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ABSTRACT

In this paper we review some of our recent results on the design
of critically sampled and oversampled filter banks for multiple de-
scription coding. For the case of critically sampled filter banks,
we show that optimal filters are obtained by allocating the redun-
dancy over frequency with a reverse ’water-filling’ strategy. Then
we present families of oversampled filter banks that attain optimal
performance as well.

1. INTRODUCTION

Multiple Description (MD) coding is a source coding technique for
information transmission over unreliable networks. A MD coder
represents an information source using multiple bit streams (de-
scriptions). Each individual description provides an approximation
to the original message, and multiple descriptions can refine each
other to produce a better approximation than that attainable by any
single one alone. The simplest formulation of the MD problem
involves only two descriptions. This is the so called case of two
channels and three receivers. The source generates two descrip-
tions at rates R1 and R2. If both descriptions are received then the
decoder can reconstruct the source at some small distortion value
D0 (the central distortion), but if either one is lost, the decoder can
still reconstruct the source at some higher distortion D1 or D2 (the
side distortions).

Early papers on MD coding are information theoretic in na-
ture and try to find the set of achievable values for the quintuple
(R1, R2, D0, D1, D2) [6, 15, 1, 28, 27, 13, 25, 26, 5]. The MD
problem can be generalized to more than two channels and more
than three receivers. The natural extension is to M channels and
2M − 1 receivers. The situation of three channel and seven re-
ceivers was studied by Zhang and Berger [27]. While an achiev-
able region for the M -channel case has been found recently [22].

Several efforts have also been made to design practical MD
coding systems. These systems can be divided into two main fam-
ilies which follows two different philosophies. One focuses on the
problem of designing particular quantizers that can meet the MD
constraint, while the other family uses ordinary quantizers and get
the MD property from the choice of a particular transform.

In [19], a design procedure for the construction of fixed-rate
scalar quantizers was presented. In [20], that design procedure
was extended to the entropy-constrained case. Various construc-
tions of MD vector quantizers have been proposed [4, 7, 11, 21]

This paper includes research conducted jointly with Martin Vetterli,
Sergio Servetto, Jelena Kovačević and Vivek Goyal [5, 12].

and the MD lattice quantizers of [21] closes the gap between the
performance of the entropy constrained MD scalar quantizer and
the MD rate-distortion bound.

A rather different approach pioneered by Wang et al. [24] and
then extended by Goyal and Kovačević [8] consists of applying
a suitable blockwise transform to the input vector before coding
to obtain the MD property. This approach is usually called MD
Transform Coding. The basic idea is to decorrelate the vector
components and then to introduce again correlation between co-
efficients, but in a known and controlled manner, so that erased
coefficients can be statistically estimated from those received.

Finally, techniques based on overcomplete frame expansions
have been proposed in [2, 9, 14].

For an excellent review on MD coding refer to [10].
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Fig. 1. Abstraction of a lossy network with a frame expansion
implemented by an oversampled filter bank.

In this paper, we consider the communication model depicted
in Figure 1. An input sequence x[n] is fed through an M -channel
filter bank followed by downsampling by N . The M output se-
quences are then separately scalar quantized with uniform scalar
quantizers and sent over M different channels. Each channel ei-
ther works perfectly or not at all. The decoder receives only M −e
of the quantized output sequences, where e is the number of era-
sures during the transmission. The reconstruction process is linear.
We wish to find properties of the filter banks that minimize the
mean square error (MSE) between the input and the reconstructed
sequences. The case M = N (critically sampled filter banks) is
treated in the next section. We show that in this case optimal fil-
ter banks form a biorthogonal basis. In Section 3 and Section 4,
we consider the case when M > N and present families of over-
sampled filter banks that achieve optimal performance. Finally, we
conclude in Section 5 by showing a simple application example.



2. CRITICALLY SAMPLED FILTER BANKS

In this section, we consider the classical two-channel filter bank
scheme, that is, we assume M = N = 2. Moreover, we as-
sume the input sequence x[n] to be a stationary Gaussian random
process with known statistics. The two output sequences are in-
dependently coded at rates R1 and R2 and sent over two different
erasure channels. Now, assume that R bits per sample are suf-
ficient to achieve the central distortion D0. We call redundancy
ρ = R1 + R2 − R the difference between these two cases. This
redundancy represents the price we have to pay to reduce the ef-
fect of losses. Our target is to find filter banks which minimizes
the side distortions for a given fixed redundancy ρ.
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Fig. 2. The polyphase representation of the analysis stage

For convenience we will formulate our problem in the polyphase
domain [18, 23]. In this case the analysis stage can be equivalently
represented by the block scheme shown in Fig 2. The input-output
relation can be expressed in matrix notation introducing the anal-
ysis polyphase matrix H(ω):
(

Y1(ω)
Y2(ω)

)

=

(

H11(ω) H12(ω)
H21(ω) H22(ω)

)(

X1(ω)
X2(ω)

)

. (1)

Call Rx(ω) the 2 × 2 polyphase power spectral density (p.s.d.)
matrix of the input process. Likewise Ry(ω) is the p.s.d. matrix
of the outputs. The system response has the following form:

Ry(ω) = H(ω)Rx(ω)H+(ω), (2)

where H+(ω) denotes the Hermitian transpose of H(ω).
The synthesis part of the system can be analyzed in a similar fash-
ion.

As a first step we decompose the matrix H(ω) into the product
of two matrices M(ω) and T (ω)

H(ω) = T (ω)M(ω). (3)

M(ω) is a unitary decorrelating matrix that diagonalizes the input
covariance matrix Rx(ω). Thus: Rx(ω) = M(ω)Λ(ω)M∗(ω)
where Λ(ω) is a diagonal matrix which contains the spectral eigen-
values of Rx(ω):

Λ(ω) =





λ2
1(ω) 0

0 λ2
2(ω)



 . (4)

For a stationary input process, the decorrelating matrix can be
found analytically and has the following form [17]:

M(ω) =

√
2

2





ejω/2 1

−1 e−jω/2



 ; (5)

the filter bank related to M(ω) is usually called principal com-
ponent filter bank [17]. Now, this factorization does not reduce
the generality of the solution, since M(ω) is a unitary invertible

matrix independent of ρ and we are considering square error dis-
tortions. So it is enough to solve the simpler problem of optimally
designing the matrix T (ω) for the two input sequences with p.s.d.
matrix Λ(ω). Then the final solution will be represented by the
product between this matrix and the decorrelating matrix M(ω).
From now on we assume that the two sequences (x1[n], x2[n])
have already been decorrelated and are represented by the diago-
nal p.s.d. matrix Λ(ω). Notice that these two sequences are still a
realization of a stationary Gaussian process.

We can now state the following theorem:

Theorem 1 Assume that ρ � 0 and that the two p.s.d. λ2
1(ω), λ2

2(ω)
of the two decorrelated input sequences x1[n], x2[n] are such that
δ1 > ∆2 where δ1 is the essential infimum of λ2

1(ω) and ∆2 is the
essential supremum of λ2

2(ω). Then the optimal analysis filters for
MD Coding of x1[n] and x2[n] are represented by the following
polyphase matrix:

T (ω) =

[

a(ω) 1
2a(ω)

−a(ω) 1
2a(ω)

]

,

where:

a(ω) =

√

λ2(ω)

2λ1(ω)(22ρ(w) −
√

24ρ(ω) − 1)

and:

ρ(ω) = ρ+
1

4
log(λ2

1(ω)−λ
2
2(ω))− 1

8π

π
∫

−π

log(λ2
1(ω)−λ

2
2(ω))dω.

Even though it is not possible to extend this result to the case of
more than two channels, it is possible to find some approximate
solutions to this problem.

3. OVERSAMPLED FILTER BANKS

We now focus on the case M > N and we assume that there are
no more than M − N erasures. In this case we do not make any
assumptions on the input source. However, we use a statistical
model for the quantization error; the reconstruction then depends
only on the characteristics of the filter bank.

We will use notation: TF for a tight frame, UF for a uniform
frame and UTF for a uniform tight frame.

Call Hi(ω) = [Hi1(ω),Hi2(ω), ...HiN (ω)]∗ the polyphase
representation of the ith analysis filter and call H(ω) the corre-
sponding M × N polyphase analysis matrix, which is a matrix
whose ith row equals H∗

i (ω). Many properties can be stated eas-
ily in terms of this matrix. In particular, we can say that a filter
bank implements a frame decomposition in l2(Z) if and only if its
polyphase analysis matrix is of full rank on the unit circle [3] and
a filter bank implements a tight frame expansion in l2(Z) if and
only if H

∗(ω)H(ω) = AIN . [3]. The pseudo-inverse is defined
as in the finite-dimensional case:

H
†(ω) = (H∗(ω)H(ω))−1

H
∗(ω). (6)

A frame implemented with filter banks is uniform if: ‖hi[n]‖ =
1, i = 1, ..., M or, using Parseval’s relation, if:

1

2π

∫ π

−π

N
∑

j=1

|Hij(ω)|2dω = 1, i = 1, ..., M.

If we call λi(ω) the spectral eigenvalues of H∗(ω)H(ω), then:



1. the integral sum of the spectral eigenvalues of H
∗(ω)H(ω)

equals the sum of the filters’ norms:

1
2π

∫ π

−π

∑N
i=1 λi(ω)dω =

∑M
i=1 ‖hi[n]‖2;

2. for a UF, the integral sum of the eigenvalues equals M ;

3. for a TF, H
∗(ω)H(ω) has eigenvalues constant over the

unit circle and equal to A with multiplicity N : λi(ω) =
A, i = 1, ..., N ;

4. for a UTF, H∗(ω)H(ω) has eigenvalues constant over the
unit circle and equal to M

N
with multiplicity N .

We now introduce a new definition:

Definition 1 (Strongly uniform frame) A frame expansion in l2(Z)
implemented by an M×N polyphase matrix H(ω) is strongly uni-
form if:

∑N
j=1 |Hij(ω)|2 = 1, i = 1, ..., M.

3.1. Examples of Strongly Uniform Frames

It will be shown in next sections that strongly uniform tight frames
constitute an important class of frames. We propose the follow-
ing factorization to design polyphase matrices corresponding to
strongly uniform tight frames:

H(ω) = FU(ω), (7)

where F is a uniform tight frame in C
N and U(ω) is an N × N

paraunitary matrix. It is easy to see that such a polyphase matrix
corresponds to a strongly uniform tight frame.

Although we cannot claim that our factorization includes all
possible strongly uniform tight frames, we can state the following:

Theorem 2 Define an equivalence relation by bundling a frame
(implemented with an FIR oversampled filter bank) with all frames
that result from rigid rotations of its elements as well as negation
or shift of some individual ones (i.e. hi[n] → −hi[n − k] k ∈ Z).
When M = N + 1, there is a single equivalence class for all
strongly uniform tight frames.

4. INTRODUCING ERASURES

Here we consider the effect of erasures on the structure of the
frame and on the MSE. We denote by E the index set of era-
sures and by HE(ω) the polyphase matrix after e = |E| erasures.
HE(ω) is an (M − e) × N matrix obtained by deleting the E-
numbered rows from the M × N polyphase matrix H(ω). The
first question to be answered is under which conditions HE(ω)
still represents a frame. We then study the effect of erasures on the
MSE.

Effect of Erasures on the Structure of a Frame

Our aim is to use the pseudo-inverse operator to reconstruct after
e erasures. The pseudo-inverse matrix is defined only if the matrix
HE(ω) is still a frame, that is, if and only if it is still of full rank
on the unit circle. This leads to the following definition:

Definition 2 An oversampled filter bank which implements a frame
expansion represented by a polyphase matrix H(ω) is said to be
robust to e = |E| erasures if and only if for any index set E of
erasures, HE(ω) is of full rank on the unit circle.

Let us consider first the case where there is only one erasure.

Theorem 3 An oversampled filter bank which implements a uni-
form tight frame is robust to one erasure if and only if

N
∑

j=1

|Hij(ω)|2 <
M

N
for all i = 1, ..., M, for all ω.

Recall that by definition a strongly uniform frame is such that:
∑N

j=1 |Hij(ω)|2 = 1, i = 1, ...M, for all ω. Thus, as a conse-
quence of the previous theorem we can state that any oversampled
filter bank which implements a strongly uniform tight frame is ro-
bust to one erasure. The result of Theorem 3 does not reveal any-
thing about the existence of filter banks which are robust to more
than one erasure.

In [8], it has been shown that a complex harmonic frame in
C

N or a real harmonic frame in R
N is robust to e erasures (e ≤

M − N ). The following theorem guarantees the existence of at
least one family of strongly uniform tight frames in l2(Z) which
are robust to e erasures (e ≤ M − N ):

Theorem 4 Consider an oversampled filter bank with polyphase
analysis matrix G(ω) = FU(ω), where F is a complex harmonic
frame in C

N or a real harmonic frame in R
N and U(ω) is an N ×

N polyphase matrix nonsingular on the unit circle (det(U(ω)) 6=
0). This filter bank is robust to e erasures (e ≤ M − N ).

If U(ω) is a paraunitary matrix, the resulting oversampled filter
bank G (ω) = F U(ω) represents a strongly uniform tight frame
robust to e erasures (e ≤ M − N ).

Effect of Erasures on the MSE

In the previous section, it has been shown that it is possible to
design oversampled filter banks which are robust up to M − N
erasures. We assume such filter banks for the rest of the paper.

Now, we want to compute the effect of the erasures on the
MSE. Consider first a strongly uniform frame and e = 1. It follows

Theorem 5 Consider encoding with a strongly uniform frame and
decoding with linear reconstruction. The MSE averaged over all
possible erasures of one channel is minimum if and only if the orig-
inal frame is tight. Moreover a tight frame minimizes the maximum
distortion caused by one erasure. The MSE is given by:

MSE1 =

(

1 +
1

M − N

)

MSE0.

It is not possible to extend the result of this theorem to the case
of more than one erasure. However, it is possible to compute the
MSE with e > 1 when the original frame is strongly uniform and
tight:

MSEE =

(

1 +
1

2π

∫ π

−π

e
∑

i=1

µi(ω)

M − Nµi(ω)
dω

)

MSE0, (8)

where µi(ω) are the spectral eigenvalues of T∗(ω)T(ω) and T(ω)
is the N × e polyphase matrix with columns {Hi(ω)}i∈E .

Since the spectral sum of the e eigenvalues of T(ω) is con-
strained to be a constant, the minimum in (8) occurs when all the
eigenvalues are equal and constant, which is true when T(ω) is
tight.
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Fig. 3. Multiple description coding of images. (a) Original im-
age. (b) Nine descriptions of the image. (c) Reconstructed image
with nine descriptions (PSNR=27.9dB, 0.2bps). (d) Reconstructed
image with four descriptions (PSNR=27.2dB, 0.2bps.)

5. A SIMPLE APPLICATION EXAMPLE

To conclude the paper, we show how these families of filter banks
can be used for MD coding of images. In Figure 3 we show a
simple example of the use of oversampled filter banks. In this
case, we have a three channel filter bank with downsampling by
two (i.e., M = 3 and N = 2). The image is filtered along columns
and rows, and this leads to nine descriptions shown in Figure 3(b).
Each single description is compressed with SPIHT [16] and sent
over a different erasure channel. If all the descriptions get to the
receiver the quality of the reconstructed image is PSNR=27.9dB
(Figure 3(c)), but we still get a good reconstruction quality with
only four descriptions (PSNR=27.2dB, Figure 3(d)).
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