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ABSTRACT
A professionally recaptured image from an LCD monitor
can be, visually, very difficult to distinguish from its original
counterpart. In this paper we show that it is possible to de-
tect a recaptured image from the unique nature of the edge
profiles present in the image. We leverage the fact that the
edge profiles of single and recaptured images are markedly
different and we train two alternative dictionaries using the K-
SVD approach. One dictionary is trained to provide a sparse
representation of single captured edges and a second for re-
captured edges. Using these two learned dictionaries, we can
determine whether a query image has been recaptured. We
achieve this by observing the type of dictionary that gives the
smallest error in a sparse representation of the edges of the
query image. Experiments conducted show that the proposed
algorithm is capable of detecting recaptured images with a
high level of accuracy and copes well with a wide range of
natural images.

Index Terms— Recapture Detection, Image Forensics,
Acquisition Chains, K-SVD, Edge Profiles, Blurring Model

1. INTRODUCTION

Most images, today are stored in a digital format due to ad-
vantages in transmission, compression and ease of duplica-
tion. Digital images that are printed or displayed on a monitor
are sometimes recaptured and saved digitally. For example,
a print may be scanned using a flat-bed scanner or an image
may be recaptured from an LCD monitor with a mobile phone
camera. One reason that an image may be recaptured is that
the original digital version may not be available. If an image
is recaptured professionally using high quality photographic
equipment, the resulting recaptured image may be very diffi-
cult to differentiate from the original version [1]. Footprints,
such as noise patterns or JPEG artefacts, left either by the ac-
quisition process or by post-processing operations, are vital to
many digital forgery detection algorithms and may be modi-
fied or eliminated by the recapture process.
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Many image recapture detection techniques have been
proposed in the literature, recently. Yu et al. [2] and Yin and
Fang [3] have addressed the detection of recaptured images
from printed material using specularity and dithering effects,
respectively. Cao and Cot [1] describe a method for detect-
ing recaptured images from LCD monitors using multiple
features including colour saturation, loss of detail, and fine
textures added by the recapture process. Ke et al. [4] use 136
features to train a support vector machine to detect recaptured
images taken from an LCD screen. They test their algorithm
on a dataset of images recaptured using smart-phone cameras
[5]. Yin et al. [6] describe a detector for images recaptured
from LCD screens that analyses noise features and applies
the MBFDF algorithm to detect double JPEG compression. If
an image recaptured from an LCD monitor contains aliasing
patterns, recapture detection can be performed by searching
for peaks in the DFT of the recaptured image noise residual
[7, 8].

The use of edge profiles to detect recapture has been ex-
plored theoretically in [9] and a practical algorithm developed
[10]. A limitation of the algorithm in [10] was that it required
the manual selection of regions in the image that contained
suitable edges. This meant that the detection performance of
the algorithm depended on the regions of interest selected by
the user. Furthermore, the algorithm required training and test
images that contained well defined, sharp, edges. In this pa-
per, we propose an algorithm for image recapture detection
using the K-SVD dictionary learning approach. Sets of atoms
are built based on dictionary training using features from real
images. The robustness of the algorithm is improved relative
to previous work [10] since our proposed method is applicable
to most random natural images. Edge features are extracted
and selected without human supervision thereby making the
algorithm completely automatic. For the completeness of the
literature review it is worth mentioning that the area of recap-
tured video detection (e.g. [11, 12, 13, 14] ) has, in recent
years, received considerable attention.

The paper is organized as follows: Section 2 explains how
edges become blurred during the acquisition process and how
the distortion is modelled mathematically. Next, our proposed
technique is presented in Section 3. The experiments on dic-
tionary training and performance evaluation are discussed in
Section 4 before we conclude the paper in Section 5.
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Fig. 2. Diagram of the proposed recapture detection algorithm. Note that the block-based edge detection algorithm (*) used for
the input image and training images is the same.
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Fig. 1. The modelling of blurriness represented by (a) a sim-
plified acquisition process and (b) a corresponding signal di-
agram illustrating the A/D conversion process.

2. BLURRINESS MODEL

In our model the observed straight edge x(t) is projected on
an image sensor by a camera lens that has been adjusted to
provide an optimally focused image as shown in Figure 1(a).
Because the edge can be fully described by its cross sectional
profile we can simplify the description of an edge feature to
a one-dimensional representation. A degree of blur is intro-
duced into the edge due to lens imperfections, such as spher-
ical aberration. If the lens aperture setting is very small, blur-
ring due to diffraction may also be introduced. In-camera post
processing such as CFA demosaicing, noise reduction, sharp-
ening and contrast enhancement may introduce additional dis-
tortion into the edge. The blurriness patterns, therefore, are
unique and are determined by the intrinsic properties of the
image acquisition devices. The measurement techniques to
model blurriness introduced to images have been proposed
in the literature (e.g. [15, 16, 17, 18]). We model the blur-
riness introduced in a perfect edge using the filter function
h(t) as shown in Figure 1(b). The distorted edge is given by
y(t) = x(t)∗h(t) = x(t)∗ϕ( t

T −n) where ϕ(t) is a reversed
version of the impulse response h(t). The blurred edge y(t)

is then sampled with a uniform sampling period T in order
to obtain a discretized edge y[n] = 〈x(t), ϕ(t/T − n)〉. This
suggests that when the input x(t) is acquired by different de-
vices, the differences between outputs, y[n], are determined
by the uniqueness of the corresponding ϕ of each device.

The recapture process is described by a cascade of ac-
quisition, reproduction, and acquisition processes that can be
represented by a series of A/D, D/A, and A/D conversions re-
spectively. The reproduction process converts discrete signals
back to the continuous domain. During the D/A conversion,
a perfect construction generally cannot be achieved and the
edge becomes less sharp. As a result, the reproduced edge
x̂(t) 6= x(t). When we recapture x̂(t) through a reacquisition
process, the recaptured edge, ŷ[n], exhibits different blurring
characteristics compared to y[n]. We use the increasing de-
gree of blur and the different patterns of distortion to detect
image recapture.

3. THE PROPOSED TECHNIQUE

This section presents our proposed framework for recapture
detection using a dictionary representation of edge profiles.
A working diagram of our proposed algorithm is illustrated in
Figure 2. The algorithm comprises the three following impor-
tant parts:

3.1. Representation of Edge Profiles using a Dictionary

Given a query image, blocks containing edges are identified
using an automatic edge detection algorithm (the reader is
referred to Figure 2 and the implementation details in Sec-
tion 4.1). Let Y ∈ IRW×W be a matrix that represents the
grayscale values of a block with size W×W . We assume that
an edge runs across the block in a horizontal or near horizon-
tal direction. Otherwise, if the edge runs from top to bottom,
the block is rotated by 90 ◦. As a result we have the matrix
Y = [y1y2 · · ·yi · · ·yW ] where yi represents a column vec-
tor of edge profile at column index i with length W . We define
a line spread profile, qi, as qi = y

(1)
i /||y(1)

i ||2 where y
(1)
i is

the first derivative of yi. The differentiation is performed in
order to suppress the DC bias in the edge profile.



We now assume that the dictionary used is preconstructed.
The matrix D ∈ IR(W−1)×K represents an overcomplete dic-
tionary that was generated from known dictionary atoms
{dj}Kj=1. Our goal is to find a set of atoms that allow the
best approximation of the feature qi ∈ IRW−1. We solve the
following optimization problem:

min
xi

‖qi −Dxi‖ subject to ∀i, ‖xi‖0 ≤ T0, (1)

where the vector xi ∈ IRK is a sparse matrix that contains the
representation coefficients of qi and T0 is the maximum num-
ber of atoms permitted. In Figure 3 an example of a query line
spread profile and its best linear approximation using three
atoms is given.
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Fig. 3. Representation of a blurring feature (black) using a
linear combination (red) of three dictionary atoms.

From the figure, it can be observed that three atoms are
sufficient to provide a good approximation to the profile. In
optimal sparse representation a dictionary is designed to con-
tain atoms that fit all possible unique feature blurring patterns.
One method by which this can be achieved is to build a dic-
tionary by learning from line spread profiles that have been
extracted from a sufficiently large set of natural images con-
taining scenes that are representative of everyday life.

3.2. Dictionary Learning

Given that the matrix S ∈ IR(W−1)×N is a collection of all
known features from a training set, we build S by concatenat-
ing the N column vectors qi ∈ IRW−1 that represent all line
spread profiles extracted from the training images. Our objec-
tive now is to design the dictionary D ∈ IR(W−1)×K that can
best represent all the profiles in the training matrix S. That is:

min
D
‖S−DX‖2F subject to ∀i, ‖xi‖0 ≤ T0, (2)

where X ∈ IRK×N is built from the coefficient matrices xi

used represent the feature qi and i = 1, 2, . . . , N .
The learning technique used in this work is the K-SVD

dictionary learning algorithm [19]. It is an iterative algorithm
that involves two important steps in each iteration: sparse
coding and dictionary update. Sparse coding is a method that
finds the best T0 atoms that can represent a signal with mini-
mum error as referred to in Equation (1). We use the orthogo-
nal matching pursuit (OMP) algorithm [20] in order to obtain

0 20 40 60 80 100 120

2
2.5

3

3.5
4

4.5

No. of iterations

E
rr

or
 (%

)

Single Capture
Recapture

Fig. 4. Representation errors over 120 iterations of K-SVD
training using features from single captured and recaptured
images

near-optimal sparse coding in our experiment. A dictionary
update is then applied. The K-SVD method updates the dic-
tionary atoms one column at a time. It computes the residual
error when the atom at column k : k = 1, 2, . . . ,K is dese-
lected. A singular vector which minimizes the residual error
is then computed using singular value decomposition (SVD)
with the linear least-squared norm properties. This vector is
then used to update the kth atom and it is guaranteed that the
approximation error can be minimized over each update. The
new set of atoms is used for the next computation and the
representation error will decrease over a number of iterations.

The training setup is described in Section 4. The initial
dictionary used is constructed from a set of line spread func-
tions (LSF) extracted from test targets captured with known
devices as presented in our preliminary work [10]. Figure 4
shows the training errors for dictionary learning using line
spread profiles extracted from our large set of natural images.
The errors for both the single capture and recapture categories
can be seen to drop over 120 iterations. This is due to the fact
that the atoms, initially created from edge LSFs of known de-
vices using a slanted edge test target, are replaced by the LSFs
of edges that are more typically present in natural images. The
linear approximations formed from the learned atoms adapt to
the edges found in the natural images and, therefore, provide
a more accurate representation compared to the atoms formed
from input edges that are perfectly sharp.

3.3. Recapture Detection Algorithm

We exploit the fact that, after training, the dictionary elements
are adapted to the blurring patterns of the specific training
sets. We trained two dictionaries DSC and DRC using fea-
tures SSC and SRC extracted from the single captured and
recaptured images respectively. Each dictionary is consid-
ered to provide an optimal representation of the profiles ex-
tracted from edges found in each set of training images, re-
spectively. We now assume that a query image containing
edges is available. The line spread profiles are extracted us-
ing the algorithm discussed in Section 3.1. Given the matrix
Q ∈ IRW−1×N which represents all line spread profiles ex-
tracted from the detected blocks, the decision for recapture



detection can be based on the class of dictionary that gives the
smallest representation error. We define X1 and X2 as the co-
efficient matrices obtained from the composition of query fea-
ture matrix Q using the dictionaries DRC and DSC respec-
tively. The query image is classified into a recapture group
if

‖Q−DRCX1‖2F < ‖Q−DSCX2‖2F . (3)

Otherwise, the query image is classified to the single capture
group.

4. EXPERIMENTS AND RESULTS

Our dataset comprised 9 sets of random single capture images
that were respectively captured using a Nikon D40, Nikon
D70s, Canon EOS 600D, Olympus E-PM2, Sony RX100,
Panasonic Lumix TZ7, Kodak V550 (black body), Kodak
V550 (silver body) and a Kodak V610 digital camera. All the
images were taken from random naturally occurring scenes
with no restrictions on types of edges in the pictures.

The single captured images were recaptured from an LCD
monitor using a technique that was derived from a method for
recapturing alias-free images[7]. The set of 8 cameras used to
perform the recapture were a Nikon D70S, Canon EOS600D,
Olympus E-PM2, Sony RX100, Nikon D3200, Canon A700,
Canon EOS60D and Panasonic Lumix TZ10. Each set of sin-
gle captured images was recaptured by each recapture camera
resulting in 72 different combinations of recapture. The single
capture and recaptured images were divided into training and
testing sets. Figure 5 provides an example of the images used
in the experiments. Figure 5(a) is a single image captured by
a Nikon D70s camera and Figure 5(b) shows its recaptured
version taken using a Canon PowerShot A700.

(a) Single Capture (b) Recapture

Fig. 5. Examples of images used in the experiments (a) Single
capture (b) Recapture

4.1. Dictionary Training

A total of 135 single captured and 243 recaptured images
were used in the training set-up. A binary map of edges was
produced for each image using the Canny edge detector [21].
Blocks of size 16× 16 pixels were selected based on the cri-
teria: 1) when sampling the block in the horizontal (vertical)
dimension, the block must contain a region that is spanned
by a single edge only, although the block may also include re-
gions spanned by two or more edges 2) the region of the block

spanned by a single edge must form 60% or more of the block
height (width). This resulted in 79,440 and 117,352 training
features for the single capture and recapture groups, respec-
tively. The orthogonal matching pursuit with T0 = 3 atoms
was used for sparse coding. The number of atoms chosen
provided an optimal balance between the accuracy of query
profile approximation and the ability to discriminate between
line spread profiles from single and recaptured images.

4.2. Performance Evaluation

A total of 1620 test images were used to evaluate the perfor-
mance of the proposed recapture detection algorithm. The set
comprised 180 single captured images taken with the 9 cam-
eras, and 1440 recaptured images taken with the 8 recapture
cameras, where each recapture camera was used to capture
each set of single captured images. The results from our per-
formance evaluation are shown in Table 1. A total of 1385
images out of 1440 recaptured images were correctly classi-
fied resulting in a true positive rate (TP) of 96.18% and a false
negative rate (FN) of 3.82% . A true negative (TN) rate of
92.22% and a false positive (FP) rate of 7.78%, was obtained
from the proposed algorithm. The algorithm is, therefore, ro-
bust to a variety of scenes and does place specific require-
ments regarding image content. Our technique is also capable
of extracting features using a block based edge detection al-
gorithm that is completely automatic. The method eliminates
possible operator bias during edge selection and is, therefore,
suitable to large image data sets.

Table 1. Results of the performance evaluation conducted on
single and recaptured images from the image test set.

Image Test Set
Classification Results

Recaptured Single Captured
Recaptured 96.18% 3.82%

Single Captured 7.78% 92.22 %

5. CONCLUSIONS

In this paper we have proposed a recapture detection algo-
rithm based on the specificity of sparse representation of
features from edges using overcomplete dictionaries. We
have shown that the result of detection is given by the class
of trained dictionary that provides optimal approximation of
query blurring patterns. The experimental results indicate
that the algorithm performs well when tested on large sets
of natural images. The performance of the proposed method
is comparable with earlier work and does not require human
supervision or the presence of sharp edges in query images.
The algorithm is therefore applicable to a wider variety of
natural images.
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