APPROXIMATE FRI WITH ARBITRARY KERNELS

Jose Antonio Urigüen¹, Pier Luigi Dragotti¹ and Thierry Blu*

¹Imperial College of London; *The Chinese University of Hong Kong

jose.uriguen08@imperial.ac.uk, p.dragotti@imperial.ac.uk, thierry.blu@m4x.org

ABSTRACT

In recent years, several methods have been developed for sampling and exact reconstruction of specific classes of non-bandlimited signals known as signals with finite rate of innovation (FRI). This is achieved by using adequate sampling kernels and reconstruction schemes, for example the exponential reproducing kernels of [1]. Proper linear combinations of this type of kernel with its shifted versions may reproduce polynomials or exponentials exactly.

In this paper we briefly review the ideal FRI sampling and reconstruction scheme and some of the existing techniques to combat noise. We then present an alternative perspective of the FRI retrieval, based on approximate reproduction of exponentials. Allowing for a controlled model mismatch, we propose a unified reconstruction stage that addresses two current limitations in FRI: the number of degrees of freedom and the stability of the retrieval. Moreover, the approach is universal in that it can be used with any sampling kernel from which enough information is available.

Keywords— FRI, Sampling, Noise, Matrix Pencil, Approximation

1. INTRODUCTION

Sampling, or the conversion of signals from analog to digital, provides the connection between the continuous-time and discrete-time worlds. The acquisition process is usually modelled as a filtering stage of the input \(x(t) \) with a smoothing function \(\varphi(t) \) (or sampling kernel), followed by uniform sampling at a rate \(f_s = \frac{1}{T} \) [Hz]. According to this setup, the measurements are given by

\[
y_n = \int_{-\infty}^{\infty} x(t) \varphi\left(\frac{t}{T} - n\right) dt = \langle x(t), \varphi\left(\frac{t}{T} - n\right) \rangle.
\]

The fundamental problem is to recover the original waveform \(x(t) \) from the samples \(y_n \). When the signal is bandlimited, the answer due to Shannon is well known. Recently, it has been shown [2, 1, 3] that it is possible to sample and perfectly reconstruct specific classes of non-bandlimited signals, known as signals with finite rate of innovation (FRI). Perfect reconstruction is achieved by using a variation of Prony’s method, called the annihilating filter method [3, 4].

In this paper we introduce the approximate recovery of FRI signals, from noisy samples taken by an arbitrary kernel. Our analysis follows the setup of [1], where the key to FRI reconstruction is exact reproduction of exponentials. We introduce the property of approximate reproduction of exponentials by finding proper linear combinations of the sampling kernel. The main advantages of our method are that we can increase the number of measurements, improve the stability of the recovery and generalise the reconstruction stage.

The outline of the paper is as follows. In Section 2 we review the noiseless scenario of [1] and then give an overview of existing denoising techniques [3, 5]. In Section 3 we introduce the approximate FRI scenario. We first study the approximate reproduction of exponentials, and then apply this property to the recovery of FRI signals. We also propose an iterative algorithm to refine the accuracy of the reconstruction. Finally, in Section 4 we show simulation results, to then conclude in Section 5.

2. SAMPLING SIGNALS WITH FRI

2.1. Perfect reconstruction of a stream of Diracs

Following the analysis of [1], we summarise the main steps needed to sample and perfectly reconstruct a train of \(K \) Diracs

\[
x(t) = \sum_{k=0}^{K-1} a_k \delta(t - t_k), \tag{1}
\]

where \(t_k \in [0, \tau) \), from the samples

\[
y_n = \langle x(t), \varphi\left(\frac{t}{T} - n\right) \rangle = \sum_{k=0}^{K-1} a_k \varphi\left(\frac{t_k}{T} - n\right), \tag{2}
\]

for \(n = 0, 1, \ldots, N - 1 \). Here we assume that the sampling period \(T \) is such that \(\tau = NT \). Moreover, \(\varphi(t) \) is an exponential reproducing kernel [1, 6] of compact support that satisfies

\[
\sum_{m \in \mathbb{Z}} c_{m,n} \varphi(t - n) = e^{\alpha_m t}, \tag{3}
\]

for proper coefficients \(c_{m,n} \), with \(m = 0, \ldots, P \) and \(\alpha_m \in \mathbb{C} \).

To begin, we linearly combine the samples \(y_n \) with the coefficients \(c_{m,n} \) of (3) and obtain the new measurements (exponential moments):

\[
s_m = \sum_{n=0}^{N-1} c_{m,n} y_n, \tag{4}
\]

for \(m = 0, \ldots, P \). Then, given that the signal \(x(t) \) is a stream of Diracs (1) and combining (4) with (2) we have [1]:

\[
s_m = \langle x(t), \sum_{n=0}^{N-1} c_{m,n} \varphi\left(\frac{t}{T} - n\right) \rangle = \sum_{k=0}^{K-1} x_k u_k^m, \tag{5}
\]

with \(x_k = a_k e^{\alpha_m t_k} \) and \(u_k = e^{\lambda_k t_k} \). In order for (5) to hold, we have restricted our analysis to parameters of the form \(\alpha_m = \alpha_0 + m \lambda \), where \(m = 0, \ldots, P \) and \(\alpha_0, \lambda \in \mathbb{C} \). The reason we use these parameters is that we need to solve for the values \(s_m \) to have a power sum series form (5), which is key to the recovery stage.

The new pairs of unknowns \((u_k, x_k) \) for \(k = 0, \ldots, K - 1 \) can then be retrieved from the measurements \(s_m \) using the annihilating filter

This work is supported by the European Research Council (ERC) starting investigator award Nr. 277800 (RecoSamp).
method [2, 1, 3]. Let h_{m} with $m = 0, \ldots, K$ denote the filter with z-transform \(\hat{h}(z) = \sum_{m=0}^{K} h_{m} z^{-m} \). Then, h_{m} annihilates the series s_{m}:

$$h_{m} \ast s_{m} = \sum_{i=0}^{K} h_{i} s_{m-i} = \sum_{k=0}^{K-1} x_{k} u_{m-k} - \sum_{k=0}^{K} h_{k} u_{m-k} = 0. \tag{6}$$

The zeros of this filter uniquely define the values u_{k} provided the locations t_{k} are different. Interestingly, identity (6) can be written in matrix-vector form as:

$$S h = 0 \tag{7}$$

which reveals that the Toeplitz matrix S is rank deficient. The annihilating filter is therefore in the null space of S. By solving the above system, we find the coefficients h_{m}, and then retrieve u_{k} from the roots of $\hat{h}(z)$. Finally, we determine the weights s_{m} by solving the first K consecutive equations in (5). Notice that the problem can be solved only when $P + 1 \geq 2K$.

An exponential reproducing kernel is any function $\varphi(t)$ that, together with its shifted versions, can reproduce exponentials, that is, it satisfies (3). The coefficients $c_{m,n}$ are given by

$$c_{m,n} = \int_{-\infty}^{\infty} e^{\alpha_{m} t} \varphi(t-n) dt = c_{m,n} e^{\alpha_{m} n}, \tag{8}$$

where the function $\hat{\varphi}(t)$ is such that $\hat{\varphi}(t-n) = \delta_{m-n}$, and with $c_{m,0} = \int_{-\infty}^{\infty} e^{\alpha_{m} t} \varphi(x) dx$.

Any exponential reproducing kernel can be written as $\varphi(t) = \gamma(t) \ast \beta(t)$ [1, 6], where $\gamma(t)$ is an arbitrary function, even a distribution, $\beta(t)$ is an E-Spline and $\alpha = \{\alpha_{m}\}_{m=0}^{P}$. The Fourier domain representation of an E-Spline of order $P + 1$ is:

$$\beta_{\alpha}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\omega t} e^{i\omega t} dt$$

In this paper we work with real valued sampling kernels characterised by $\gamma(t)$ and $\beta_{\alpha}(t)$ being real. Since $\alpha_{m} = \alpha_{0} + m \lambda$ with $m = 0, \ldots, P$ this implies $\lambda = (\alpha_{P} - \alpha_{0})/P$. Note that this makes the values α_{m} and the moments s_{m} exist in complex conjugate pairs.

2.2. Sampling signals with FRI in the presence of noise

Noise is generally present in data acquisition, making the solution explained so far ideal. Assume the noiseless samples y_{n} are corrupted by additive noise such that we have access to the measurements $\tilde{y}_{n} = y_{n} + e_{n}$ for $n = 0, \ldots, N - 1$. In this situation, the moments, given by the linear combination of samples (4), become noisy:

$$\tilde{s}_{m} = \sum_{k=0}^{K-1} x_{k} u_{m-k} + \sum_{n=0}^{N-1} c_{m,n} e_{n}$$

and perfect reconstruction is no longer possible. If e_{n} are i.i.d. Gaussian, then b_{m} are samples of Gaussian noise, but not necessarily white.

The retrieval of the innovation parameters of the input is now not straightforward, because (7) becomes $S h \approx 0$ with $\tilde{S} = S + B$, where B is a Toeplitz matrix formed from the values b_{m} of (9). Thus, we may solve the problem by using total least squares and Cadzow [3] or matrix pencil [7, 5]. For the latter, we obtain the SVD decomposition of $S = U \Sigma V^{H}$, keep the K columns of U corresponding to the dominant singular values and compute u_{k} as the eigenvalues of $U_{k}^{H} \tilde{U}_{k}$. Here, (\cdot) and $(\cdot)^{H}$ are operations to omit the last and first rows of (\cdot).

In addition, note that the covariance matrix of the noise $R_{B} = E[B^{H}B]$ may not be a multiple of the identity. In order for SVD to operate properly it is necessary to pre-whiten the noise [8], for instance by using a linear transform $W = R_{B}^{-\frac{1}{2}}$ such that $A = BW$ satisfies $R_{A} = E[A^{H}A] = I$. Here, $(\cdot)^{H}$ denotes the square root of the pseudoinverse of (\cdot). In our simulations, we use matrix pencil on SW, now characterised by white noise.

In order to analyse the effect of noise on the accuracy with which FRI signals can be recovered we use the Cramér–Rao lower bound (CRB). This is a lower bound on the mean square error (MSE) that applies to any unbiased estimator [4]. A stream of K Diracs is completely characterised by the locations t_{k} and amplitudes a_{k} for $k = 0, \ldots, K - 1$. We introduce the vector $\Theta = (a_{0}, \ldots, a_{K-1}, 0, \ldots, 0)^{T}$, and the goal is to estimate Θ either from the vector of N samples $\tilde{y} = (\tilde{y}_{0}, \ldots, \tilde{y}_{N-1})^{T}$ or the vector of $P + 1$ noisy moments $\tilde{s} = (\tilde{s}_{0}, \ldots, \tilde{s}_{P})^{T}$.

The analysis of the CRB for the estimation problem given the vector of samples \tilde{y} is detailed in [3]. On the other hand, we also consider the alternative estimation from the vector of moments \tilde{s}. Given values s_{m} that exist in complex conjugate pairs, then any unbiased estimate $\hat{\Theta}(\tilde{s}) = (\hat{a}_{0}, \ldots, \hat{a}_{K-1})^{T}$ has a covariance matrix that is lower bounded by [10]

$$\text{cov}(\hat{\Theta}) \geq \left(A^{-H} R^{-\frac{1}{2}} A^{-1}\right). \tag{10}$$

Here, $(\cdot)^{H}$ denotes Hermitean transpose. Moreover, provided e_{n} are samples of additive white Gaussian noise, of zero mean and variance σ^{2}, then $R_{B} = E[B^{H}B] = \sigma^{2}CC^{H}$, since B is the vector of noise values b_{m}. The matrix Φ of (10) takes the form:

$$\begin{pmatrix}
0_{1} & \cdots & 0_{1} & \cdots & 0_{1} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0_{N} & \cdots & 0_{N} & \cdots & 0_{N} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0_{P} & \cdots & 0_{P} & \cdots & 0_{P}
\end{pmatrix}$$

3. UNIVERSAL SAMPLING SIGNALS WITH FRI

In many practical circumstances we may not be able to choose the sampling kernel $\varphi(t)$, or even know its exact shape. In such cases it may be difficult or even impossible to find coefficients $c_{m,n}$ for the kernel to reproduce exponential functions exactly. And this is key in the FRI setting to map the signal reconstruction problem to Prony’s method in spectral-line estimation theory.

In this section we relax this condition and consider any function $\varphi(t)$ for which the exponential reproduction property (3) is only approximate. We propose to use the coefficients $c_{m,n}$ for the approximate reproduction to retrieve FRI signals from the samples obtained using these kernels.

3.1. Approximate reproduction of exponentials

Assume we want to use a function $\varphi(t)$ and its integer shifts to approximate the exponential $e^{\alpha t}$. In other words, consider we want to find the coefficients c_{n} that best fit:

$$\sum_{n \in \mathbb{Z}} c_{n} \varphi(t-n) \approx e^{\alpha t}. \tag{11}$$

In order to do so, we directly use $c_{n} = \sum_{m \in \mathbb{Z}} c_{m,n} e^{\alpha(t-n)}$. Then, equation (11) is equivalent to approximating $g_{n}(t) = c_{n} \sum_{m \in \mathbb{Z}} c_{m,n} e^{\alpha(t-n)} \varphi(t-n)$ by the constant value 1. We also note that $g_{n}(t)$ is a 1-periodic function, because $g_{n}(t) = g_{n}(t + 1)$. It can therefore be decomposed using the Fourier series as

$$g_{n}(t) = \sum_{k \in \mathbb{Z}} g_{n} e^{2\pi k i t} \tag{12}$$
Here, k is due to using $x - t - k$ and combining the sum over $k \in \mathbb{Z}$ and the integral dependent on k. Also $\varphi'(s) = \int_{-\infty}^{\infty} \varphi(x)e^{-j2\pi xt}dx - c_0 \varphi(\alpha + j2\pi t)$.

In general $\varphi(t)$ can be any function and we can find different sets of coefficients c_n for (11) to hold. The accuracy of our approximation is given by:

$$\varepsilon(t) = e^{\alpha t} \left[1 - c_0 \sum_{k \in \mathbb{Z}} \varphi(\alpha + j2\pi t)e^{j2\pi mt} \right].$$

Note that if the Laplace transform of $\varphi(t)$ decays sufficiently quickly, very few terms are needed to have an accurate bound for the error.

A natural choice of the coefficients $c_n = c_0e^{\alpha n}$ is obtained by discarding every term in (12) for $l \neq 0$ and making $g_0 = 1$, hence $c_0 = \varphi(\alpha)^{-1}$. Interestingly, this is a simplified version of the least-squares coefficients [11] for the approximation in (11). These coefficients are very easy to compute, and they only require the knowledge of the Laplace transform of $\varphi(t)$ at α.

We conclude with an example. Consider a linear spline that reproduces polynomials of orders 0 and 1 exactly, the latter shown in Figure 1 (a). We want to approximate the two complex exponentials $e^{\alpha x}$ for $m = 0$ and $m = 1$ by using linear combinations of the spline. This can be done by selecting $c_{m,n} = \varphi(\alpha m)^{-1}e^{\alpha m}$ where $\alpha_m = j\frac{\pi}{L}(2m - 7)$. We present the reproduction of the real part in Figure 1 (b-c). Note how the lower frequency complex exponential is better approximated. Moreover, we have seen experimentally that higher order splines tend to improve the quality of the approximation. Also note there is no fixed number of exponentials that may be well approximated.

3.2. Approximate FRI recovery

Consider again the stream of Diracs (1) and samples of the form (2), now taken by an arbitrary sampling kernel $\varphi(t)$. In order to retrieve the locations t_k and amplitudes a_k for $k = 0, \ldots, K - 1$, we first obtain the coefficients $c_{m,n} = \varphi(\alpha m)^{-1}e^{\alpha m}$ for $m = 0, \ldots, P$. We only need to know the Laplace transform of $\varphi(t)$ at α_m. Note that P is a free parameter, subject to $P + 1 \geq 2K$.

We proceed in the same way as in the case of exact reproduction of exponentials, but now the moment forms take the form

$$s_m = \left< x(t), \sum_{n=0}^{N-1} c_m,n \varphi(t - n) \right> - \sum_{k=0}^{K-1} x_k u_k^m - \zeta_m$$

where $x_k = a_k e^{\alpha_k t_k}$ and $u_k = e^{\lambda t_k}$. Here we have used $T - 1$ and $\alpha_m = \alpha_0 + m \lambda$, with $m = 0, \ldots, P$, and $\alpha_0, \lambda \in \mathbb{C}$. There is a model mismatch due to the approximation error $\varepsilon_m(t)$ of (13), equal to $\zeta_m - \sum_{k=0}^{K-1} a_k e^{\alpha_k t_k}$.

The model mismatch depends on the quality of the approximation, and depends on the coefficients $c_{m,n}$ and the values ε_m and P. We treat this error as noise, and retrieve the parameters of the signal using the methods of Section 2.2. In close-to-noiseless settings, the estimation of the Diracs can be refined using the iterative procedure shown in Algorithm 1.

Algorithm 1 Recovery of a train of K Diracs using approximation of exponentials

1. Compute the moments $s_0^m = \sum_{n=0}^{N-1} c_{m,n} y_n$ and set $s_m^0 = s_0^m$, for $m = 0, \ldots, P$.
2. Build the system of equations (6) using s_m^0 and retrieve the annihilating filter h_m.
3. Calculate u_k from the roots of h_m, and $t_k^0 = \frac{1}{\lambda} \ln u_k$, for the rth iteration.
4. Find x_k^0 from the first K consecutive equations in (5), and the amplitudes $a_k^0 = x_k^0 e^{-\alpha_k t_k^0}$.
5. Recalculate the moments for the next iteration by removing the model mismatch:

$$s_{m+1}^0 = s_m^0 + \sum_{k=0}^{K-1} a_k^0 \varepsilon_m(t_k^0),$$

where $\varepsilon_m(t)$ is given by (13).
6. Repeat steps 2 to 5 until convergence of the values (a_k^m, t_k^m).

3.3. How to select the approximation parameters α_m

In order to simplify the problem, we restrict the exponential parameters to be of the form:

$$\alpha_m = j \omega_m = j \frac{\pi}{L} (2m - P) \quad m = 0, \ldots, P.$$ \hspace{1cm} (14)

Purely imaginary parameters allow for a more stable retrieval of the pairs (t_k, a_k) from (5). The values to be determined are, therefore, P and L. We choose the values that minimise the first K diagonal terms of (10), which correspond to the error in the recovery of the locations t_k. In most cases we have analysed, the best P is greater or equal than the support of the sampling kernel $\varphi(t)$ and L is in the range $P + 1 \leq L \leq 4(P + 1)$.

4. SIMULATIONS

We take $N = 31$ samples of a train of K Diracs using a B-Spline kernel, and we corrupt the measurements with additive white Gaussian noise of variance σ^2. This is chosen according to the required signal-to-noise ratio $\text{SNR}(dB) = 10 \log([\|y\|^2/N \sigma^2])$. We then obtain the approximation coefficients $c_{m,n} = \varphi(\alpha_m)^{-1}e^{\alpha m}$, where α_m is as in (14) with $L = 2(P + 1)$ and $m = 0, \ldots, P$. Finally, we compute the noisy $P + 1$ moments and retrieve the innovation parameters (t_k, a_k), for $k = 0, \ldots, K - 1$, using the matrix pencil method. We calculate the standard deviation of the error in the estimation of the location, over 1000 realisations of the noise, and compare it to the sample-based and moment-based CRBs of Section 2.2.

Figure 2 shows the deviation in the location of $K = 6$ Diracs. We compare the performance (a) when we sample with a B-Spline of order 26 and use the default retrieval based on the reproduction of polynomials [1], with (b) when we sample with a B-Spline of order 6 and apply the retrieval based on approximation of exponentials, with 26 moments; both aided with pre-whitening. The SNR is 20dB. It is only in the latter case that we can recover all the Diracs. Moreover, the accuracy with which the Diracs are recovered is one order of magnitude better for the approximated FRI.

We show further results when we use the approximate method to retrieve $K = 2$ Diracs from the samples taken by a B-Spline kernel of order 6. Even when we fix the order of the kernel, we can reconstruct an increasing numbers of moments $P + 1$ to improve the performance. Figures 3 (a-d) are for parameters (14) with $L = \frac{3}{2}(P + 1)$ and $m = 0, \ldots, P$. As the number of moments $P + 1$ increases, the performance is better and eventually reaches the sample-based CRB.
We have presented an alternative FRI retrieval approach, based on the approximate reproduction of exponentials. Allowing for a controlled model mismatch, we propose a standard reconstruction stage that is able to increase the stability of existing FRI schemes.

Moreover, in many practical circumstances we may not be able to choose the sampling kernel or even know its exact shape. However, we have seen that if we know the Laplace transform of the kernel at values α_m, we can find coefficients for the linear combination of shifted versions of the sampling kernel to approximate exponentials $e^{\alpha_m t}$. Equipped with this property we can sample a stream of K Diracs and retrieve it from $2K$ measurements. The accuracy of the reconstruction depends on the quality of the approximation and the level of noise.

Future work includes FRI retrieval with partial information on the sampling kernel, with more challenging existing FRI kernels (such as the Gaussian), and extensions to more dimensions and non-uniform sampling. In addition, approximate reconstruction may also be generalised when we have access to measurements taken by different kernels, each of which is capable of approximating certain exponentials.

6. REFERENCES

