Imperial College
London

Signal Processing Methods for Cell
Localization and Activity Detection from
Calcium Imaging Data

Pier Luigi Dragotti

Joint work with Stephanie Reynolds, Jon Onativia and Simon Schultz



Imperial College

« @Goal of Neuroscience: to study how information is processed in the brain

* Neurons communicate through pulses called Action Potentials (AP)

* Need to measure in-vivo the activity of large populations of neurons at cellular
level resolution

» Two-photon microscopy combined with calcium indicators is the most promising
technology to achieve that
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Two-Photon Microscopy

 Fluorescent sensors within tissues
« Highly localized laser excites

fluorescence from sensors Point scanning (2PLSM)
 Photons emitted from tissue are /‘
collected G S ,
. S SRR Pe Axial
* Focal spot sequentially scanned Scan
across samples to form image

« Two-photon microscopes can go
deeper in the tissue than single-
photon microscope
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Two-photon microscope
for calcium imaging ——

Live mouse——

The calcium concentration of a
cell is a reliable indicator of
spiking activity.

Calcium imaging uses
fluorescent indicators whose
fluorescence intensity reads
out calcium concentration.

Can monitor 100s of neurons
simultaneously.

Know the spatial relationships
between neurons.

1 Betley, J. Nicholas, et al. "Neurons for hunger and thirst transmit a negative-valence teaching signal." Nature 521.7551 (2015): 180-185.



Imperial College

e Can monitor activity of 100s - 1000s of neurons
simultaneously, at single cell resolution.

e Can image in vivo in behaving animals.

e Canimage same cell populations over multiple months.

BUT the datasets present challenging

signal processing problems:

1. Low-time resolution

2. Need to segment automatically regions of
interest
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Motivation

« Sparse Sampling for calcium transient detection at high-temporal
resolution

 Variation of Level-Set Method for Cell Localization and
Segmentation

 (Conclusions and Future Work
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Galcium Transient Detection
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Calcium Transient Detection and Sparse Sampling

Signal Model: Stream of decaying exponentials

This type of signal is well understood in the context of
sparse sampling theory (Vetterli-Dragotti-Blu), where
reconstruction is possible at very low sampling rate
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Calcium Transient Detection and Sparse Sampling
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Calcium Transient Detection and Sparse Sampling

(i-1) window

ith window

(i+1) window

Diracs
retrieval

> For each window:
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Calcium Transient Detection and Sparse Sampling
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Calcium Transient Detection and Sparse Sampling
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Calcium Transient Detection and Sparse Sampling
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The algorithm outperforms
state-of-the art methods
Can operate in real-time
simultaneously on 80
streams

Increase in resolution by
factor 3
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Motivation

« Sparse Sampling for calcium transient detection at high-temporal
resolution

 Variation of Level-Set Method for Cell Localization and
Segmentation

 (Conclusions and Future Work
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Segmentation hy energy minimisation: 2D example

We search for the partition of ) which minimises this energy:
E(QY,Q) =f V(x)—ct|?dx+ | |V(X)—c |%dx.
Qt Q-
We update QO (1) and Q™ (1) at eachiterationt and calculatec*(7) and
c” () as the average within eachregion, respectively.

— 0
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Qout
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Segmentation hy energy minimisation: 2D example

[terationt = 0:

V(x)—c?t |2dx+f V(x) — ¢~ |?dx
Q-(0)

E(Q7(0),Q7(0) = f

Q+(0)

07 (0)
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Segmentation hy energy minimisation: 2D example

[terationt = 1:

V(x)—c?t |2dx+f V(x) — ¢~ |?dx
Q-(1)

B (0,07 = |

Qt (1)

07 (1)
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Segmentation hy energy minimisation: 2D example

Final iteration, 7 = N:

V(x)—c?t |2dx+j V(X)) —c™ |?dx= 0
Q= (N)

E(QT(N),Q7(N)) = f

QT (N)

Q7 (N)




Imperial College
London

This approach based on evolving the curve is known as active contour

The contour can be modelled parametrically or implicitly

The level-set method models the contour implicitly

Several advantages in using the level-set method:
» Easier to evolve

» Allows changes of topology (split or merge)

» No prior on the shape of the region to be segmented
« Naturally scale to higher dimensions
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Simplification: define regions hy single function ¢
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Define ¢: Q — R, such that
Pp(x) <0 o x €O
p(x)>0 o x€E O’
p(x)=0 o X € 5Q0”
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Segmentation hy energy minimisation

Write the minimisation in terms of ¢

¢ = argming{E(¢)},
and evolve ¢ by gradient descent to minimise E (¢)

dp  OE  OR

ot ap " HMag
We add a smoothing term to keep ¢ well conditioned.

We then solve this PDE numerically:

pTH =97 0E(D) . 0R(D)

AT o HFTag
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Segmentation hy energy minimisation

We evolve ¢ as follows:

0E  OR
¢(r + A7) = ¢(1) —At(Ao— + u——>)

do d¢
with
0E
3¢ () = @DV () = ¢*2 = V(o) = ™)
— T(0) e (x) — T(0) — (1)
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Segmentation hy energy minimisation: 2D example

[terationt = 0:

V(x)—c?t |2dx+f V(x) — ¢~ |?dx
Q-(0)

E(Q7(0),Q7(0) = f

Q+(0)

07 (0)
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Segmentation hy energy minimisation: 2D example

[terationt = 1:

V(x)—c?t |2dx+f V(x) — ¢~ |?dx
Q-(1)

B (0,07 = |

Qt (1)

07 (1)
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Segmentation hy energy minimisation: 2D example

Final iteration, 7 = N:

V(x)—c?t |2dx+j V(X)) —c™ |?dx= 0
Q= (N)

E(QT(N),Q7(N)) = f

QT (N)

Q7 (N)
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* We need to perform 2-D segmentation A
but the data is 3-D (2-D+t)

« Dissimilarity metric decided according to
the type of dye

« Typical choice is the Euclidean distance

We evolve ¢ at each pixel x according to

—¢(x) == —d)(x) = 8(Pp)IV(x,t) —c= (O = [V(x,t) — c* ().
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We evolve ¢ at each pixel x according to

% () = - —¢<x) = 5. () (x,6) — e~ (O = [V (x,6) — ¢+ (O},

« Typical choice is the Euclidean distance
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C

Zero level and narrowband

Final ¢: contour that minimises energy




Imperial College
London

We evolve one function
¢; per region as the
interior signalsare
distinct.

The ¢; evolve independently
whilst there is no overlap.



Imperial College
London

For pixels already in another cell we calculate the alternative velocity

0p . _
P (x) = 8e(P (X)) [Vout — Vinl

where
Vout: mln{|V(X, t) - nlzr |V(X, t) _ blz} )

Vin: min{|V(x, t) - alzl |V(X, t) —a — blz}

Velocity of smaller region:
0.04

- 0.02
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 We have extended sparse sampling theory methods for calcium
transient detection

 We have developed a segmentation algorithm for calcium
imaging data based on the level set method.

« We have shown results on real data.

Future work

» Co-design of hardware and software to achieve fast scanning

» Inference of functional topology from large scale calcium
imaging data (requires graph theory)
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« S.Reynolds, Detecting Cells and Cellular Activity from Two-Photon Calcium
Imaging Data, PhD thesis, Imperial College London 2018

 S.Reynolds et al. ABLE: An Activity-Based Level Set Segmentation Algorithm for Two-
Photon Calcium Imaging Data, (open access), eNeuro, October 2017.

« Jon Onativia, Simon R. Schultz, and Pier Luigi Dragotti, A Finite Rate of Innovation
algorithm for fast and accurate spike detection from two-photon calcium imaging,
Journal of Neural Engineering, August 2013.
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Thanks for listening!



