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The Problem

* Your primary school child has been assigned a nasty summer homework

 He needs to estimate rainfall over the summer break

* He is desperate because the summer vacation is at stake
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The Problem
Approach 1

« Put a bucket in the back garden and record rainfall at regular intervals
(e.g. every 10 days record rainfall and empty bucket)

LI SISk
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The Problem

Approach 1
« Advantage: Easy estimation

« Disadvantage: inefficient (need to check and empty the bucket regularly
even during the dry season and so...no summer vacations!)

July 10 July 20 July 30 August 9 August 19 August 29
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The Problem
Approach 2

* Only record the day when the bucket is full and then empty it

July 18 July 28 September 2
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The Problem

Approach 2
« Advantage: Very efficient (we can go on holiday in August!)

« Disadvantage: estimation of rainfall over the period is more complicated

Sg&
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Sampling

» These two approaches represent two very different ways to sample a
continuous phenomenon

- Approach 1 is what we engineers do and is equivalent to the traditional
amplitude-based uniform sampling
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Sampling

« Approach 2 maps analogue information into a time sequence and is used
by nature (e.g., integrate-and-fire neurons)

z Time Encoding
Machine

()
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Motivation

Time encoding appears in nature, as a mechanism used by neurons to represent
sensory information as a sequence of action potentials, allowing them to process
information very efficiently.

Action potentials
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Time-Based Sampling

* Acquisition systems inspired by time-based sampling, such as event-
based vision sensors, are emerging in a variety of new scenarios (e.g.
see Toby Delbruck web page)

Videos taken from Inivation.com (see also Toby Delbruck web page)

#
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Time-encoding machines

Integrate-and-fire System

Cr
x(t) Y(®) | Threshold ‘ ‘ t
Integrator | Detector | t; |ttty

Spike triggered reset E
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Time-encoding machines

Comparator System

——Input signal y(t)
——Comparator's reference signal

/ ero-crossing
detector

« At the crossing times, x(t,) — g(t,) = 0 hence x(t,)) = g(t,).
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Reconstruction from time-encoded information

«  Given the retrieved non-uniform samples x(t;), x(t,), ..., x(t,;) can we reconstruct
x(t)?

« This is a classical problem in non-uniform sampling

- Assume that x(t) belongs to a shift-invariant space (e.g., x(t) is bandlimited,
x(t) = X crp(t — k)) then, if the density of samples D > 1, perfect reconstruction
is possible’

'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001

#



Imperial College
London

Reconstruction from time-encoded information

- Key result:" if the density of samples D > 1 then perfect reconstruction
can be using an iterative approach proposed by Aldroubi and Grochenig’

July 18 July 28 September 2

'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- Key result:" if the density of samples D > 1 then perfect reconstruction
can be using an iterative approach proposed by Aldroubi and Grochenig’

July 18 July 28 September 2

'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Input Function f(t)
2 T T T
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'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Non-uniform Sampling
2 T T T T
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'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Piecewise Constant Interpolation
2 -
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'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Projecting onto V' (y¢) - Iteration: 1
2 T T T T T T T
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'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Non-uniform Sampling
2 T T T T

'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Non-uniform Sampling
2 T T T T
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'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Piecewise Constant Interpolation
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'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Projecting onto V() - Iteration: 2

2
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'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Projecting onto V() - Iteration: 1

Projecting onto V() - Iteration: 2

'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Projecting onto V (¢) - Iteration: 2
2 T T T T T T T

0 2 4 6 8 10 12 14 16
t

'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Projecting onto V() - Iteration: 3

2

t

'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Projecting onto V() - Iteration: 5
2 T T T T T T T

0 2 4 6 8 10 12 14 16
t

'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

» The iterative approach proposed by Aldroubi and Grochenig'’

Projecting onto V (¢) - Iteration: 15
2 T T T T T T T
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'A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

«  Key result: if the density of samples D > 1 then Ktj(t) form a basis

*  Key Issue 1: In the case of uniform sampling the density is D = 1. This
means that current TEMSs are less energy efficient than uniform sampling!

+  Key Issue 2: Cannot sample sparse (non-bandlimited) signals with the
current methods.
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Reconstruction from time-encoded information

« For integrate-and-fire machines exact reconstruction proved here: A. A. Lazar and
L. T. Toth, “Time encoding and perfect recovery of bandlimited signals”, ICASSP

2003

x(t) f(t)
AJF@_ Integrator

y@®) |

— A

Threshold
Detector

y

See also: Gauntier-Vetterli-2014, Adam et al 2019,

v

)

A
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Sparse Sampling - Signals

« We consider sparse parametric signals (i.e., signals with finite rate of
innovation?).

« Key issue is how to retrieve the free parameters of these signals for time-based

information ‘

2\letterli Marziliano Blu, Sampling Signals with Finite Rate of Innovation, IEEE Trans. on Signal Processing, June 2002
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Sparse Sampling - Acquisition

* In sparse sampling, the acquisition device is used to ‘spread the innovation’
* Reconstruction process is non-linear

« These two ingredients are necessary to time-encode sparse non-bandlimited
signals

x(® h(t)= q(~t/T) y® >T<

y=<x(t),@(t/T-n)>

Acquisition Device

—
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Sparse Sampling

« We leverage two main ideas from sampling sparse signals with finite rate of
iInnovations:

— The sampling kernels can reproduce polynomials or exponentials
— Reconstruction is achieved using Prony’s method

x(® h(t)= q(~t/T) y® >T<

y=<x(t),@(t/T-n)>

Acquisition Device

#
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Reproduction of Polynomials

3 al .
2 2 2 //
1 k 1 / \ 1 {
o t B e
3 al ‘ s
Bl(t) Co,n = (17 1,1,1,1,1, 1) Cl,n — (_37 -2,-1,0, 17273)

The linear spline reproduces polynomials up to degree L=1: >~ cmnB1(t —n) =t m = 0, 1, for a proper

choice of coefficients ¢y, (in this example n = =3, =2, ..., 1,2, 3).

Notice: cmy,n = (@(t — n), t"") where @(t) is biorthogonal to ¢(t): (¢(t), p(t — n)) = dp.
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Reproduction of Polynomials

con ~ (8.7,3.7,0.7,—0.333,0.7,3.7,8.7) ¢z, ~ (—24,—6,—0.001,0,0.001,6,24)

The cubic spline reproduces polynomials up to degree L=3: >~ cm nfB3(t —n) =t m =0,1,2,3.




Imperial College
London

Reproduction of Exponentials

18 2 ‘ ‘ 450
— — — Exponential e %%
16k | 18n Reproduction § 4001 ~ ~ ~ Exponential ¢*% |
Scaled and shifted E-splines Reproduction |
16} B Scaled and shifted E-splines| '
1.4 b 350} &
I
1.4 1 )
12r 1 300( e
1.2r !
1 250 .
1+
08 1 200f
0.8 4
0.6 4 |
0.6 i 150
0.4f B o4l ] 100}
0.2f B 0.2 . 501
0 | | | | | | | | | o o
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -10 -8 -6 —4 -2 0 2 4 6 8 10 12 ~10 -8 6 —4 2 0 2 4 6 8 10 12
t t
t

Here the E-spline is of second order and reproduces the exponential e®0t, e*1t: with
oo = —0.06 and a1 = 0.5.
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From Samples to Signals

» Compute a linear combination of the samples: s, = ) cm.ny, for
some choice of coefficients ¢, , that reproduce polynomials or
exponentials

» Because of linearity of inner product, we have that
Sm — Zn Cm7n-yn
= > . Cmn(x(t),o(t/T —n)) m=0,1,..L

— <X(t)7zn Cm,ngp(t/T_ n)> m:0,1,...,L.

» Given the proper choice of coefficients, we have that
Zn Cm,nsp(t/T - n) = elwmt/T




Imperial College
London

From Samples to Signals

Then
Sm — Zn Cm7nyn

= (x(t), 22, Cmnp(t/ T — n))

= [T x(t)e“mtdt, m=0,1,..,L

oo
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Sampling a stream of Diracs

» Assume x(t) is a stream of K Diracs on the interval of size N:
x(t) = S5 5 xkd(t — 1), t € [0, N).

» We restrict jw,, = jwo +/mA  m=1,....L and L > 2K.

» We have N samples: y, = (x(t), p(t —n)), n=0,1,...N — 1:

» We obtain

N—-1
Sm — ZHIO Cman-yn

[ x(t)e/*mtdt,

— 00
— Wmtk
= Zk 0 Xke
_ K—1 A Amtk _ K—1 A _
— k— 0 ej k=0 XkUk, m—].,...,L.
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Prony’s Method
* The quantity

— 'K i — V'K m —
Sm = Zk=1xke]mworm = Lk=1XkUg m=1,..,L

is a sum of exponentials

- Retrieving the locations u,;, and the amplitudes x; from {s,,}% _, is a classical
problem in spectral estimation and was first solved by Gaspard de Prony in
1795.3

« Given the pairs {x;, u;} then 7, = (Inuy)/ jw,.

3P. Stoica and R. Moses. Spectral Analysis of Signals. 2005.

#
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Our approach for time decoding of signals

Signals

* We consider sparse continuous-time signals like streams of diracs, stream of
pulses or piecewise constant signals

Sensing Systems

«  We filter before using a TEM

Time Encoding Machine

Compact-support filter _(zero—crossing_ detector/
(polynomial/exponential spline)  integrate-and-fire system)

LTL | et | T/ | TEM — o
Timing Information

Non-bandlimited
input signal
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Our approach for time decoding of signals
* Reconstruction of x(t) depends on the
— sampling kernel ¢(t)
— the density of time instants {¢t,,}

* We achieve a sufficient density of output samples by imposing conditions on:
— The frequency of the comparator's sinusoidal signal (crossing TEM ).
— The trigger mark of the integrator (integrate-and-re TEM ).
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Our approach for time encoding of signals

Comparator System

- Zero-crossing| t1s £2:--- tn
o(=1) + + detector
x(t) y(t) ;:
9(®) /\N

G

Ts =

P

At the crossing times, y(t,,) — g(t,) = 0 hence y(t,,) = g(t,,).
Moreover:

y(tn) = [ x(@ep (T — tn) dt = (x(1), 9 (t — tn))
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Sampling Kernels (B-splines)

@ The anti-causal version of the zero-order B-spline is defined as:

o(t) — {1, 1<t<0,

0, otherwise.

@ The P-order B-spline can be computed as:

Bp(t) = \ﬁo(t) * Bo(t) * Bo(tz,

-~

P-+1 times

@ The P-order B-spline satisfies the Strang-Fix condition:
3" Cmafip(t - ) = 7,
nez

where m € {0,1,..., P}, and for a proper choice of coefficients ¢y, p.

#
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Sampling Kernels (B-splines)

Polynomial Splines

* Linear combinations of uniform shifts of B-splines reproduce polynomial
because the ‘knots’ overlap and ‘compensate’ each other.

1271

R —— e — e Gt
0.8

04r
0.2

6
5
4
06" ] 3l
2
1
0 0
1

-0.2}
-1 0 1 2 3 4 5 6 -1 0 1 2 3 4 5 6

« Key insight: in the case of non-uniform shifts, reproduction of
polynomials is still possible locally in ‘knot-free’ regions

d
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Sampling Kernels (B-splines)

1.5] // \\ | | . econstruction
Key insight: in the case of non- 1 e Reconstruct

. . . 1 ‘ T Non-uniform s.plines
uniform shifts, reproduction of True polynomial
polynomials is still possible

locally in ‘knot-free’ regions

0.5

Sketch of the argument: el RN
- Each ‘knot-free’ piece ofa — 2
spline of order d is a e :
polynomial of degree d

« d overlapping splines can
reproduce polynomial of
maximum degree d in a
‘*knot-free’ region

(b)

G @
05 1 15 2 25
t [s]

#
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Sampling Kernels (E-splines)

* Exponential Splines (E-splines) can reproduce exponentials:

Z Cm,nQD(t —n) = e~ oml

nez
» The first-order E-spline of support L is defined as:

1

(e e~aot 4 o et —L<t< —L 08
a1 — Qg Ao — Aq 2 oe

@(t) = 1 e—ot | 1 e-a1t __L <t<0 0.4
Qp — A1 a, — Qo 2 0
. 0, otherwise

0
-2 -1.5 -1 -0.5 0

« This function can reproduce exponentials e~ %0t and e~ %1t,
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Sampling Kernels

* Reproduction of exponentials using uniform shifts of the first-order E-spline:

Z Cm,ngo(t —n) = e~ oml

nez

= = =Exponential we want to reconstruct
Uniformly shifted E-splines
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Sampling Kernels

* Reproduction of exponentials can be achieved locally in I, using at least two

non-uniform shifts of the E-spline:
N

Z Crn@(t —t,) = e mt N > 2

n=1

 The kernels should be continuous within that local interval 1.

tqq - discontinuity of @(t — t;)

tq, - discontinuity of o (t — t,)
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Comparator System — One Input Spike

Zero-crossing t] 7 [ ZYERY tn
" o(—0) 4 detector
x(t) y(t)

9(®) W\/ | o2l
> 04
Iy = ! 06
° fS —A Input signal
08 Filtered input
Comparator's reference signal
1k | : \ ) ®  Output non-uniform times

0 05 1 15 2 25 3 35 4 45 5
{s]
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Comparator System — One Input Spike

= Filtered input
—— Comparator's reference signal

t—t t—t ®  Qutput non-uniform times
1 (P( l) ([1( 22 — — —MNon-uniformly shifted kemels

t[s]

y(ty) = (x(t), (t — t1))

y(tz) = (x(0), p(t — t2))

#
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Comparator System — One Input Spike

—© |nput signal
iltered iny

—F

ralor's reference signal
t—t t—t ®  Qutput non-uniform times
1 (P( l) (p( 2) -——- ifted kem

Ts

We assume:

« Amplitude of the Dirac |x;| < 1 . '
« The sampling kernel ¢(t) and its non-uniform shifts reproduce e/®otand e~/ ®ot
and 0 < w, < T where L is the support of ¢(t).

» The frequency of the sinusoidal signal satisfies f, > %

—
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Comparator System — One Input Spike

—© |nput signal
iltered inpu

—F

erence signal
t—t t—t ®  Qutput non-uniform times
1 (P( 1) (p( 2) — — —No iformly shifled kernels

Ts

Under these assumptions:
» The first two timing locations satisfy t,,t, € [t{,T; + %]. This means that

L
T1 € [tz _E,tl]
» This is useful since in the interval I = [tz — % tl]’ the shifted kernels ¢(t — t;)
and ¢@(t — t,) have no knots (so can reproduce exponentials or polynomials)

#
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Comparator System — One Input Spike

«  We know we can find coefficients ¢,, , such that:
Y21 chao(t—t,) =elmt, fort € I,m=0,1.

 We then have:

Co 2y (tn)

2
z C1, nY(tn

n=

2 _ 5
Z C0n<x(t) p(t—ty)) = j x(t) z C(I),nqo(t —ty) = x1€jw0T1;
°° n=1

n=

%)
o
MN

S
Il
[uny
[uny

N

0 2
Lot = [ x© ) -t = mefom,
- n=1

[uny

S
I

[uny

 ThenTt ln— and x; = s, /e/®oT1
1= 1 0

j(w1—wo)

#
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Comparator System — One Input Spike

=@ Input signal
Filtered input
—— Comparator's reference signal

t—t t—t ®  Qutput non-uniform times
(P( l) (p( 2) — — —Non-uniformly shifted kemels

t[s]

I . L
* We use Bolzano’s intermediate value theorem to show that t,,t, € [t4, 71 + E]

« Denote with h(t) = g(t) — y(t), assume g(t;) > 0 and x; > 0 then h(r;) > 0 and
TS TS TS . . T
h (T1 + ?) =g (T1 + E) —y (rl + E) < 0, this implies h(t;) = 0 for some t; € [r1,7; + ]
.+ Similarly t, € [ty + 2,7y + 2]

. 1 2L L
« Since T, = 7 << then ty, t, € [t1, 74 +5]
S

#
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Comparator System — Example

R | | | - Tl 1] 1| 1
057t ] 0.5
|
0 I h
0.5 l 05 l
« | ) LT TMEY
0 5 10 15 20 25 0 5 10 15 20 25
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Summary on Sparse Sampling with Comparator

« We can sample and perfectly reconstruct non-bandlimited signals -=

* Number of time samples still large (time information provided also when
signal is zero)

« Use the new framework but with the Integrate-and-Fire TEM = == <=
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Integrate and Fire TEM

x16(t —174)

Cr
2O, @(—t) 2 »| Integrator O T§re5h0|d — : W
etector : ty |yt ty el (@*qg)(t—ts)
1 _CT * -
oo spike triggered reset B

« The sampling kernel ¢(t) and its non-uniform shifts reproduce e/“otand e~/ ot
and 0 < w, < — where L is the support of ¢(t).

« What is the minimum value of the trigger mark C; that would allow the perfect
reconstruction of stream of pulses or piecewise constant signals?

#



Imperial College
London

Integrate and Fire TEM

x16(t —174)

Cr
x(t f(t t
_(). p(—t) © »| Integrator V() > Té‘rfShtOId — | | t Xt —t)
etector 1 ti |2ty ta | egae-t
—Cyf . -
I spike triggered reset (0 ¥ a6,)(t — t2)
TSI TTToTTTTTSoTmosmmmmmmmmmmme e 4
T Gt
S
1

* Given the times t4, t,, ..., t,,, the amplitude values are

Yn:)/(tn)::lZCT:/ dT—/ / )o(a — t)dadrT.

#
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Integrate and Fire TEM

x16(t —174)

Cr
x(t f(t t
—()> p(—t) © »| Integrator 1O, > Témreshtold — | | t aem =9
etector | b |t2lts ta | (geae-t)
1 _CT % _
| spike triggered reset | (‘pl 9e)( 1)
------------------------------------------

« Equivalently the output samples can be expressed as:
y(tn) = (x(t), (¢ * g0, )(t — tn-1)),
where 0, = t, — t,—1 and gy, (t) is defined as:

1, 0<t<é,,

) =
0 0, otherwise.
N X N
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Integrate and Fire TEM

x16(t —174)

x(t f(t t
—>( ) p(—t) © »| Integrator v > TgrfShtOId — t e =9
etector '
: c t L2tz tg sk (@xqe)(t—t2)
| T * -
. spike triggered reset . ((pl e

« The equivalent kernel (¢ * qq, ) (t — t,_1) is still able to reproduce
exponentials
» So trigger mark must guarantee enough samples in a short interval

iy A
* Proposition: when Cy < ﬁ@ — oS (wTOL)) then ty, t,, ts € lT1»T1 + %] and
0

perfect reconstruction is possible

d
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Integrate and Fire — Reconstruction of Pulses

G558 9—9-9
1F Q =—© |nput signal |—0 Output non-uniform spikes
Filtered input
Output of integrator 01
05 [~} i
:I ;\I 0.05
0 0
005
0571 -
01
1 o
-0.15 ' . 8000 :
0 2 4 6 8 10 12 0 2 4 6 8 10 12
{[s]
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Integrate and Fire — Reconstruction of Pulses

A A
) | | \

] : =20
0] 5 10 0 5 10

(a) (b)

Filtered input
Output of integrator

0017 b

0.005 | 1 0 U
At

1.8 1.85 19 0 5 10
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Reconstruction with Arbitrary Kernels

» Sufficient conditions for perfect reconstruction may appear restrictive, but they
can be relaxed with minimum loss in reconstruction quality
» The proposed reconstruction framework can be used with any acquisition device
 If reproduction of exponentials is not satisfied use LS methods to find the
coefficients ¢/, ,, that achieve best fit:
N

N
(F(1, 5t = tn)) = D cn w (@t — 1), §(t — ta)), SOhAL D emn@(t —tn) & ™™,
n=1

001 F "
0.008

0.006 [

1 0.004 1
1 0.002 1

0
1 0.002 1
1 -0.004

-0.006

-0.008 [

T O T I

T O R T I R
]

001
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Integrate and Fire — Piecewise Constant Signals

x(t) f(¢) V(®) .

N Intecrator |» Threshold | | ‘
kM & Detector | ty Jt2|ts  t4

___________________________________________________________________

spike triggered reset

vy ©+

This is equivalent to the way a pixel operates
in neuromorphic video cameras
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Integrate and Fire — Piecewise Constant Signals

x(t) ¢(=t) f(t)

y(t)

JJ—L_(—' /\/ — V"_/\A\/TP Integrator

Threshold
Detector

___________________________________________________________________
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Integrate and Fire — Piecewise Constant Signals
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If the distance S between discontinuities is on average S > (L — 1)T with T being
the sampling period in uniform sparse sampling* then our time encoding framework
is more efficient than uniform sampling (lower sampling density) «=cece

4P.L. Dragotti, M. Vetterli and T. Blu, Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon
meets Strang-Fix, IEEE Trans. on Signal Processing, vol.55 (5), pp. 1741-1757, May 2007.
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Spike-Based Processing

« Sensing efficiently is only half of the story
* Once a signal has been converted into spikes, how do we process it efficiently?

« Creating an Al can be five times worse for the planet than a car (resource
NewScientist)

+ How do we compute fundamental transforms (e.g., Fourier or Wavelet Transforms)

« Can we find the sparse representation of a signal using spiking neuron models?
(Some results based on spike rates*>)

« Deep learning with spiking signals?°

4P.T.P. Tang, T.-H. Lin, and M. Davies, “Sparse coding by spiking neural networks: Convergence theory and
computational results” arXiv:1705.05475 , 2017.

5C. Pehlevan, “A Spiking Neural Network with Local Learning Rules Derived From Nonnegative Similarity
Matching”, ICASSP 2019.
6E. Neftci, “Surrogate Gradient Learning in Spiking Neural Networks,”, arXiv:1901.09948, 2019.

ﬁ
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Conclusions

« Event-based sensing and processing is an emerging and exciting research
area!

« Topic at the intersection of signal processing, computational neuroscience
and machine learning

* Proved sufficient conditions for the exact reconstruction of classes of sparse
signals from time-based information

* Many open questions on both the sensing and the processing front
— Multi-dimensional case
— Adaptive acquisition
— L, optimization strategies
— Learning sparsifying representations for spiking signals

#
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