they 

can be relaxed with minimum loss in reconstruction quality
• The proposed reconstruction framework can be used with any acquisition device
• If reproduction of exponentials is not satisfied use LS methods to find the 

coefficients !",$% that achieve best fit:
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signal with the E-spline '(t). The discontinuities dx(t)
dt can

be estimated from the output spikes, by extending the results
of Proposition 5 to the case of a P -order E-spline 'P (t),
with P � 2. In this case, the E-spline 'P (t) of support L

can reproduce P � 2 different complex exponentials e
j!mt,

with !m = !0 + �m. and m = 0, 1, ..., P � 1. Moreover,
choosing � = �2!0

P�1 and P even ensures the kernel 'P (t)
is a real-valued function. As before, the separation between
consecutive Diracs must be larger than L and the trigger mark
of the comparator must satisfy:

0 < CT <
Amin

P + 2

Z L
P

0

'P (�⌧)d⌧. (36)

Suppose we wanted to estimate the k
th discontinuity in the

signal dx(t)
dt , of amplitude zk and located at ⌧k, and let us

denote the locations of the first output spikes after ⌧k with
tn, tn+1, ...tM . Then, using a similar proof as in Section IV-B,
we can show that the constraint in Eq. (36) guarantees that
⌧k 2 I = [tn+P � L

P , tn]. Then, we can compute the following
signal moments:

sm =
PX

i=1

c
I
m,ny(tn+i)

(a)
= zk

PX

i=1

c
I
m,n('P ⇤ q✓n+i)(⌧k � tn+i�1)

(b)
= zke

j!m⌧k , for m = 0, 1, ..., P � 1.

In these derivations, (a) follows from Eq. (7), and (b) holds
given ⌧k 2 [tn+P � L

P , tn], and the fact that none of the
kernels ('P ⇤ q✓n+i)(⌧k � tn+i�1) have any discontinuities
in [tn+P � L

P , tn], for i = 1, 2, ..., P . As before, we can use
Prony’s method to estimate zk and ⌧k from the signal moments
sm. Finally, we can retrieve the piecewise constant signal x(t)
once we have estimated its discontinuities dx(t)

dt .
The sampling and reconstruction of a piecewise constant

signal are depicted in Fig. 11. The filter is the derivative of
the fourth-order E-spline, of support L = 4, as seen in Fig.
11(b), the separation between input discontinuities is larger
than the kernel’s support L, as depicted in Fig. 11(a), and the
comparator’s trigger mark is CT = 0.001. The estimation of
the input is exact to numerical precision.

Fig. 11: Sampling of a piecewise constant signal using the integrate-
and-fire TEM. The input is shown in (a), the sampling kernel in (b),
the non-uniform samples used for estimation of the first two input
discontinuities in (c), and the reconstructed signal in (d).

V. GENERALIZED TIME-BASED SAMPLING

To highlight the potential practical implications of the
methods developed in the previous sections, we present here
extensions of our framework to deal with arbitrary kernels and
the noisy scenario, and show that reliable input reconstruction
can be achieved also in these scenarios.

A. Sampling with Arbitrary Kernels

In the previous sections we have presented methods for
perfect retrieval of certain classes of non-bandlimited signals
from timing information. We have seen that these methods
require the sampling kernel '(t) to locally reproduce expo-
nentials, in order to be able to map this problem to Prony’s
method. In reality, however, the sampling kernel may not
have the exponential reproducing property as in Eq. (13). Let
us now consider an arbitrary kernel '̃(t), and find a linear
combination of its non-uniform shifted versions that gives the
best approximation of P exponentials f(t) = e

j!mt within
an interval I , for !m = !0 + �m, m = 0, 1, ..., P � 1,
and � = �2!0

P�1 . In other words, we want to find the optimal
coefficients c

I
m,n such that:

NX

n=1

c
I
m,n'̃(t� tn) ⇡ e

j!mt
, (37)

for t 2 I and n = 1, 2, ..., N , with N being the number of
kernels '̃(t� tn) overlapping I .

We find the coefficients cm,n using the least-squares ap-

proximation method described in [38]. The coefficients are
computed using the orthogonal projection of f(t) onto the
space spanned by the non-uniform shifts '̃(t� tn), such that:

hf(t)�
NX

k=1

c
I
m,k'̃(t� tk), '̃(t� tn)i = 0, (38)

for t 2 I and n = 1, 2, ..N .
Furthermore, Eq. (38) is equivalent to:

hf(t), '̃(t� tn)i =
NX

k=1

c
I
m,kh'̃(t� tk), '̃(t� tn)i,

which represents a system of N equations from which we can
determine the N coefficients cIm,k, for each m = 0, 1, ..., P�1.

We then use the calculated coefficients cIm,k to compute the
signal moments as in Section IV. Finally, the estimation of
the input can be further refined using the Cadzow iterative
algorithm in order to increase the accuracy of the signal
moments, before applying Prony’s method [39], [40].

The sampling and reconstruction of bursts of 2 Diracs are
depicted in Fig. 13. We use the multi-channel estimation
method presented in Section IV-D, where the filter of each
channel is a third order B-spline �3(t), such that the modified
kernel (�3 ⇤ q✓n)(t) in Eq. (5) cannot reproduce exponentials.
Moreover, we aim to approximately reproduce 4 different
exponentials for each channel, and hence we require a number
of 4 non-uniform samples, as discussed in Section II-B. In
Fig. 12, we depict the approximate exponential reproduction
in Eq. (37), within the interval I = [0.82, 1.4] overlapping
the first burst of Diracs. Finally, the estimation of the input is
close to exact, as depicted in Fig. 13(c).

Fig. 12: Approximate exponential reproduction using non-uniform
shifts of the kernel (�3 ⇤ q✓n)(t). The kernels are shown in (a), and
the exponential reproduction using these shifted kernels in (b).
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the noisy scenario, and show that reliable input reconstruction
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Integrate and Fire – Piecewise Constant Signals

This is equivalent to the way a pixel operates 
in neuromorphic video cameras
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Filtered Stream of Diracs
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We then use the calculated coefficients cIm,k to compute the
signal moments as in Section IV. Finally, the estimation of
the input can be further refined using the Cadzow iterative
algorithm in order to increase the accuracy of the signal
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kernel (�3 ⇤ q✓n)(t) in Eq. (5) cannot reproduce exponentials.
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If the distance ! between discontinuities is on average ! > ($ − 1)( with ( being 
the sampling period in uniform sparse sampling4 then our time encoding framework 
is more efficient than uniform sampling (lower sampling density) !!!

4P.L. Dragotti, M. Vetterli and T. Blu, Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon 
meets Strang-Fix, IEEE Trans. on Signal Processing, vol.55 (5), pp. 1741-1757, May 2007. 
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Spike-Based Processing 
• Sensing efficiently is only half of the story

• Once a signal has been converted into spikes, how do we process it efficiently?

• Creating an AI can be five times worse for the planet than a car (resource 
NewScientist) 

• How do we compute fundamental transforms (e.g., Fourier or Wavelet Transforms)

• Can we find the sparse representation of a signal using spiking neuron models? 
(Some results based on spike rates4,5)

• Deep learning with spiking signals?6

4P.T.P. Tang, T.-H. Lin, and M. Davies, “Sparse coding by spiking neural networks: Convergence theory and 
computational results” arXiv:1705.05475 , 2017.
5C. Pehlevan, “A Spiking Neural Network with Local Learning Rules Derived From Nonnegative Similarity 
Matching”, ICASSP 2019.
6E. Neftci, “Surrogate Gradient Learning in Spiking Neural Networks,”, arXiv:1901.09948, 2019.
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• Event-based sensing and processing is an emerging and exciting research 
area!

• Topic at the intersection of signal processing, computational neuroscience 
and machine learning

• Proved sufficient conditions for the exact reconstruction of classes of sparse 
signals from time-based information

• Many open questions on both the sensing and the processing front
– Multi-dimensional case
– Adaptive acquisition
– L1 optimization strategies
– Learning sparsifying representations for spiking signals

Conclusions
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