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ABSTRACT

Image based rendering (IBR) is a promising way to produce
arbitrary views of a scene using images instead of object mod-
els. The emergence of low-price, fast, and reliable cameras
for measuring depth will have a great impact on IBR in that
depth measurements provide the perfect complementary in-
formation to the traditional color images. The issue then is to
understand, given a certain scene of interest, how many depth
images and how many color images are necessary in order to
obtain good rendering results.

In this paper, we perform a spectral analysis of both multi-
view depth images and multi-view color images in order to
work out the relationship between the number of depth and
color images needed. Our analysis is then validated using
both synthetic and real images.

Index Terms— One, two, three, four, five

1. INTRODUCTION

Image Based Rendering (IBR) is a promising technique to
render novel views from a set of available multi-view color
images. Instead of rendering views of 3-D scenes by pro-
jecting objects and their textures, new views are rendered by
interpolating available nearby images. The advantage of such
a method is that it produces convincing photorealistic results
since the interpolated viewpoints are obtained through com-
binations of real images. The main drawback is the fact that a
huge amount of data needs to be captured.

Clearly, knowledge of the scene geometry reduces the
number of images required. The interplay between geometry
and sampling rate (number and spacing of cameras) has been
extensively studied in the recent past (e.g., [1, 2, 3, 4, 5]).
While the actual estimation of depth and geometry has been
normally achieved using passive stereo with multiple cam-
eras [??James please include an all encompassing reference
to depth estimation algorithms???]. Unfortunately, 3-D re-
construction techniques from passive cameras, are still not
reliable and do not work well in many cases. This fact has
profoundly limited the use of IBR ideas. Recent advances in
sensing technologies may soon allow large-scale deployment

of 3-D cameras using active depth sensing systems. These
cameras are able to estimate depth and geometry with good
accuracy and reliability, and for this reason can be very use-
ful in IBR. The natural question then is to understand the
interplay between the number of depth and colour cameras.
Specifically, given a scene of interest with a certain geometry,
how many depth cameras are necessary to infer the geome-
try and how many color cameras are then needed, given the
inferred geometry, to render novel photorealistic view?

To answer this question we put ourserves in the typical
Shannon sampling framework and perform a spectral analy-
sis of both multi-view depth images and multi-view colour
images. In that respect we continue the work of several re-
searchers [1, 2, 3, 4]. In particular we use the formalism de-
veloped in a previous paper of ours [6] and expand it to in-
clude the case of depth cameras. We show that the interplay
between the required number of depth and colour cameras
mostly depends on the resolution of the colour cameras and
the bandwidth of the texture of the scene. Our analysis is then
validated using both synthetic and real images.

The paper is organized as follows:....

2. SPECTRAL ANALYSIS OF THE PLENOPTIC
FUNCTION

2.1. Parameterization of the Plenoptic Function

At the heart of IBR is the idea that a scene can be represented
as a collection of light rays emanating from the scene. As
noted above, the complete parameterisation of the rays re-
quires the seven dimensional plenoptic function. The number
of dimensions, however, can be reduced by constraining the
sensing setup. For example, the case when cameras lie on a
plane leads to the 4-D lumigraph [7] or lightfield [8] parame-
trization. This parametrization is obtained by using two paral-
lel planes: the camera plane (s, t) and the image plane (u, v).
The distance between the two planes is the focal length, f .
Therefore, the function p(s, t, u, v) represents the intensity of
the light ray at camera location (s, t) and pixel location (u, v)
(see Fig. 1). A further simplification, used in [1], is to fix s
and u, corresponding to the situation where the camera posi-



Fig. 1. Lightfield parameterization. A light ray is completely
determined by its intersection with the camera and the image
plane.

tions are constrained to a 1-D camera line and only one scan-
line is considered in each image. In this case the light field
is reduced to two dimensions: p(t, v). Plotting this plenoptic
representation in the (t, v)-space leads to the Epipolar Plane
Image (EPI). It is interesting to note that in this case, a point
in the scene is converted into a line in the plenoptic domain
and lines with higher slope always occlude lines with smaller
slope.

2.2. Bandwidth of the Plenoptic function

IBR can be seen as the problem of sampling and interpolating
the plenoptic function. It is therefore natural to investigate the
spectral properties of the plenoptic function in order to deter-
mine the correct Nyquist sampling rate and the correct recon-
struction formula. Using the EPI parameterization the plenop-
tic spectrum is defined as P (ωt, ωv) = F{p(t, v)}, where
F is the Fourier transform operator. The properties of the
plenoptic spectrum were studied for the first time in [1]. By
assuming a Lambertian scene with no occlusion, they showed
that the spectrum is approximately bounded by lines related
to the maximum and minimum depths of the scene and that
finite camera resolution bandlimits the spectrum. This spec-
tral analysis was extended in [3] to more general cases, in
particular non-Lambertian and occluded scenes.

However, these analyses assume infinite scene width and
cameras with infinite field of view when determining the
plenoptic spectrum. In [6], we constrain our spectral analysis
to cameras with FFoV and arrive at a close-form expression
for the plenoptic spectrum of a slanted plane, of finite width,
with bandlimited texture. An example of a slanted plane
is illustrated in Fig. 2. The resulting plenoptic spectrum is
band-unlimited in both ωt and ωv . However, by assuming the
function is bandlimited to an essential bandwidth that con-
tains 90% of the signal’s energy, the EPI can be reconstructed
up to a certain aliasing error. Under this assumption we de-
termined a maximum acceptable spacing between cameras in

Fig. 2. Scene model of a slanted plane where zmin and zmax

are the minimum and maximum depth, respectively, f is the
focal length and h is the curvilinear coordinate. Note that θ is
the viewing angle and φ is the slant of the plane.

order to reconstruct the plenoptic function.
Based on this spectral result, [?] formulates an algorithm

that determines the optimum positioning for a finite number
of cameras in order to sample a scene with a smoothly varying
surface. However this algorithm requires as an input either
the actual geometry or an estimate of it. LINK TO DEPTH
CAMERAS ETC

3. THE DISPARITY FUNCTION

We propose treating the images obtained from the depth cam-
eras as samples of a disparity function, δ(t, v), which de-
scribes the disparity of the scene captured at camera loca-
tion t and pixel location v. Therefore, in a similar fashion
to the plenoptic function, we preform spectral analysis on this
disparity function with the aim of determining the minimum
number of depth cameras required to reconstruct the scene
geometry. This reconstructed geometry can then be fed into
our adaptive plenoptic sampling algorithm.

In this paper we perform spectral analysis on the disparity
function for a slanted plane. The scene geometry equations
for a slanted plane are as follows

Gs =
{

x = s cos(φ) + xmin

z(x) = (x− xmin) tan(φ) + zmin
(1)

where x ∈ [xmin, xmax], z ∈ [zmin, zmax] and φ is the angle
between the plane and the line z = zmin. The finite width of
the plane is

T =
xmax − xmin

cos(φ)
=

zmax − zmin

sin(φ)
,

hence s ∈ [0, T ].
Having defined the scene geometry, we use the functional

framework outlined in [2] in order to relates a point on the
scene at x, z(x)) to a camera location t and pixel location v,
hence

t = x− z(x)
v

f
. (2)



Notice that by applying FFoV v is restricted to v ∈ [−vm, vm].
The relationship in (2) is restricted to a one to one mapping
using a no-occlusion constraint

f

vm
> |z′(x)| = |tan(φ)| , (3)

where z′(x) is the first differential of z(x) with respect to x.
On a last note, the disparity of a point on the scene is constant
regardless of the camera location, thus using (2) the following
is true δ(t, v) = δ̂(x) ≡ 1/z(x).

3.1. Derivation of Disparity Spectrum

Starting with the Fourier transform of the disparity function
under the FFoV and FSW constraints, we obtain

∆(ωt, ωv) =
∫ ∞

−∞

∫ ∞

−∞
δ(t, v) e−j(ωtt+ωvv) dtdv,

(i)
=

∫ ∞

−∞

∫ ∞

−∞

(
1− z′(x)

v

f

)
δ̂(x)e−j(ωt(x−z(x)v/f)+ωvv)dxdv,

(ii)
=

∫ xmax

xmin

δ̂(x)e−jωtx

∫ vm

−vm

(
1− z′(x)

v

f

)
e−j(ωv−z(x)

ωt
f )vdvdx,

(iii)
= 2vm

∫ xmax

xmin

δ̂(x)
[

sinc (ωI)− j
tan(φ)vm

f
sinc′(ωI)

]
e−jωtx dx,

(4)

where sinc′(ΩI) is the first derivative of the sinc function
with respect to ΩI , and ωI = ωvvm − (z(x)vmωt)/f . Step
(i) follows from applying (2) and assuming a Lambertian
scene. Step (ii) follows from applying the FFoV and FSW
constraints, and finally step (iii) from solving the integral in
v.

By changing the variable of integration from x to s, using
(1), the equation in (4) becomes

∆(ωt, ωv) = 2vm

[∫ T

0

cos(φ)sinc (ωs)
s sin(φ) + zmin

e−jωt cos(φ)sds

−j
vm sin(φ)

f

∫ T

0

sinc′(ωs)
s sin(φ) + zmin

e−jωt cos(φ)sds

]
, (5)

where

ωs = ωvvm − (s sin(φ) + zmin)
vm

f
ωt.

Note that for clarity in this derivation, and without loss of
generality, we set xmin = 0. At this point, we perform an-
other change of variable, coupled with integration by parts, to
obtain

∆(ωt, ωv) = j
2v2

m

f

(
sinc(a)

ωvvm − a
e−j(a−b)c − sinc(b)

ωvvm − b

−ejbc

∫ a

b

sinc(ωs)
(ωvvm − ωs)2

e−jωsc dωs

)
(6)

where

a = ωvvm − ωt
zmaxvm

f
, b = ωvvm − ωt

zminvm

f
,

and c =
−f

tan(φ)vm
.

Finally, the integral in (6) is solved by first splitting it into
two, as follows

1
2j

(∫ a

b

(
1− e−jc+ωs

)
dωs

ωs(ωvvm − ωs)2
−

∫ a

b

(
1− e−jc−ωs

)
dωs

ωs(ωvvm − ωs)2

)
,

where c+ = c + 1 and c− = c − 1. Then manipulating each
of the integrals, using partial fractions, until they are defined
in terms of a weighted combination of the identity [9]

∫ jw

0

1− e−ωs

ωs
dωs = E1(jw) + ln(jw) + γ, (7)

where w ∈ R, E1(jw) is the exponential integral and γ is
Euler’s constant; for definitions see [9].

As a result the closed form expression for the disparity
spectrum of a slanted plane is

∆(ωt, ωv) =
j2vm

fωv

(
sinc(a)e−j(a−b)c− sinc(b)

)
+ej

ωtzmin
tan(φ)

(
2vm ln

(
zmax

zmin

)(
sinc(ωvvm)

tan(φ)
− j

vm

f
sinc′(ωvvm)

)

+ e−jωvvm

(
1 + jc+ωvvm

fω2
v

) [
ζ {jw}

]w=−c+(ωvvm−a)

w=−c+(ωvvm−b)

− ejωvvm

(
1 + jc−ωvvm

fω2
v

) [
ζ {jw}

]w=−c−(ωvvm−a)

w=−c−(ωvvm−b)

)

− 1
fω2

v

([
ζ {jw}

]w=ac+

w=bc+

−
[
ζ {jw}

]w=ac−

w=bc−

)
ejbc (8)

where

ζ {jw} =

{
E1(jw) + ln(jw) + γ for w 6= 0,

0 for w = 0.
(9)

Note that if ωv = 0 then

∆(ωt, 0) = j2vm

(
sinc(a)
zmaxωt

e−j(a−b)c − sinc(b)
zminωt

)

+
v2

m

f
ejbc

[
j

w
sin(w) +

c

w
sin(w) +

j

w
cos(w)

]w=a

w=b

+
v2

m

2f
ejbc

(
c2
+

[
ζ {jw}

]w=ac+

w=bc+

− c2
−

[
ζ {jw}

]w=ac−

w=bc−

)

+
2vm

tan(φ)
ln

(
zmax

zmin

)
ejbc, (10)



and, if ωt = 0 then

∆(0, ωv) =
2vm

tan(φ)
ln

(
zmax

zmin

) (
sinc(ωvvm)

−j
vm tan(φ)

f
sinc′(ωvvm)

)
. (11)
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