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Abstract. Recently, the use of wireless sensor networks for environmen-
tal monitoring has been a topic of intensive research. The sensor nodes
obtain spatiotemporal samples of physical fields over the region of inter-
est. For most cases these fields are driven by well-known partial differential
equations—the diffusion and wave equations for example—and this prior
knowledge can be used to solve such physics-driven inverse source prob-
lems (ISPs). In this work, we demonstrate how to estimate the unknown
source shape inducing the field by assuming that it can be described by a
model having a finite number of unknown parameters.

1 Introduction

Several naturally occurring phenomena or signals obey certain well known phys-
ical laws. For instance, the propagation of heat through a medium is governed
by the well-known heat (or diffusion) equation, the propagation of sound can be
accurately described through the acoustic wave equation, Bloch’s equation is at
the heart of Magnetic Resonance Imaging (MRI) and so on. Moreover sensor
networks have emerged as a useful tool for monitoring such phenomena, with the
aim of inferring some underlying properties of the measured field. For example,
distinguishing hot from cold spots for load-balancing in the monitoring of large
server clusters, detecting factory leakages and acoustic source localization and
so on. The problems can, in general, be posed as inverse source problems (ISPs).

Although a variety of approaches based on compressed sensing [1, 2], sta-
tistical methods [3], finite/boundary element methods [4] and more, have been
proposed to solve this problem, these approaches tend to be PDE-specific and
not easily generalized. Furthermore, it is usual to assume spatially localized
sources which is valid in scenarios where the spatial support of the sources are
orders of magnitude smaller than the monitored region. Hence this work will
consider the ISP for non-localized sources; specifically, we focus on a particu-
lar class of sources that are localized in time but their spatial support can be
described using a modified version of the finite rate of innovation (FRI) curve
model introduced by Pan et al in [5]. For these source types, we show how the
recent approach of [6] can be generalized in order to estimate them.

The rest of this paper is organized as follows. We state the problem in
Section 2. In Section 3, we present the proposed source recovery method, and
then conclude the paper in Section 4.

∗This work is supported by the European Research Council (ERC) starting investigator
award Nr. 277800 (RecoSamp).



2 The physics-driven inverse source problem

In this paper we are concerned with physical fields u(x, t) governed by linear
PDEs of the form:

Du(x, t) = f(x, t), (x, t) ∈ Ω× R+, (1)

where u(x, t) denotes the field induced by the source distribution f(x, t), D =∑
i≤I∈N ai∇i, where i = (i1, i2, i3) is a three-dimensional multi-index variable

with |i| = i1+i2+i3, and ∇i = ∂|i|
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Then our problem of interest is stated as follows:

Problem 1 (Physics-driven inverse source problem (ISP)). Let ϕn,l=u(xn, tl),
denote the uniform spatiotemporal samples of the field u(x, t) induced by a source
distribution f(x, t), at discrete spatial locations xn = ∆x ∈ Ω and n = (n1, n2),
for n1 = 0, 1, . . . , N1, n2 = 0, 1, . . . , N2 and time instants tl ∈ R+ with l =
0, 1, . . . , L. Then the physics-driven ISP is to recover the unknown source dis-
tribution f from the samples {ϕn,l}n,l.

In its present form this problem is ill-posed [8], however it can be regularized
by assuming a structure on f(x, t). We consider non-localized sources can be
described parametrically using a finite number of parameters per unit space and
time, i.e. sources (signals) with a finite rate of innovation (FRI) [9, 10].

Definition 1 (FRI source with arbitrary shape). This source f(x, t) is given by
the integral:

f(x, t) =
cδ(t− τ)

2πj

∫
F

1

z̄ − (x1 + jx2)
dz̄, (2)

where z̄ = x̄1 + jx̄2 and F is the contour of the integral described through the
zeros of some mask function (3). Specifically that the spatial distribution of the
source is assumed to coincide with the contour,
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where the second equality results from utilizing a multi-index notation, with l =

(l1, l2), Lx = (Lx1
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Our choice is motivated by the fact that this model is potentially very rich,
as it gives rise to very diverse topologies when we impose αl1,l2 = α∗−l1,−l2 [5].

3 Methodology

In what follows, we demonstrate how to recover the unknown source parameters
for the FRI source distribution of interest. Our proposed approach is two step:

(a) For the source distribution we demonstrate that there exists a proper vector
sequence of generalized measurements [11]:



R(k) = 〈f(x, t),Ψk(x)Γ(t)〉, (4)

that can be annihilated using multidimensional variations of Prony’s method
[9, 12], in order to recover the unknown source parameters. Here Ψk(x) and
Γ(t) are chosen to be imaginary exponential functions1.

(b) Subsequently, we show how to compute the desired sequence of generalized
measurements through linear combinations of the sensor data.

3.1 Source recovery from the generalized measurements

The approach proposed is based on the framework of [6], wherein the focus is
on point sources. However, in this work we describe how the framework of [6]
can be generalized, albeit non-trivially, to FRI sources with arbitrary shapes.

3.1.1 Recovering the arbitrary FRI source shape

We now demonstrate that for the FRI source distribution (2), it is possible to
recover the unknown source parameters c, τ and {αl}l by annihilating a properly
scaled version of the sequence of generalised measurements R(k). To see this,
we substitute (2) into (4), and choose Ψk(x) = e−2π(jk1x1/Lx1+jk2x2/Lx2 ) and
Γ(t) = e−j2πt/T to be the imaginary exponentials. Then it follows that

R(k) = ce−j2πτ/T 〈1F (x), e
−2πj

(
k1x1
Lx1

+
k2x2
Lx2

)
〉

= ce−j2πτ/T 1̂F (ωx)
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ωx=2πk/Lx

, (5)

where 1̂F (ωx) is the multidimensional Fourier transform of the spatially varying
component of the source distribution.

Proposition 1. Let R′(k) = j(k1+jk2)R(k), for the arbitrary FRI source model
(2), then it follows that for any l̃:
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Proof. Consider the multidimensional Fourier transform

R̂(ωx, ωt) = 〈f(x, t), e−jωx·xe−jωtt〉

= ce−ωtτ 〈1F (x), e−jωx·x〉 = ce−jωtτ 1̂F (ωx), (7)

of the source distribution (2). Due to (5), we can immediately realize that

R(k)
def
= R̂(ωx, ωt)

∣∣∣
(ωx,ωt)=2π(k/Lx,1/T )

.

Next consider the Wirtinger spatial derivative R′(x, t) = ∂R
∂x1

+j ∂R∂x2
of R(x, t),

whose Fourier transform can be related to that of R(x, t) as follows:

R̂′(ωx, ωt) = j(ωx1
+ jωx2

)R̂(ωx, ωt) = j(ωx1
+ jωx2

)ce−jωtτ 1̂F (ωx),

1Note that this is in contrast to the to [11] wherein the choice for Ψk(x) is chosen to be an
analytic family of complex exponentials.



the second equality here follows by substituting (7). Furthermore using 1̂F (ωx) =
1

ωx1+jωx2

∫
F
e−jωx·xdz, where z = x1 + jx2, gives

R̂′(ωx, ωt) = jce−jωtτ
∫
F

e−jωx·xdz. (8)

Substitute (8) into the LHS of (6) and set ωx = 2π l̃−l
Lx

, as well as ωt = 2π/T ;

then pass the summation inside the integral to get: R̂′(2π(l̃− l)/Lx, 2π/T ) =

R′(k) = jce−j2πτ/T
∫
F
e−j

2πl̃·x
Lx

∑
lαle

j 2πl·x
Lx dz = 0, as required.

As a consequence, given the generalized measurements R(k) at a few discrete

frequencies ωx = 2π(l̃−l)
Lx

, we may write the discrete convolution (6) as follows

Ha = 0,

where H is a block-circulant convolution matrix formed using

R′(k) = j(k1 + jk2)R(k) (9)

and a is a column vector obtained through a lexicographic ordering of {αl}. It
can be shown, see [5] for example, that such a linear system admits a least-square

solution provided that to recover all {αl}(L1,L2)
l=−(L1,L2)

the number of samples of

{R(k)} with k = 2π(l̃−l)
Lx

exceeds (4L1 + 1)(4L2 + 1). The key message here is
that we can obtain R′(k) from the generalized measurements R(k) by carefully
choosing the sensing function family.

Finally, the activation time of the source τ can be estimated directly from
R(0) using τ = − T

2πarg(R(0)).

3.2 From sensor data to the generalized measurements

In what follows we discuss how to compute these generalized measurements
from the spatiotemporal samples of the field, by taking proper linearly weighted
combinations of the sensor data {ϕn,l}n,l. Specifically, we require the weights
{wn,l(k)} such that:∑

n

∑
l

wn,l(k)ϕn,l ≡ R(k) = 〈f(x, t),Ψk(x)Γ(t)〉 (10)

where the weights are to be found. To this end we recall that, according to the
method of fundamental solutions [7], u(x, t) = (f ∗ g)(x, t) for linear PDEs of
the form (1). Hence, by writing u(x′, t′) = 〈f(x, t), g(x′ − x, t′ − t)〉 we see that
spatiotemporal samples: ϕn,l = u(xn, tl) = 〈f(x, t), g(xn − x, tl − t)〉. Thus we
notice that the weighted sum coincides with the generalized measurements if,∑

n

∑
l

wn,l(k)g(xn − x, tl − t) = Ψk(x)Γ(t), (11)

where for our choices of Ψk(x) and Γ(t), the problem of finding the wn,l(k)
in (11) is known as the exponential reproduction problem in the sampling and



approximation theory literature [13, 14]. Therein the 1-D exponential reproduc-
tion, i.e.

∑
n wn(k)g(x − n) = e−jβkx, is possible iff the generalized Strang-Fix

conditions [15], i.e. ĝ(βk) 6= 0 and ĝ(βk + 2π`) = 0 ∀` ∈ Z\{0}, holds true for all.
Furthermore, it can be shown that under these conditions,

wn(k) = (ĝ(βk))
−1
e−jβkn. (12)

However for Green’s functions that do not satisfy the generalized Strang-Fix
conditions, it can be shown that (12) still provides a good approximation as long
as ĝ decays quickly. These arguments can be extended to the multidimensional
case, alternatively one could formulate a linear system that admits a least-square
solution [16].

Once we have the correct sequence of weights {wn,l(k)} have been found,
then the desired generalized measurements can be obtained by evaluating the
sum in (10) and then R′(k) can be computed using (9).

3.3 Distributed source recovery

The proposed framework is readily distributed as follows. When the sensors are
deployed, they simply need to precompute their respective weights {wn,l(k)}l;
this is made possible under the assumption that the sensors in the network know
the overall topology. Once this is done, they can start to monitor the region of
interest. Furthermore, in order to compute the weighted sum (10), each sensor in
the network can compute its local generalized measurement

∑
l wn,lϕn,l. Conse-

quently any gossip scheme for average consensus (see [17, 18, 19] and references
therein) can then be utilized to aggregate these local generalized measurements,
in such a way that every sensor can converge to the desired {R(k)}k. Upon
convergence any sensor can then estimate the unknown source parameters as
described in Section 3.1.

4 Conclusion

In this paper we showed how to solve the inverse source problem for phenomena
driven by linear PDEs. In our approach we leverage from results in modern sam-
pling theory to reduce the ISP relating to localized and arbitrary non-localized
sources into a problem that can be solved using multidimensional extensions of
Prony’s method.
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