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ABSTRACT

In [1,2] we presented a multiview image coding scheme. The
approach is based on extracting depth layers from multiview
images. Each layer is related to an object in the scene and
is highly redundant. We exploit this redundancy by using a
properly disparity compensated Wavelet Transform, followed
by quantisation and entropy coding of the transform coeffi-
cients. In addition, to reconstruct the data we encode a 2D
contour associated with each layer.

In this paper we describe extensions to this coding scheme
aimed at reducing the complexity of the algorithm, while re-
taining its rate-distortion (RD) performance. In particular,
we propose a novel low-complexity scheme to encode the
layer contours. Simulation results show that the approach re-
mains competitive with the original method. In addition we
show that the reduced complexity algorithm still outperforms
H.264/AVC.

Index Terms— Multiview image coding, wavelet trans-
form, image-based rendering, contour encoding

1. INTRODUCTION

Multiview images are obtained by recording a scene from dif-
ferent viewpoints using an array of cameras. These datasets
have become an important component in a wide range of sig-
nal processing applications. In the computer graphics com-
munity, multiview images are used to create photorealistic
novel viewpoints where no camera exists. The process of
creating virtual views from images is known as image-based
rendering (IBR) [3].

In our previous work [1, 2] we analysed the structure
of multiview images and developed a coding scheme which
achieves a high compression and outperforms H264/AVC.
The method is based on extracting ‘layers’ from multiview
images (see Figure 1); the redundancy of each layer is then re-
duced using a multi-dimensional Discrete Wavelet Transform
(DWT). This is followed by efficient coding of transform
coefficients and the layer contours.

The approach in [1, 2] however has two high complexity
stages. These are the layer extraction method and the encod-
ing of the layer contours. The layer extraction is implemented
using a variational scheme, where the boundary of each layer
is iteratively evolved in the direction which minimises an ap-

propriate cost function. In addition, the layer contours are
modeled using the level-set method which in itself is a com-
plex procedure. The layer contours are encoded using the
quadtree prune-join scheme [4], and although this approach
achieves the same rate-distortion (RD) performance as an op-
timal coding scheme, the method is highly complex.

In this paper, we present alternatives to the outlined high
complexity coding stages. Namely, we present a low com-
plexity method to extract the layers and a novel approach to
encode the layer contours. Simulation results show that the
alternative stages incur a small cost in RD performance to the
complete coding scheme. Moreover, the method still outper-
forms H.264/AVC.

This paper is organised as follows. Next we outline the
problem setup, review the data structure of multiview images
and introduce the layer-based representation. In Section 3 we
overview the coding scheme and present the reduced com-
plexity algorithm extensions. Finally, we evaluate the com-
plete coding method in Section 4 and conclude in Section 5.

2. MULTIVIEW IMAGE STRUCTURE AND
LAYER-BASED REPRESENTATION

For clarity we assume that the input dataset is an array of
images. The cameras which capture the scene are uniformly
spaced on a line, and their direction is perpendicular to the
location line. In addition we assume a calibrated setup, such
that the location of each camera is explicitly known. This
analysis allows us to parameterise the dataset using:

I = P3 (x, y, Vx) , (1)

Fig. 1. Multiview image layer-based representation. A multiview
image dataset can be segmented into a set of layers, where each one
is related to a constant depth in the scene.



Fig. 2. EPI volume cross section. This figure is obtained by stacking
the images into a volume (in the Vx direction) and taking a verti-
cal slice through the dataset. Two EPI lines which are modelled by
two points in space are illustrated. The EPI line corresponding to a
smaller depth (blue) occludes the larger depth EPI line (red).

where Vx corresponds to the camera location, (x, y) are the
spatial coordinates of each image and I is the pixel intensity
(we consider a monochromatic setting). This type of dataset
is also known as an EPI volume [5]. Note that our work is not
restricted to this setup, and that the method can be extended
to encode a 2D array of images.

The EPI volume defined by (1) is a highly structured and
redundant dataset. By structure we mean that the fundamen-
tal component of multiview images are lines along which
the pixel intensity is approximately constant; this concept is
shown in Figure 2. This illustration is obtained by stacking
an array of images into a volume and taking a cross section
through the dataset. It can be observed that pixels are redun-
dant along lines of varying gradients. The set of pixels along
which the intensity of the volume is constant is known as an
EPI line.

In order to demonstrate why the fundamental component
of multiview images are EPI lines, consider the setup in Fig-
ure 3(a). Here we show a simplified version of the scene: the
horizontal axis corresponds to the camera location line; the
line parallel to it defines the focal plane of each camera1; and
the vertical axis defines the depth of the scene. The curved
line corresponds to the surface of the object.

Given this setup consider a point in space with coordi-
nates (X,Y, Z). Assuming a Lambertian scene2 this point
will appear in each of the images (Vx) with coordinates

x =
fX

Z
− fVx

Z
, (2)

y =
fY

Z
, (3)

1Each camera in the setup is modelled by the pinhole model.
2Light ray intensity is constant when an object is observed from a differ-

ent angle.

(a) (b)

Fig. 3. (a) Camera setup. The sampling camera moves along a
straight line; the direction of the camera is perpendicular to the cam-
era location line. (b) Each point in space maps to a line in the EPI
volume. Observe that the blue object is closer to the focal plane and
therefore occludes the red object. It can be shown using (2) and (3)
that a data sample (x, y, Vx) can be mapped onto a different view-

point V ′x with spatial coordinates x′ = x− f(V ′
x−Vx)
Z

and y′ = y.

where f is the focal length. As illustrated in Figure 3(b), the
spatial coordinate x is linearly related to the camera location
Vx. The rate of change in the pixel location, also known as
the disparity ∆p = f

Z , is inversely related to the depth of the
object. This analysis tell us that a point in space with coordi-
nates (X,Y, Z), maps to a constant intensity line in the EPI
volume. Moreover, objects closer to the focal plane (smaller
Z), correspond to lines with a larger disparity.

The EPI lines in the volume have varying gradients (due
to objects located at different depth in the scene) and may
intersect at a point. Clearly, when two lines intersect, the EPI
line corresponding to a smaller depth (larger disparity) will
occlude all the EPI lines which are related to larger depths
(smaller disparity) in the scene. This principle is illustrated in
Figure 2.

2.1. Layer-based representation

In the previous section we showed that multiview images con-
sist of EPI lines along which the intensity of the pixels is ap-
proximately constant. This concept can be further extended
by grouping EPI lines with the same disparity into a single
volume (we call this a layer). In our work we segment a mul-
tiview image dataset into a set of layers, where each one cor-
responds to a constant depth in the scene. We call this the
layer-based representation. An example of the representation
is illustrated in Figure 1.

In addition to segmenting the data into redundant regions,
this representation allows us to efficiently encode the contour
of each layer. Consider a particular layer in the representa-
tion. If the layer does not intersect with other layers in the
dataset, its segmentation can be efficiently defined by a 2D
contour γ on one of the image viewpoints shifted by the dis-
parity ∆p to the remaining images in the dataset. This con-
cept is illustrated in Figure 4(a). Then, to infer the occluded
regions, we can use the property that each layer consists of



(a) (b)

Fig. 4. Layer from the Animal Farm dataset. (a) The unoccluded
layer can be defined using the contour γ (s) on one viewpoint pro-
jected to the remaining frames. The 2D contour is denoted by the
red curve on the first image. (b) Occluded layer can be inferred by
removing the regions which intersect with other layers related to a
smaller depth.

EPI lines related to a constant depth in the scene. There-
fore, to infer the layer segmentation in Figure 4(b) we sim-
ply remove the regions which intersect with other layers that
are modelled by a larger disparity (smaller depth). In sum-
mary the boundary of each layer in Figure 1 can be defined
by a set of 2D contours {γ1, . . . , γN} and a set of disparities
{∆p1, . . . ,∆pN}, where N is the total number of layers.

3. MULTIVIEW IMAGE CODING ALGORITHM

In this section we present our reduced complexity layer-based
multiview image coding algorithm. Next we outline a high-
level overview of the coding scheme.

3.1. High-level overview

A high-level overview of the coding method is shown in Fig-
ure 5. The input is an array of multiview images and the out-
put is a bitstream that meets the bit budget Rt. Initially, the
images are segmented into a set of layers using the low com-
plexity algorithm outlined in Section 3.2.

Then, given a target bit budget for the contour encoding,
Rs, we encode the layer contours {γ1, . . . , γN} in a lossy or
lossless modality. In the lossless case, the layer contours are
coded using a modified version of the Freeman method [6].
In the lossy setup, we compress the contours by transmitting
a subset of the original vertices (as discussed in Section 3.3).
Note that the set of disparities {∆p1, . . . ,∆pN} is losslessly
encoded and stored.

This stage is followed by the coding of the texture in the
layer-based representation. First, we apply a 1D DWT in the
inter-view domain. The transform is applied to each layer
independently, and is modified to filter the pixels in the direc-
tion of the EPI lines. In addition, we explicitly use the knowl-
edge of the layer contours to modify the transform when fil-
tering across an artificial boundary [2]. Subsequently we ap-
ply a 2D DWT to the spatial coordinates to further remove
any redundancy. Given a target bit budget Rx, the transform

Fig. 5. High-level block diagram of the multiview image coding
algorithm. We refer the reader to [1] for an in depth description of
the method.

coefficients are quantised and entropy coded using a method
similar to EBCOT [7].

The rate allocation between the layer contours Rs and the
texture Rx is performed according to the strategy presented
in [1] such that Rt = Rx + Rs.

In the following, we describe in more detail the reduced
complexity stages of the algorithm.

3.2. Reduced complexity layer-extraction method

Here we overview our approach to segment a multiview im-
age array into the layer-based representation as in Figure 1.
Recall from Section 2.1 that the problem can be analysed as
obtaining a set of 2D contours {γ1, . . . , γN} and a set of the
disparities {∆p1, . . . ,∆pN} according to some metric.

We choose the metric by using the analysis that the inten-
sity in the direction of each EPI line is approximately con-
stant. This implies that the parameters can be chosen by min-
imising the pixel variance in the direction of the EPI lines.
We refer the reader to [8] for an in depth overview of our
approach to construct the cost function. In [8], this problem
was solved in an iterative approach by evolving the contour
of each layer γk, followed by the estimation of the disparities
∆pk. However, the evolution of the layer contours is a com-
plex procedure, where an appropriate velocity vector must be
evaluated to minimise the cost function.

To significantly reduce the complexity of this method, we
make an assumption that a good approximation of a set of
contours {γ1, . . . , γN} can be obtained using a stereo match-
ing algorithm (we use [9] in our implementation). Recall that
a stereo matching algorithm outputs a piecewise constant dis-
parity map, and this can be used to define the set of 2D con-
tours.

The optimisation problem can hence be simplified to eval-
uating the set of disparities {∆p1, . . . ,∆pN}, assuming the
layer contours are fixed. This is implemented using the MAT-
LAB non-linear optimisation toolbox.



3.3. Reduced complexity lossy contour encoding method

The input to this stage are a set of 2D contours {γ1, . . . , γN}
and a bit budget Rs. The lossy layer contour encoding
method is based on a piecewise linear description of the
contours.

Each contour γk is defined by a set of vertices γk =
{(x1, y1), . . . , (xLk

, yLk
)}, where Lk is the total number of

vertices in γk. We compress the contour by transmitting only
a subset of the vertices, and this leads to a piecewise linear
approximation as shown in Figure 6.

These vertices are selected to satisfy two constraints: a
maximum perpendicular error emax between the real contour
and the approximated linear contour, and a maximum distance
between two consecutive vertices ∆max along the x and y
directions. Figure 6 illustrates these constraints. We obtain
the approximation in a top-down approach by iteratively re-
moving vertices when the two constraints are satisfied. This
method is inspired by Schuster and Katsaggelos’ [10]. Their
approach also approximates a boundary of a shape by a poly-
gon, but the vertex selection is based on finding a shortest path
in a graph or by convex optimisation. Our approach presents
a lower complexity. We also note that the method in [11] is
in spirit similar to ours. However, they encode the bound-
aries of a segmented image and such boundaries are adjacent.
Whereas we encode contours of potentially overlapping lay-
ers.

The retained vertex locations are then differentially en-
coded according to the maximal distance ∆max. The result-
ing bitstream is compressed with a lossless arithmetic encoder
to further increase the compression efficiency.

Observe that the maximum perpendicular error emax is di-
rectly related to the length of the bitstream. Bigger errors re-
sult in selecting fewer vertices of the original contour, leading
to a shorter bitstream. For a given bit budget Rs, and a given
set of binary shape images, the encoding algorithm adapts the
maximum perpendicular error to satisfy the bit budget. We
have experimentally determined that starting with an error of
5 pixels, and reducing it by 0.5 in each iteration gives a good
RD behaviour, and the resulting bit rates satisfy the require-
ments of the overall multiview compression algorithm.

We note that the proposed contour encoding scheme can
be extended to support a progressive (scalable) description.
The idea behind this feature is that a subset of the total bit-
stream permits reconstructing a coarse version of the contours
that can be refined as more bits are available. This is imple-
mented by encoding different stages of refinement in the bit-
stream. The first stage contains a coarse approximation of the
contour corresponding to vertices constrained by a large emax

and ∆max. This coarse approximation is then refined with
subsequent stages that add new vertices. The new vertices
correspond to smaller constraints e′max and ∆′

max. Various
stages of refinement can be added, each stage further reduc-
ing the constraints.

Fig. 6. Vertex finding constraints in contour approximation. Vertices
(xj , yj) and (xk, yk) are constrained by the maximal perpendicular
error emax and vertices (xl, yl) and (xm, ym) are constrained by
∆max in the vertical direction.

4. ALGORITHM EVALUATION

To evaluate the performance of the proposed method we com-
pare it to H.264/AVC (High Profile) and to the original algo-
rithm presented in [1, 2].

In Figures 7 and 8 we show an example of where the re-
duced complexity method outperforms H.264/AVC. The cor-
responding multiview datasets are Teddy EPI [368× 352× 4]
and Doll EPI [544× 608× 4] (both from [12]). When encod-
ing Teddy EPI, observe that our approach achieves a PSNR
gain of over 2dB at 0.05bpp. In comparison to the origi-
nal algorithm, the low complexity stages incur a small loss
in RD performance. At high rate, the original method has
more accurate disparity compensation at the layer edges, and
this leads to more efficient compression. In addition, at low
rates, the low complexity contour encoding method incurs a
loss in comparison to the original quadtree prune-join contour
encoding scheme.

In Figure 9 we show an example of when the simplified
layer extraction method significantly affects the RD perfor-
mance at high rates. In this case, the layer contours are not ac-
curate around the object boundaries and this affects the com-
pression performance. To confirm this analysis, we also in-
clude a RD curve (denoted by the green curve) where the ac-
curate layer contours are obtained using the original level-set
method and are encoded using the proposed contour encod-
ing scheme of Section 3.3. As illustrated the contour encod-
ing method does not affect the performance at high rates. The
contour encoding stage can therefore be safely replaced by
the new approach.

Regarding the reduction in complexity, we note that the
novel contour encoding approach reduces the execution time
of this stage by more than two orders of magnitude compared
to the quadtree approach in a MATLAB implementation as
shown in Table 1.



Table 1. Performance comparison of the contour encoding stage.
The time is measured on MATLAB implementations running the al-
gorithm 100 times and averaging the elapsed time.

Dataset Time (seconds) - Time (seconds) -
Quadtree New approach

Teddy 2792.34 18.41
Doll 1004.37 15.53
Tsukuba 3801.54 6.02

Fig. 7. Proposed method evaluation on Teddy EPI.

5. CONCLUSION

In this paper we proposed low complexity extensions to a
layer-based multiview image compression algorithm [1, 2].
Firstly, we presented an efficient approach to extract layers
from multiview images. The method assumes that the outline
of each layer can be accurately obtained by using a stereo-
matching algorithm. Secondly, we presented a low complex-
ity alternative to encoding the outline of each layer. Our
approach is based on transmitting a subset of vertices, and
this results in a piecewise linear approximation of the con-
tours. The subset of retained vertices is selected by satisfying
two constraints: a maximal perpendicular error to the origi-
nal contour, and a maximal distance to a neighbouring vertex.
The method is also suitable for progressive coding of the con-
tours. Simulation results show the alternative low complexity
stages result in a significant reduction of running time and a
small RD performance loss in comparison to the original al-
gorithm. Moreover, the method still outperforms H.264/AVC
on a number of real datasets.
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