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ABSTRACT

In this paper, we propose a distributed compression approach for
multi-view images, where each camera efficiently encodes its vi-
sual information locally without requiring any collaboration with
the other cameras. Such a compression scheme can be necessary
for camera sensor networks, where each camera has limited power
and communication resources and can only transmit data to a central
base station. The correlation in the multi-view data acquired by a
dense multi-camera system can be extremely large and should there-
fore be exploited at each encoder in order to reduce the amount of
data transmitted to the receiver. Our distributed source coding ap-
proach is based on a quadtree decomposition method and uses some
geometrical information about the scene and the position of the cam-
eras to estimate this multi-view correlation. We assume that the dif-
ferent views can be modelled as 2D piecewise polynomial functions
with 1D linear boundaries and show how our approach applies in this
context. Our simulation results show that our approach outperforms
independent encoding of real multi-view images.

Index Terms— Multi-view Image Compression, Distributed
Source Coding, Camera Sensor Networks.

1. INTRODUCTION

Compression techniques for multi-view images have attracted a deep
interest during the last decade. This is partly due to the introduction
of several new 3D rendering techniques such as image-based render-
ing (IBR) [1] and lightfield rendering (LFR) [2] that represent real-
world 3D scenes using a set of images obtained from fixed viewpoint
cameras. The amount of raw data acquired by practical systems can
be extraordinary large and typically consists of hundreds of differ-
ent views. Due to the spatial proximity of the different cameras, an
extremely large amount of redundant information is present in the
acquired data. Compression is therefore highly needed.

In order to exploit the correlation between the different views,
a joint encoder could be employed. This approach would require
that all the cameras first transmit their data to a common receiver
that would have to store it and then perform the joint compression.
Another alternative would be to allow the cameras to communi-
cate amongst themselves to perform the joint compression in a col-
laborative way before transmitting the compressed data to the cen-
tral receiver. Nevertheless, these two approaches would clearly use
a tremendous amount of communication resources, and might not
be feasible in some practical settings. In particular, we consider
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the case of camera sensor networks, where each sensor is a self-
powered wireless device containing a digital camera and a process-
ing/communication unit. Since inter-sensor communication could
be extremely expensive in terms of power consumption in this sce-
nario, we would like to exploit the correlation in the multi-view data
at each camera, without requiring any collaboration between the dif-
ferent encoders. Thanks to results obtained by Slepian-Wolf [3] and
Wyner-Ziv [4], we know that in many cases, we can theoretically
achieve the compression rate of a joint-encoder using separate en-
coders, assuming that the correlation of the source is known a-priori.

Practical distributed source coding schemes inspired from these
theoretical results have been proposed in the last decade, and are
mainly based on channel coding principles. In particular, they have
more recently led to the development of several distributed video
coding approaches, where they allow for a swap of complexity be-
tween the encoder and decoder (see [5, 6]).

In [7], we showed how the correlation in the information ac-
quired by a multi-view system can be estimated using simple geo-
metrical constraints on the scene and on the position of the cameras.
We then proposed a coding approach that can exploit this correlation
in order to perform distributed compression of the different views.
Nevertheless, our approach was based on an a-priory knowledge of
the different object boundaries at the encoders and was therefore
not directly applicable to encode real multi-view images. In [8],
we showed how a particular encoder based on tree structured algo-
rithms [9] can be modified to take advantage of our distributed cod-
ing approach. In particular, we focused on the 1D case where we
showed how scan-lines of different views could be modelled using
piecewise polynomial models, and compressed in a distributed way
using the a-priori correlation structure.

In this paper, we extend our results by showing how the prune-
join binary tree decomposition used in the 1D case has an intuitive
extension in the 2D case, where the binary tree is replaced with a
quadtree segmentation and the polynomial model is replaced with a
2D geometrical model. Our implementation of the quadtree encoder,
which is directly inspired from the prune-join quadtree decomposi-
tion algorithm proposed in [9], is first presented and we then show
how our distributed coding scheme can be adapted in this context.
Our simulation results show that our approach still outperforms the
rate-distortion behaviour of independent encoding with real multi-
view data even when the correlation model is not fully respected.
Notice that several other approaches for distributed compression of
multi-view images have been proposed (see [10, 11, 12, 13, 14] for
example). The main difference is that these approaches rely on the
use of advanced channel coding techniques to exploit the correlation
in the multi-view data, whereas our scheme tries to estimate this cor-
relation structure using a fully geometrical approach and does not



require the use of channel codes.
The paper is organized as follows: The next section introduces

our camera sensor network set-up and gives a brief review of some
of our previous results. In Section 3, we first present the quadtree de-
composition algorithm and the correlation model we consider. Then
our distributed coding approach is presented focusing on the sim-
ple case of a stereo pair of images (two views). Finally, the joint
reconstruction method used at the decoder is addressed. Section 4
presents the simulation results and concluding remarks are given in
Section 5.

2. REVIEW OF OUR PREVIOUS RESULTS

2.1. Our linear camera sensor network scenario

Our camera sensor network set-up is illustrated in Figure 1. We as-
sume thatN cameras are placed on a horizontal line (all the cameras
are looking perpendicularly to this line) and that all the objects of
the scene have a distance to the cameras that is bounded between a
minimum and a maximum value (zmin, zmax). Assuming that the
distance between two cameras is not larger than a certain distance α,
this scenario ensures that, regardless of the complexity of the scene,
any disparity ∆ will be contained in the range: [ αf

zmax
; αf

zmin
] where

f is the (common) focal length of the cameras. Based on this obser-
vation, our distributed coding strategy [7] consists in sending only
partial information of the positions of the objects from the different
encoders, as recalled in Section 2.2.
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Fig. 1. Our linear camera sensor network set-up

2.2. Our distributed compression approach for 1D signals using
tree structured algorithms

In [7], we showed how the positions of a specific object on two im-
ages obtained from consecutive cameras can be encoded in a dis-
tributed way. The method consists in sending subsets of bits from
the positions’ binary representations such that, knowing the a-priori
correlation structure, the decoder can still reconstruct the two po-
sitions perfectly. Our approach was shown to allow for a flexible
allocation of the bit-rates amongst the encoders and could be made
resilient to a fixed number of occlusions.

In [8], we showed that corresponding scan-lines of different views
could be represented using a piecewise polynomial model where
each discontinuity is shifted from one view to the other according to
our correlation model (disparities are bounded in {∆min;∆max}).
Since we assume that the scene is composed of lambertian planar
surfaces and that there is no occlusion, we know that the polynomi-
als are similar in both views.

Piecewise polynomial signals can be efficiently encoded using
the prune-join binary tree compression algorithm proposed in [9].
Figure 2 presents a pair of correlated signals (shifted discontinuities)
and their binary tree decompositions. Each signal is encoded and
represented with a tree structure that models its segmentation and
a set of polynomials. Our distributed encoding approach consists
in transmitting only the necessary information to allow for a com-
plete reconstruction at the decoder. Each encoder typically transmits
partial information from its tree structure and a given subset of its
polynomials (see [8] for more details).
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Fig. 2. Join-Prune binary tree decomposition of two piecewise poly-
nomial signals with shifted discontinuities.

3. DISTRIBUTED COMPRESSION OF MULTI-VIEW
IMAGES USING 2D QUADTREE DECOMPOSITION

3.1. The prune-join quadtree compression algorithm and the
geometrical model used

The prune-join binary tree decomposition algorithm that we used in
the 1D case has an intuitive extension in 2D. We give here a sketch
of our implementation (Algorithm 1) of the quadtree compression
approach proposed in [9]. Figure 3(b) shows the quadtree structure
that we obtain for the encoding of cameraman at a bit-rate of 0.2
bpp. Notice that the reconstructed image (Figure 3(c)) has a higher
PSNR (about 1dB) than what we obtain using a Jpeg2000 encoder
(we use the java implementation of the Jpeg2000 reference software
available at: http://jj2000.epfl.ch).

(b) Rate = 0.2 bpp

Prune−Join Quadtree Decomposition Reconstructed Image

(c) PSNR = 27.3 dB(a) Tile model

Fig. 3. (a) Our geometrical model consists of two 2D linear regions
separated by a 1D linear boundary. This boundary is represented
with two coefficients (θ,ρ) and each 2D piece is represented with
three coefficients (c1, c2, c3) such that f(x, y) =

P3
i=1 ciLi(x, y),

where {Li(x, y)}3
i=1 forms an orthonormal basis for 2D linear func-

tions over the region covered by f(x, y). (b) Prune-Join quadtree
decomposition of cameraman with a target bit-rate of 0.2 bpp. (c)
The PSNR of the reconstructed image is about 1dB better than what
we obtain with a Jpeg2000 encoder.



Algorithm 1 Prune-Join quadtree encoding algorithm
1: Segmentation of the signal using a quadtree decomposition up
to a maximum depth Jmax.

2: Approximation of each node of the quadtree by a geometrical
model consisting of two 2D linear pieces separated by a 1D lin-
ear boundary (see Figure 3(a)).

3: Rate-Distortion curves generation for each node of the quadtree
using scalar quantization and optimal bit allocation on the 8 co-
efficients (2 coefficients for the 1D linear boundary and 3 coef-
ficients for each 2D linear piece). Two or three bits of side in-
formation per node are needed to indicate the model used (each
tile can be represented with one or two 2D polynoms that can be
constant or linear).

4: Optimal pruning of the quadtree for the given operating slope
−λ according to the following Lagrangian cost based criterion:
Prune the four children of a node if:P4

i=1(DCi + λRCi) ≥ (Dp + λRp).
5: Joint coding of similar neighbouring leaves (or groups of already
joint leaves) according to the following criterion: Join the two
neighbours if:
(Dn1 + λRn1) + (Dn2 + λRn2) ≥ (DnJoint + λRnJoint).
Two bits of side information are needed to indicate the direction
of the joint neighbour (up, down, left or right).

6: Search for the desired R-D operating slope (update λ and go
back to 4).

3.2. Our distributed encoding approach for stereo pairs with ar-
bitrary bit-rate allocation

We consider a scene consisting of a set of vertical polygons of linear
intensities that are placed at different depths between the zmin and
zmax values (the polygons can be tilted such that their right and left
extremities are at different depths). Assume now that V1(x, y) and
V2(x, y) are two views of this scene obtained from two consecutive
cameras. These two views are therefore 2D piecewise linear signals
defined over [0; T ]× [0; T ]. They can be represented using the same
set of poynomials1 but their 1D linear discontinuities are shifted ac-
cording to the range of possible disparities given by the correlation
model.

Our distributed coding approach consists in decomposing each
view using the quadtree approach presented in Section 3.1, and
then transmitting only partial information from each view. The
total information necessary to describe each view can be divided
in 3 parts: RTree is the number of bits necessary to code the
pruned quadtree and is equal to the number of nodes in the quadtree.
RLeafJointCoding is the number of bits necessary to code the join-
ing information and is equal to the number of leaves in the quadtree
plus two bits of side information for each joined leave. Finally,
RLeaves is the total number of bits necessary to code the geomet-
rical information of the leaves (2D polynomials, 1D boundaries and
model side information).

Our approach can be described as follows (asymmetric case):
• Send the full description of V1(x, y) from the first encoder.
• Sent only the subtrees of the quadtree structure of V2(x, y)
having a root node at level J∆ = �log2(

T
∆max−∆min+1

)�,
along with the joining information and the coefficients repre-
senting the 1D boundaries.

1Note that the 2D polynomials can be horizontally contracted or expanded
but their representation remains the same as we normalize them according to
their support.

Note that a more flexible allocation of the bit-rates between the en-
coders can be easily obtained by letting each of them send comple-
mentary subsets of their polynomials.

3.3. Joint reconstruction at the decoder and the matching prob-
lem

At the decoder, the information obtained from all the encoders is
used along with the known a-priori correlation structure to retrieve
all the shifts (disparities) and retrieve the missing information about
the segmentation of the signals in a way similar to the one in the
1D case [8]. The missing polynomial coefficients are then simply
copied from the view where they are available. This matching of the
different quadtree structures is straightforward in the case where the
views satisfy exactly our piecewise polynomial model but becomes
more involved in the case of real multi-view images. This is due to
the fact that the quadtree decomposition can encode, in a particu-
lar view, a discontinuity that does not appear in the other views. In
certain cases, the decoder can then make an error by matching this
discontinuity to another one, which would lead to a bad reconstruc-
tion.

In order to fix this problem, we can transmit some extra (redun-
dant) information to help the decoder perform a correct matching. In
the next section, we present some simulation results obtained on real
multi-view images where the encoders transmit their full quadtree
structure along with some information about the constant part of
their polynomials to help the decoder perform a correct matching.

4. SIMULATION RESULTS

We present some simulation results obtained on the lobbymulti-view
sequence from Shum et al. [1]. Figure 4 shows the result of an asym-
metric encoding of a stereo pair where the first view is encoded at
0.32 bpp, whereas the second view is encoded at a lower bit-rate and
some information about its polynomial coefficients is discarded. Af-
ter the matching, the missing coefficients can be retrieved from the
first view, which improves the quality of the reconstructed view.

Figures 5 and 6 show results obtained on a sequence of six dif-
ferent views, where the first and the sixth views are fully transmit-
ted and only the quadtree structure is transmitted for the other four
views. The graph at the top of Figure 5 shows that our approach out-
performs an independent encoding of the six views for all the range
of considered bit-rates.

Reconstructed Image 1

R = 0.32 bpp - Psnr = 34.1 dB

Reconstructed Image 2
     (Joint decoding)

Psnr = 28.3 dB

Reconstructed Image 2 (Indep)

R = 0.06 bpp - Psnr = 27.3 dB

Fig. 4. Distributed stereo encoding of two views. View 1 (left) is
encoded at 0.32 bpp and fully transmitted. View 2 (right) is encoded
at a lower bit-rate and some of its polynomial coefficients are dis-
carded. Joint decoding of view 2 (center) shows an improvement of
the reconstruction quality of about 1dB compared to an independent
encoding.



view 1

R = 0.221 bpp - Psnr = 32.67 dB

view 6

R = 0.218 bpp - Psnr = 32.29 dB

view 2

R = 0.032 bpp - Psnr = 29.34 dB

view 3

R = 0.033 bpp - Psnr = 30.49 dB

view 4

R = 0.035 bpp - Psnr = 29.96 dB

view 5

R = 0.034 bpp - Psnr = 30.02 dB
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Fig. 5. Distributed vs. independent encoding of six views. The
plot at the top also shows results obtained using a Jpeg2000 encoder.
The six images shown are the result of a distributed encoding with
an average bit-rate of 0.08 bpp.

(a) PSNR = 28.94 dB (b) PSNR = 30.02 dB

Fig. 6. Reconstruction of view 5. (a) Independent encoding at 0.08
bpp. (b) Distributed encoding with an average of 0.08 bpp.

5. CONCLUSIONS

We have proposed a distributed compression approach for multi-
view images based on a geometrical quadtree decomposition
scheme. Our approach allows for a flexible allocation of the bit-
rates amongst the encoders and have been shown to outperform in-
dependent encoding even when the correlation model is not fully
respected. Future work will focus on the extension to more complex
multi-camera set-ups and correlation models.
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