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Abstract

Consider the problem of sampling signals which are not bandlimited, but still have a finite number of

degrees of freedom per unit of time, such as, for example, non-uniform splines or piecewise polynomials,

and call the number of degrees of freedom per unit of time the rate of innovation. Classical sampling

theory does not enable a perfect reconstruction of such signals since they are not bandlimited. Recently, it

was shown that by using an adequate sampling kernel and a sampling rate greater or equal to the rate of

innovation it is possible to reconstruct such signals uniquely [34]. These sampling schemes, however, use

kernels with infinite support and this leads to complex and potentially unstable reconstruction algorithms.

In this paper, we show that many signals with finite rate of innovation can be sampled and perfectly

reconstructed using physically realizable kernels of compact support and a local reconstruction algorithm.

The class of kernels that we can use is very rich and includes functions satisfying Strang-Fix conditions,

exponential splines and functions with rational Fourier transform. This last class of kernels is quite general

and includes, for instance, any linear electric circuit. We thus show with an example how to estimate a

signal of finite rate of innovation at the output of an RC circuit. The case of noisy measurements is also

analyzed and we present a novel algorithm that reduces the effect of noise by oversampling.
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I. Introduction

Sampling theory plays a central role in modern signal processing and communications, and has

experienced a recent revival thanks, in part, to the recent advances in wavelet theory [12], [27]. In

the typical sampling setup depicted in Figure 1, the original continuous-time signal x(t) is filtered

before being (uniformly) sampled with sampling period T . The filtering may be a design choice

or may be due to the acquisition device. If we denote with y(t) = h(t) ∗ x(t) the filtered version

of x(t), the samples yn are given by

yn = 〈x(t), ϕ(t/T − n)〉 =
∫ ∞

−∞
x(t)ϕ(t/T − n)dt

where the sampling kernel ϕ(t) is the scaled and time-reversed version of h(t).

T

x(t)
ϕ

Acquisition Device

h(t)=   (−t/T) y =<x(t),   (t/T−n)>n ϕy(t)

Fig. 1. Sampling setup. Here, x(t) is the continous-time signal, h(t) the impulse response of the acquisition

device and T the sampling period. The measured samples are yn = 〈x(t), ϕ(t/T − n)〉.

The key problem then is to find the best way to reconstruct x(t) from the given samples, and the

key questions are: (i) What classes of signals can be reconstructed? (ii) What classes of kernels

allow such reconstructions? (iii) What kind of reconstruction algorithms are involved? Ideally, we

would like to be able to reconstruct large classes of signals, using simple reconstruction algorithms

and, most importantly, with general and physically realizable kernels.

The classical answer to the sampling problem is provided by the famous Shannon sampling

theorem which states the conditions to reconstruct bandlimited signals from their samples. In

this case, the reconstruction process is linear and the kernel is the sinc function. In fact, the whole

sampling process can be interpreted as an approximation procedure in which the original signal is

projected onto the shift-invariant subspace of bandlimited functions and only this projection can

be reconstructed. This subspace interpretation has then been used to extend Shannon’s theorem

to classes of non-bandlimited signals that belong to shift-invariant subspaces, such as uniform

splines [29], [27].

Recently, it was shown that it is possible to develop sampling schemes for classes of signals that

are neither bandlimited nor belong to a fixed subspace [34] (see also [18], [16], [21]). For instance,

it was shown that it is possible to sample streams of Diracs or piecewise polynomial signals using

a sinc or a Gaussian kernel. The common feature of such signals is that they have a parametric
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representation with a finite number of degrees of freedom and are, therefore, called signals with

finite rate of innovation (FRI) [34]. The reconstruction process for these schemes is based on

the use of a locator or annihilating filter, a tool widely used in spectral estimation [22] and error

correction coding [3], but also for sampling, interpolation [35], [14] and shape reconstruction [19],

[13].

The fundamental limit of the above sampling methods, as well as of the classical Shannon

reconstruction scheme, is that the choice of the sampling kernel is very limited and the required

kernels are of infinite support. As a consequence, the reconstruction algorithm is usually physically

non-realizable (e.g., realization of an ideal low-pass filter) or, in the case of FRI signals, becomes

complex and unstable. The complexity is in fact influenced by the global rate of innovation of

x(t).

In this paper, we show that many signals with a local finite rate of innovation can be sampled

and perfectly reconstructed using a wide range of sampling kernels and a local reconstruction

algorithm. The reconstruction algorithm proposed in this paper is also based on the annihilating

filter method. However, the main property the kernel has to satisfy is to be able to reproduce

polynomials or exponentials. Thus, functions satisfying Strang-Fix conditions [24] (e.g., splines

and scaling functions), exponential splines [31] and functions with rational Fourier transforms

can be used in our formulation. This last family of kernels is of particular importance since most

linear devices used in practice have a transfer function which is rational. Despite the fact that

kernels with rational Fourier transform have infinite support, we show that the reconstruction

algorithm remains local and, thus, its complexity still depends on the local, rather than global,

rate of innovation of x(t).

It is also worth mentioning that the problem of reconstructing signals from sparse (non-uniform)

measurements has gained a lot of attention recently (see for instance [11], [7]). These recent works,

however, focus mostly on discrete signals that have a sparse representation in a basis or a frame.

The focus of our work instead is on exact reconstruction of continuous-time signals from uniform

samples.

The paper is organized as follows: In the next section we review the notion of signals with

finite rate of innovation and present the families of sampling kernels that are used in our sampling

schemes. Section III presents our main sampling results for the case of kernels reproducing

polynomials. In particular, we show how to sample and perfectly reconstruct streams of Diracs,

streams of differentiated Diracs and piecewise polynomial signals. The following section focuses

on the use of wavelets and scaling functions to sample signals with finite rate of innovation and

discusses connections between these sampling results and the problem of increasing the resolution
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of a given signal. In Section V and VI, the previous sampling results are extended to the case

in which the sampling kernel reproduces exponentials, moreover, as an example, we show how to

estimate FRI signals at the output of electric circuits. Section VII deals with the case of noisy

measurements and, finally, conclusions are drawn in Section VIII.

II. On Signals and Kernels

In the introduction, we have informally discussed the signals and kernels that will be used in our

sampling formulation. Let us now introduce more formally the notion of signals with finite rate

of innovation [34] and present the families of sampling kernels that will be used in our sampling

schemes.

A. Signals with Finite Rate of Innovation

Consider a signal of the form

x(t) =
∑

k∈Z

R−1∑

r=0

γk,rgr(t− tk). (1)

Clearly, if the set of functions {gr(t)}r=0,1,...,R−1 is known, the only free parameters in the signal

x(t) are the coefficients γk,r and the time shifts tk. It is therefore natural to introduce a counting

function Cx(ta, tb) that counts the number of free parameters in x(t) over an interval [ta, tb]. The

rate of innovation of x(t) is then defined as [34]

ρ = lim
τ→∞

1
τ
Cx

(
−τ

2
,
τ

2

)
. (2)

Definition 1: A signal with a finite rate of innovation is a signal whose parametric representation

is given in (1) and with a finite ρ as defined in (2).

It is of interest to note that shift-invariant signals, including bandlimited signals, fall under

Definition 1. For instance, if we call fmax the maximum non-zero frequency in a bandlimited real

signal, then ρ = 2fmax. Therefore, one possible interpretation is that it is possible to sample

bandlimited signals because they have finite rate of innovation (rather than because they are

bandlimited).

In some cases, it is more convenient to consider a local rate of innovation with respect to a

moving window of size τ . The local rate of innovation at time t is thus given by [34]

ρτ (t) =
1
τ
Cx

(
t− τ

2
, t +

τ

2

)
. (3)

Clearly ρτ (t) tends to ρ as τ →∞. In our context, as it will become evident later, the notion of

local rate of innovation plays a more important role than the global rate of innovation, since our

reconstruction schemes are local.
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B. Sampling Kernels

As mentioned in the introduction, the signal x(t) is usually filtered before being sampled. The

samples yn are given by yn = 〈x(t), ϕ(t/T − n)〉, where the sampling kernel ϕ(t) is the time

reversed version of the filter’s impulse response. The impulse response of the filter depends on the

physical properties of the acquisition device and, in most cases, is specified a-priori and cannot

be modified. It is therefore important to develop sampling schemes that do not require the use

of very particular or even physically non-realizable filters. In our formulation we can use a wide

range of different kernels. For the sake of clarity, we divide them into three different families:

1. Polynomial reproducing kernels: Any kernel ϕ(t) that together with its shifted versions can

reproduce polynomials of maximum degree N . That is, any kernel that satisfies

∑

n∈Z
cm,nϕ(t− n) = tm m = 0, 1, ..., N (4)

for a proper choice of the coefficients cm,n.

2. Exponential reproducing kernels: Any kernel ϕ(t) that together with its shifted versions can

reproduce complex exponentials of the form eαmt with αm = α0 + mλ and m = 0, 1, ..., N . That

is, any kernel satisfying

∑

n∈Z
cm,nϕ(t− n) = eαmt with αm = α0 + mλ and m = 0, 1, ..., N (5)

for a proper choice of the coefficients cm,n.

3. Rational kernels: Any stable kernel ϕ(t) with rational Fourier transform of the form

ϕ̂(ω) =
∏I

i=0(jω − bi)∏N
m=0(jω − αm)

with I < N, αm = α0 + mλ and m = 0, 1, ..., N, (6)

where ϕ̂(ω) is the Fourier transform of ϕ(t).

In all cases, the choice of N depends on the local rate of innovation of the original signal x(t)

as will become clear later on. Since our reconstruction scheme is based on the use of a digital

filter (i.e., the annihilating filter), the exponents in (5) and the poles in (6) must be restricted to

αm = α0+mλ, where α0 and λ can be chosen arbitrarily but m is an integer. This fact will be more

evident in Section V. Finally, the coefficients cm,n in (4) are given by cm,n = 1
T

∫∞
−∞ tmϕ̃(t/T−n)dt,

where ϕ̃(t) is chosen to form with ϕ(t) a quasi-biorthonormal set [6]. This includes the particular

case where ϕ̃(t) is the dual of ϕ(t), that is, 〈ϕ̃(t−n), ϕ(t−k)〉 = δn,k. A similar expression applies

to the coefficients cm,n in (5).

The first family of kernels includes any function satisfying the so-called Strang-Fix condi-

tions [24]. Namely, ϕ(t) satisfies Eq. (4) if and only if

ϕ̂(0) 6= 0 and ϕ̂(m)(2nπ) = 0 for n 6= 0 and m = 0, 1, ..., N,
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where ϕ̂(ω) is again the Fourier transform of ϕ(t) and the superscript (m) stands for the m-th

derivative of ϕ(t). These conditions were originally valid for functions with compact support only,

later they have been extended to non-compactly supported functions [6], [10], [8].

One important example of functions satisfying Strang-Fix conditions is given by the family of

B-splines [26]. A B-spline βN (t) of order N is obtained from the (N+1)-fold convolution of the box

function β0(t), that is: βN (t) = β0(t) ∗ β0(t)... ∗ β0(t)︸ ︷︷ ︸
N+1 times

with β̂0(ω) = 1−e−jω

jω . The B-spline of order

N can reproduce polynomials of maximum degree N and the size (N + 1) of its support is the

smallest for a function that can achieve that order of approximation. More important, it is possible

to show that any function ϕ(t) that reproduces polynomials of degree N can be decomposed into

a B-splines and a distribution u(t) with
∫

u(t)dt 6= 0, that is, ϕ(t) = u(t) ∗ βN (t) [20], [4], [5].

Strang-Fix conditions are used extensively in wavelet theory as well. In that context, the focus

is on the design of wavelets with a certain number of vanishing moments [9], [33], [25], [17]. The

interesting point, here, is that a wavelet with N + 1 vanishing moments is generated by a scaling

function that can reproduce polynomials of degree N . This means that such a scaling function can

be included in our family of sampling kernels. A more detailed discussion of the use of wavelets

and scaling functions to sample FRI signals will be given in Section IV.

The theory related to the reproduction of exponentials is somewhat more recent and relies on

the notion of exponential splines (E-splines) [31]. A function βα(t) with Fourier transform

β̂α(ω) =
1− eα−jω

jω − α

is called E-spline of first order. Notice that α can be either real or complex. Moreover, notice that

βα(t) reduces to the classical zero-order B-spline when α = 0. The function βα(t) satisfies several

interesting properties, in particular, it is of compact support and a linear combination of shifted

versions of βα(t) reproduces eαt. As in the classical case, higher order E-splines are obtained by

successive convolutions of lower-order ones, or

β̂~α(ω) =
N∏

n=0

1− eαn−jω

jω − αn
,

where ~α = (α0, α1, ..., αN ). The higher-order spline is again of compact support and it is possible

to show that it can reproduce any exponential in the subspace spanned by {eα0t, eα1t, ..., eαN t} [31].

Moreover, since the exponential reproduction formula is preserved through convolution [31], any

composite function of the form ϕ(t) ∗ β~α(t) is also able to reproduce exponentials. Therefore, the

second group of kernels contains any composite function of the form ϕ(t) ∗ β~α(t) with β~α(t) =

βα0(t) ∗ βα1(t) ∗ ... ∗ βαN (t), αm = α0 + mλ and m = 0, 1, ..., N . Notice that the exponential case

reduces to that of reproduction of polynomials when αm = 0 for m = 0, 1, ..., N . For this reason
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we could study our sampling schemes in the exponential case only and then particularize it to the

polynomial case. However, we prefer to keep the two cases separate for the sake of pedagogy.

The last group of kernels includes many linear differential acquisition devices. That is, linear

devices or systems for which the input and output are related by a linear differential equation.

This includes most of the commonly used electrical or mechanical systems.

Kernels with rational Fourier transforms can be linked to E-splines through a proper digital

filtering as will be shown in VI. The use of E-splines and kernels with rational Fourier transforms

will be investigated in Section V and VI, respectively.

III. Reconstruction of FRI signals using kernels that reproduce polynomials

In this section, we assume that the sampling kernel ϕ(t) satisfies the Strang-Fix conditions [24],

that is, a linear combination of shifted versions of ϕ(t) can reproduce polynomials of maximum

degree N (see Equation (4)). We further assume that the sampling kernel is of compact support

L, that is, ϕ(t) = 0 for t 6∈ [−L/2, L/2] where L is an integer for simplicity.1 We study the

sampling of streams of Diracs, streams of differentiated Diracs and piecewise polynomial signals.

Furthermore, possible extensions to any signal with finite rate of innovation are briefly discussed

at the end of Section III-B. We present the results for streams of Diracs in detail and derive the

other sampling theorems directly from these results.

A. Streams of Diracs

We split the problem of sampling streams of Diracs into two sub-problems. First, we show how

to sample a signal containing at most K Diracs, where K is a finite integer and is known a-priori.

Then, we consider the case of signals with an unknown (maybe infinite) number of Diracs but

with a finite local rate of innovation, and present a sequential algorithm that can reconstruct such

signals from their samples.

A.1 Stream of K Diracs

Consider a stream, x(t), of K Diracs: x(t) =
∑K−1

k=0 akδ(t − tk), t ∈ R. Call yn the observed

samples, that is, yn = 〈x(t), ϕ(t−n)〉 =
∑K−1

k=0 akϕ(tk−n) where, for simplicity, we have assumed

T = 1 and assume that the sampling kernel ϕ(t) is able to reproduce polynomials of maximum

degree N ≥ 2K − 1. We now show that under these hypotheses, it is possible to retrieve the

locations tk and the amplitudes ak of x(t) from its samples. The reconstruction algorithm operates

in three steps. First, the first N + 1 moments of the signal x(t) are found. Second, the Diracs’
1Recall that functions satisfying Strang-Fix conditions can be of either compact or infinite support. The case of

kernels with compact support is more interesting from a practical point of view. Thus, in this paper, we concentrate

only on this case.
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locations are retrieved using an annihilating filter. (For a detailed description of the annihilating

filter method we refer to [22], [34]). Third, the amplitudes ak are obtained solving a Vandermonde

system. The three steps of our scheme can be more precisely described as follows:

1. Retrieve the first N + 1 moments of the signal x(t).

Call τm =
∑

n cm,nyn, m = 0, 1, ..., N the weighted sum of the observed samples, where the weights

cm,n are those in Equation (4) that reproduce tm. We have that

τm =
∑

n cm,nyn

(a)
= 〈x(t),

∑
n cm,nϕ(t− n)〉

(b)
= 〈∑K−1

k=0 akδ(t− tk),
∑

n cm,nϕ(t− n)〉

(c)
=

∫∞
−∞

∑K−1
k=0 akδ(t− tk)tmdt

=
∑K−1

k=0 akt
m
k , m = 0, 1, ..., N,

(7)

where (a) follows from the linearity of the inner product, (b) from the fact that x(t) =
∑K−1

k=0 akδ(t−
tk), and (c) from the polynomial reproduction formula in (4). The integral in (c) represents pre-

cisely the m-th order moment of the original signal x(t). Hence, proper linear combinations of the

observed samples provide the first N +1 moments of the signal. This fact is graphically illustrated

in Figure 2.

Since the original signal is a stream of K Diracs, the moments of x(t) have the form given by the

last term of (7) which is very often encountered in spectral estimation. It is therefore possible

to estimate locations and amplitudes of the Diracs from the moments τm using the annihilating

filter method which is commonly used in that context.

2. Find the locations tk of x(t).

Call hm m = 0, 1, ..., K the filter with z-transform

H(z) =
K∑

m=0

hmz−m =
K−1∏

k=0

(1− tkz
−1). (8)

That is, the roots of H(z) correspond to the locations tk. It clearly follows that

hm ∗ τm =
K∑

i=0

hiτm−i =
K∑

i=0

K−1∑

k=0

akhit
m−i
k =

K−1∑

k=0

akt
m
k

K∑

i=0

hit
−i
k

︸ ︷︷ ︸
0

= 0. (9)

The filter hm is thus called annihilating filter since it annihilates the observed signal τm. The

zeros of this filter uniquely define the set of locations tk since the locations are distinct. The filter
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coefficients hm are found from the system of equations in (9). Since h0 = 1, the identity in (9)

leads to a Yule-Walker system of equations involving at least 2K consecutive values of τm and

can be written in matrix form as follows



τK−1 τK−2 · · · τ0

τK τK−1 · · · τ1

...
...

. . .
...

τN−1 τN−2 · · · τN−K







h1

h2

...

hK




= −




τK

τK+1

...

τN




. (10)

This classic Yule-Walker system has, in this case, a unique solution since hm is unique for the given

signal. Given the filter coefficients hm, the locations of the Diracs are the roots of the polynomial

in (8). Notice that, since we need at least 2K consecutive values of τm to solve the Yule-Walker

system, we need the sampling kernel to be able to reproduce polynomials of maximum degree

N ≥ 2K − 1.

3. Find the weight ak.

Given the locations t0, t1, ..., tk, the weights ak are obtained by solving, for instance, the first K

consecutive equations in (7). These equations can be written in matrix form as follows:



1 1 · · · 1

t0 t1 · · · tK−1

...
...

. . .
...

tK−1
0 tK−1

1 · · · tK−1
K−1







a0

a1

...

aK−1




=




τ0

τ1

...

τK−1




.

This is a Vandermonde system which yields a unique solution for the weights ak given that the

tk’s are distinct.

The three steps above show that it is indeed possible to reconstruct uniquely a stream of K

Diracs from its samples. We thus have the following result.

Theorem 1: Consider a stream x(t) of K Diracs: x(t) =
∑K−1

k=0 akδ(t−tk) and a sampling kernel

ϕ(t) that can reproduce polynomials of maximum degree N ≥ 2K − 1. Then the samples defined

by yn = 〈x(t), ϕ(t/T − n)〉 are sufficient to characterize x(t) uniquely.

Before concluding this section, we would also like to mention that the topic related to the

reconstruction of signals from a finite number of moments is an old one and for a comprehensive

overview, which is beyond the scope of this paper, we refer to [1], [15].

A.2 A sequential local algorithm for an infinite stream of Diracs

In the previous section, we showed the existence of a basic method for retrieving K Diracs. The

problem is that the reconstruction scheme becomes more and more complex and unstable when

the number K of Diracs increases. It is therefore critical to see if we can take advantage of the

locality of the sampling kernel to develop a sequential, local reconstruction algorithm. Intuitively,
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δ(t−t

0
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a
1
δ(t−t
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a
0
δ(t−t
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a
1
δ(t−t

1
) 

τ0 =
∑

n yn = a0 + a1 τ1 =
∑

n c1,nyn = a0t0 + a1t1

0 t 

a
0
δ(t−t

0
) 

a
1
δ(t−t

1
) 

a
0
δ(t−t

0
) 

a
1
δ(t−t

1
) 

t 0 

τ2 =
∑

n c2,nyn = a0t
2
0 + a1t

2
1 τ3 =

∑
n c3,nyn = a0t

3
0 + a1t

3
1

Fig. 2. Illustration of the reproduction of polynomials of maximum degree three using cubic splines. In

this example, only four translated versions of the splines overlap the two Diracs. The dashed functions

in each plot represent the properly weighted splines overlapping the two Diracs. The four solid-line

functions represent the weighted sums of these four splines. Because of the polynomial reproduction

formula, the following is true: cm,0y0 + cm,1y1 + cm,2y2 + cm,3y3 = a0t
m
0 + a1t

m
1 for m = 0, 1, 2, 3.

if we have groups of Diracs separated by empty intervals, then we should be able to separate these

groups and reconstruct them sequentially.

Now, the support of the sampling kernel is L, thus, a single Dirac can influence at most L

consecutive samples and K consecutive Diracs can generate a block of at most KL consecutive

non-zero samples. Thus, if two groups of K consecutive Diracs are sufficiently distant, the two

blocks of non-zero samples are separated by some zero samples, and by locating these zeros, we

can separate the two blocks and apply the reconstruction method of the previous section on each

block independently. If we assume that there are at most K Diracs in an interval of size KL + 1,

we are assured that at least one zero sample will separate two groups of non-zeros.

While in most cases the above condition is sufficient, there are situations in which it is not.

This can happen, for instance, when a zero sample corresponds to a particular combination of

Diracs. To avoid that these rare events prevent the algorithm from working properly, we need to

make stronger assumptions. We, therefore, assume that there are at most K Diracs in an interval

of size 2KL. This condition can be relaxed in most situations and, from a practical point of

view, the event of having a ‘false’ zero is very unlikely. Still, for simplicity and for the rest of the
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paper, we will assume that there are at most K Diracs in an interval of size 2KL. The rationale

behind this assumption is that it ensures that for any sequence of consecutive ‘false’ zeros, there

is in the same window a longer sequence of consecutive ‘true’ zeros. Therefore, the only thing

the algorithm has to do is to search for the longest sequence of zeros in a group of 2KL samples.

More precisely, the reconstruction algorithm operates as follows (see also Figure 3): The algorithm

starts by looking for the first non-zero sample in the sequence, call it yn1 . The algorithm then

checks the 2KL consecutive samples yn1 , yn1+1, ..., yn1+2KL−1 and looks for the longest sequence

of consecutive zeros inside this block. Denoting this sequence as yz1 , yz1+1, ..., yzn , it is easy to

show that such a sequence must include ‘true’ zeros and as such can be used to separate two

blocks of non-zero samples. This means that the Diracs that have generated the non-zero samples

yn1 , yn1+1, ..., yz1−1 are not influenced by any other Dirac and can therefore be reconstructed using

the reconstruction scheme presented before. After the reconstruction, the algorithm starts the

whole process again from the sample yzn+1 on.

Signal samples

.
...

. .

.
.

. .

. . . .
. .

.

.

y y yyn1 z 0 z1 zn

       2KL

Fig. 3. The sequential reconstruction algorithm starts by looking for the first non-zero sample (in this

case the sample yn1), it then looks for the longest sequence of consecutive zeros in the block of 2KL

samples yn1 , yn1+1, ..., yn1+2KL−1. In this examples such a sequence start with the sample yz1 . It is

possible to show that such a sequence must contains ‘true’ zeros and can therefore be used to separate

two blocks of non-zero samples. Notice that the algorithm disregards the isolated zero sample yz0 .

That is because we cannot guarantee that such a sample truly indicates absence of Diracs.

We can thus summarize the discussion of this section and the sampling result of the previous

section as follows:

Theorem 2: Assume a sampling kernel ϕ(t) that can reproduce polynomials of maximum degree

N ≥ 2K−1 and of compact support L. An infinite-length stream of Diracs x(t) =
∑

n∈Z anδ(t−tn)

is uniquely determined from the samples defined by yn = 〈x(t), ϕ(t/T − n)〉 if there are at most

K Diracs in an interval of size 2KLT .

Using the notation introduced in Section II, the above theorem says that it is possible to sample

11



any stream of Diracs with local rate of innovation ρ2KLT ≤ 1/LT . This means that there is a

fundamental connection between the local complexity of the signal and the complexity of the

reconstruction process. For instance, if there is at most one Dirac in an interval of size 2TL,

only two moments need to be retrieved at each iteration and the estimation of the amplitude and

location of the Dirac becomes straightforward. In contrast, the reconstruction process becomes

more complex and unstable, when the number K of Diracs to retrieve at each iteration becomes

very large. This fact is of particular interest in the case of noisy measurements. In that context,

in fact, stability of the reconstruction algorithm is of crucial importance.

To conclude this section, we show in Figure 4 an example of our sampling scheme. In this

example the signal is made of two groups of K = 4 Diracs and is shown in Figure 4(a). The signal

is sampled with a B-spline that can reproduce polynomials of degree 2K−1 = 7 (Figure 4(b)) and

the samples are shown in Figure 4(c). Since the non-zero samples generated by the two groups of

Diracs are separated by a sequence of zero samples, the reconstruction algorithm can operate on

the first group of non-zero samples to retrieve the first K Diracs, and then reiterate the process

on the following group of non-zero samples to retrieve the remaining K Diracs. The reconstructed

signal is shown in Figure 4(d) and reconstruction is exact to machine precision.

B. Stream of Differentiated Diracs

Consider now a stream of differentiated Diracs:

x(t) =
K−1∑

k=0

Rk−1∑

r=0

ak,rδ
(r)(t− tk).

Note that this signal has K Diracs and K̂ =
∑K−1

k=0 Rk weights. Moreover, recall that the r-th

derivative of a Dirac is a distribution that satisfies the property
∫

f(t)δ(r)(t−t0)dt = (−1)rf (r)(t0).

Assume that x(t) is sampled with a kernel that can reproduce polynomials of maximum degree

N ≥ 2K̂ − 1, and call yn = 〈x(t), ϕ(t − n)〉 =
∑K−1

k=0

∑Rk−1
r=0 (−1)rak,rϕ

(r)(tk − n) the observed

samples. As shown in the previous section, using the polynomial reproduction formula, we can

compute the first N + 1 moments of x(t) from its samples yn:

τm =
∑

n

cm,nyn =
∫ ∞

−∞
x(t)tmdt =

K−1∑

k=0

Rk−1∑
r=0

(−1)rak,r
m!

(m− r)!
tm−r
k m = 0, 1, ..., N, (11)

where we have used the fact that
∫

tmδ(r)(t− t0)dt = (−1)r m!
(m−r)! t

m−r
0 .

We can thus say that what we observe is

τm =
K−1∑

k=0

Rk−1∑

r=0

(−1)rak,r
m!

(m− r)!
tm−r
k .

It can be shown that the filter (1−tkz
−1)M annihilates the signal mrtmk , with r ≤ M−1. Therefore

12
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Fig. 4. Sampling of streams of Diracs. In this example, the original signal, shown in Figure 4(a), is made

of two groups of K = 4 Diracs. The sampling kernel is shown in Figure 4(b) and is a B-spline β7(t) that

can reproduce polynomials of maximum degree 2K − 1 = 7. The observed samples are shown in 4(c).

Notice that the non-zero samples generated by the two sets of Diracs are separated by a sequence of

zero samples. This allows the sampling algorithm to retrieve the two groups of K Diracs sequentially.

The reconstructed signal is shown in Figure 4(d) and the reconstruction is exact to numerical precision.

the filter hm with z-transform

H(z) =
K−1∏

k=0

(1− tkz
−1)Rk

annihilates τm. The K̂ unknown coefficients of hm can be found solving a Yule-Walker system

similar to the one in the previous section. We need at least K̂ equations to find these coefficients,

therefore, we need to know at least 2K̂ consecutive values of τm (this is why N ≥ 2K̂ − 1). From

the annihilating filter we obtain the locations t0, t1, ..., tK−1. We then need to solve the first K̂

equations in (11) to obtain the weights ak,r. This is a generalized Vandermonde system which

has again a unique solution given that the tk’s are distinct.

The above analysis can be summarized in the following theorem:

Theorem 3: Assume a sampling kernel ϕ(t) that can reproduce polynomials of maximum degree

N ≥ 2K̂ − 1 and of compact support L. An infinite-length stream of differentiated Diracs

x(t) =
∑

k=Z
∑Rk−1

r=0 ak,rδ
(r)(t− tk) is uniquely determined by the samples yn = 〈x(t), ϕ(t/T −n)〉

if there are at most K differentiated Diracs with K̂ weights in an interval of size 2KLT .
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Let us now return to the definition of signals with finite rate of innovation given in Section II:

x(t) =
∑

k∈Z

R−1∑

r=0

γk,rgr(t− tk). (12)

The sampling schemes developed so far correspond to the case in which g0(t− tk) = δ(t− tk) and

gr(t − tk) = δ(r)(t − tk), r = 1, ..., R − 1. However, further extensions are possible. Assume for

instance that g0(t) is of compact support L̂ and that ĝ0(ω) 6= 0 for ω = 0. Moreover, assume that

gr(t) = g
(r)
0 (t), that is, gr(t) is the r-th order derivative of g0(t). Then under these conditions

the sampling of x(t) is possible and can be reduced to the sampling of a stream of differentiated

Diracs.

First, notice that, under the above assumptions, x(t) can be written as

x(t) = [
∑

k∈Z

R−1∑

r=0

(−1)rγk,rδ
(r)(t− tk)] ∗ g0(t).

Therefore, if for simplicity we assume that g0(t) = g0(−t), the observed samples yn = 〈x(t), ϕ(t−
n)〉 are equivalent to those given by yn = 〈∑k∈Z

∑R−1
r=0 (−1)rγk,rδ

(r)(t− tk), g0(t− n) ∗ ϕ(t− n)〉.
Now, assume the sampling kernel ϕ(t) can reproduce polynomials of degree N and has compact

support L, the new kernel g0(t − n) ∗ ϕ(t − n) has compact support L + L̂ and, since ĝ(ω) 6= 0

for ω = 0, can still reproduce polynomials of degree N (Strang-Fix conditions are still satisfied).

Therefore, if there are no more than K Diracs in an interval of size 2K(L+ L̂) and N ≥ 2KR− 1

the hypotheses of Theorem 3 are satisfied and the samples yn are sufficient to retrieve the weights

γk,r and the locations tk. We can formalize this discussion with the following corollary.

Corollary 1: Assume a sampling kernel ϕ(t) of compact support L and that can reproduce

polynomials of maximum degree N . An infinite-length signal x(t) =
∑

k∈Z
∑R−1

r=0 γk,rgr( t−tk
T ),

where g0(t) is of compact support L̂ and ĝ0(ω) 6= 0 for ω = 0 and where gr(t) = g
(r)
0 (t), is

uniquely defined by the samples yn = 〈x(t), ϕ(t/T − n)〉 if there are at most K time shifts tk in

an interval of size 2K(L + L̂)T and N ≥ 2KR− 1.

Finally, another important example of signals with finite rate of innovation, namely, piecewise

polynomial signals, will be discussed in the next section.

C. Piecewise Polynomial Signals

Consider a piecewise polynomial signal with pieces of maximum degree R− 1 (R > 0). That is,

x(t) =
∞∑

n=0

R−1∑

r=0

an,r(t− tn)r
+, (13)

where tr+ = max(t, 0)r. Clearly, the derivative of order R of x(t) is a stream of differentiated

Diracs given by x(R)(t) =
∑∞

n=0

∑R−1
r=0 r!an,rδ

(R−r−1)(t − tn). This means that if we are able to

14



relate the samples of x(t) to those of x(R)(t), we can use Theorem 3 to reconstruct x(t). This

is indeed possible by recalling the link existing between discrete differentiation and derivation in

continuous domain. More precisely, consider a function ϕ(t) with Fourier transform ϕ̂(ω) and

consider the following difference: ϕ(t)− ϕ(t− 1). The Fourier transform of ϕ(t)− ϕ(t− 1) is

ϕ(t)− ϕ(t− 1) ⇐⇒ ϕ̂(ω)(1− e−jω) = jωϕ̂(ω)
(1− e−jω)

jω
= jωϕ̂(ω)β̂0(ω).

It thus follows that

ϕ(t)− ϕ(t− 1) =
d

dt
[ϕ(t) ∗ β0(t)] . (14)

We now use the above formula in our sampling formulation. Consider the samples yn =

〈x(t), ϕ(t − n)〉 where ϕ(t) is a generic sampling kernel. Let z
(1)
n denote the finite difference

yn+1 − yn. It follows that

z
(1)
n = yn+1 − yn = 〈x(t), ϕ(t− n− 1)− ϕ(t− n)〉

(a)
= 〈x(t),− d

dt [ϕ(t− n) ∗ β0(t− n)]〉

(b)
= 〈dx(t)

dt , ϕ(t− n) ∗ β0(t− n)〉,

(15)

where in (a) we have used Equation (14) and (b) follows from integration by parts. Thus, the

samples z
(1)
n are equivalent to those given by the inner products between the derivative of x(t)

and the new kernel ϕ(t) ∗ β0(t). This equivalence is illustrated graphically in Figure 5. In the

same way, it is straightforward to show that the R-th finite difference z
(R)
n represents the samples

obtained by sampling x(R)(t) with the kernel ϕ(t) ∗ βR−1(t), where βR−1(t) is the B-spline of

degree R− 1.

Now, assume that ϕ(t) is of compact support L and that it can reproduce polynomials of

maximum degree N . Then ϕ(t) ∗ βR−1(t) has support L + R and can reproduce polynomials

of maximum degree N + R. Thus, if the new kernel satisfies the hypotheses of Theorem 3, the

samples z
(R)
n are a sufficient representation of x(R)(t) and, therefore, of x(t).2 This leads to the

following theorem

Theorem 4: Assume a sampling kernel ϕ(t) of compact support L and that can reproduce

polynomials of maximum degree N . An infinite-length piecewise polynomial signal x(t) with

pieces of maximum degree R − 1 (R > 0) as defined in (13) is uniquely defined by the samples

yn = 〈x(t), ϕ(t/T − n)〉 if there are at most K polynomial discontinuities in an interval of size

2K(L + R)T and N + R ≥ 2KR− 1.

2Note that the reconstruction of x(t) from x(R)(t) is unique since, by definition, x(t) = 0 for t < t0 (see Eq. (13)).
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Fig. 5. The observed samples yn are given by yn = 〈x(t), ϕ(t/T −n)〉, where the sampling kernel ϕ(t) is, in

this example, the box function and the original signal x(t) is piecewise constant. The finite difference

yn − yn−1 leads to the new samples zn that are equivalent to those obtained by sampling dx(t)
dt with

the new kernel ϕ(t) ∗ β0(t) which, in this case, is a linear spline.

Proof: Assume again T = 1. Given the samples yn, compute the R-th finite difference z
(R)
n . As

shown before, z
(R)
n = 〈x(R)(t), ϕ(t−n)∗βR−1(t−n)〉 and x(R)(t) =

∑∞
n=0

∑R−1
r=0 r!an,rδ

(R−r−1)(t−
tn). The new kernel ϕ(t)∗βR−1(t) has support L+R and can reproduce polynomials of maximum

degree N + R. Since by hypothesis x(t) has at most K polynomial discontinuities in an interval

of size 2K(L + R), x(R)(t) has at most K Diracs in that interval with a total number of weights

K̂ = KR. Since we are assuming N + R ≥ 2KR − 1, the hypotheses of Theorem 3 are satisfied,

thus, the samples z
(R)
n are sufficient to reconstruct x(R)(t) and therefore x(t). 2

A numerical example is shown in Figure 6. In this case, the signal is piecewise constant and

we assume that the signal can have at most two arbitrarily close discontinuities (K = 2). For

this reason the sampling kernel must be able to reproduce polynomials of degree two and, in

this example, is a quadratic spline β2(t). The observed samples yn are shown in Figure 6(b) and

the first order finite difference of yn results in the samples zn which are shown in Figure 6(c).

These samples are equivalent to those obtained by sampling dx(t)
dt , which is a stream of Diracs,

with the new kernel β3(t) = β2(t) ∗ β0(t). Thus, the hypotheses of Theorem 2 and Theorem 4

are satisfied and the samples zn are sufficient to reconstruct dx(t)
dt and x(t). The reconstructed

piecewise constant signal is shown in Figure 6(d).

IV. From Coarse Approximations to Infinite Resolutions

It is well known that wavelets play a fundamental role in many signal processing applications,

compression being the most visible example [32]. In this section we explore the use of scaling

functions and wavelets to sample FRI signals. Moreover, we will use the multiresolution property
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Fig. 6. Sampling of piecewise polynomial signals. In this example, the original signal is piecewise constant

and is shown in Figure 6(a). The signal can have up to two arbitrarily close discontinuities (K = 2).

The sampling kernel is in this case a quadratic spline and the observed samples yn are shown in

Figure 6(b). The first order finite difference of the samples yn leads to the samples zn shown in

Figure 6(c). From this samples it is then possible to reconstruct the original signal exactly and the

reconstructed signal is shown in Figure 6(d).

of the wavelet transform to make a connection between our sampling results and the problem

of increasing the resolution of a given signal. While it is not our aim to provide a detailed and

rigorous treatment of wavelets for which we refer to standard texts [9], [33], [25], [17], we want

to highlight the properties of wavelets and scaling functions that are of interest in our sampling

formulation. To keep the notation as simple as possible, we concentrate only on the case of

orthogonal wavelets.

A function ϕ(t) is an admissible scaling function of L2(R) if and only if it satisfies the following

three conditions [30], [27]:

1. Riesz basis criterion: A ≤ ∑
n∈Z |ϕ̂(ω + 2πn)|2 ≤ B

2. Two scale relation: ϕ(t) =
√

2
∑

k∈Z hkϕ(2t− k)

3. Partition of unity:
∑

k∈Z ϕ(t− k) = 1.

Condition 1 ensures that ϕ(t) generates a basis for the subspace

V0 = span{ϕ(t− k)}k∈Z with V0 ⊂ L2(R).

The two scale relation guarantees that the subspaces Vi = span{ϕi,k(t)}k∈Z generated by the

scaled versions of ϕ(t) with the usual notation ϕi,k(t) = 2−i/2ϕ(t/2i − k), are embedded and

form a multiresolution decomposition of L2(R). Finally, partition of unity ensures that such a

decomposition is dense in L2(R) [30], [27].

In our context, the partition of unity has a second meaning: it tells us that any valid scaling

function is able to reproduce at least constant functions and as such can be used to sample

piecewise constant signals with no more than one discontinuity in an interval of size 2LT .
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The two scale relation can be written in the frequency domain as follows

ϕ̂(ω) =
1√
2

(
1 + e−jω/2

2

)N

R̂0(ejω/2)ϕ̂(ω/2),

where R̂0(ejω) is a residual with R̂0(ejω) 6= 0 for ω = 0, and N must be at least equal to one

because of the partition of unity. Usually, one tries to design scaling functions with a large value

of N since this normally guarantees that the function has a certain regularity [9]. The term(
1+e−jω/2

2

)N
also indicates that scaling functions satisfy Strang-Fix conditions of order N − 1.

Given a valid scaling function, there exists a corresponding wavelet ψ(t) that generates a basis

of L2(R). The wavelet is expressed as a linear combination of shifted versions of ϕ(t):

ψ(t) =
√

2
∑

n∈Z
gnϕ(2t− n) (16)

and is designed so that the scaled wavelet ψm,n spans the ‘detail’ subspace Wi = Vi − Vi−1.

In the orthogonal case, the two scale relation of (16) can be written in the frequency domain

as follows3

ψ̂(ω) =
1√
2

(
1− e−jω/2

2

)N

R̂1(ejω/2)ϕ̂(ω/2), (17)

where R̂1(ejω) = −e−jωR̂0(e−j(ω+π)) and R̂1(ejω) 6= 0 for ω = 0. This relation tells us that a

wavelet has N zeros at ω = 0 and using the moment property of the Fourier transform we have

that ∫ ∞

−∞
tmψ(t)dt = 0, m = 0, 1, ..., N − 1.

In other words, while the scaling function reproduces polynomial of up to degree N − 1, the

corresponding wavelet ‘kills’ polynomials of the same order. This is, in fact, the much celebrated

vanishing moment property of the wavelet transform.

Consider now the representation of a signal x(t) ∈ L2(R) in terms of wavelets and scaling

functions:

x(t) =
∞∑

n=−∞
yJ,nϕJ,n(t) +

J∑
m=−∞

∞∑
n=−∞

dm,nψm,n(t) (18)

and assume that x(t) and ϕ(t) satisfy the hypotheses of the theorems in Section III. That is, x(t)

is a stream of Diracs or a piecewise polynomial signal with a local finite rate of innovation, and

ϕ(t) is a compact support scaling function that can reproduce polynomials of a certain degree.

Then the sampling theorems of Section III ensure that, for a proper choice of J (i.e., T = 2J),

the inner products yJ,n of equation (18) are sufficient to characterize x(t) or, in other words,

that the finite resolution version xJ(t) =
∑∞

n=−∞ yJ,nϕJ,n(t) is sufficient to reconstruct the signal

exactly. This means that by knowing x(t) at a finite resolution, we can infer the value of the
3A similar relation applies to the biorthogonal case as well.
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Fig. 7. Illustration of the reconstruction of a piecewise linear signal with the sampling scheme presented in

Section III and IV. (a) Original discrete-time piecewise linear signal. In this case the original signal has

128 points. (b) Sample values obtained with a Daubechies filter with two vanishing moments. In this

example the sampling period is T = 8, thus, we are taking only 16 samples. (c) Coarse reconstruction

xJ(t) of the signal or projection onto the subspace spanned by ϕJ,n(t) = 2−J/2ϕ(t/2J − n). (d)

Reconstruction with the annihilating filter method using the 16 samples of (b).

wavelet coefficients dm,n with m ≤ J and, therefore, arbitrarily increase the resolution of our

approximation to eventually recover the original continuous-time signal. For example, in the case

of a stream of Diracs, we can state the following corollary to Theorem 2.

Corollary 2: Assume a scaling function ϕ(t) of compact support L and that can reproduce poly-

nomials of maximum degree N ≥ 2K − 1. The coarse approximation xJ(t) =
∑∞

n=−∞ yJ,nϕJ,n(t)

of a stream of Diracs x(t) is a sufficient representation of x(t) if there are at most K Diracs in an

interval of size 2KL2J .

An example of the reconstruction of a piecewise polynomial signal from its coarse representation

is illustrated in Figure 7. We consider a discrete-time piecewise linear signal with N = 128

points (Figure 7(a)). The signal is sampled with a Daubechies scaling function with two vanishing

moments and the sampling period is T = 8 points (T = 2J). The distance between two consecutive

discontinuities is such that the hypotheses of Theorem 4 are satisfied. The 16 sample values are

shown in Figure 7(b). The coarse approximation of the signal (what we have called xJ(t)) is

shown in Figure 7(c). The reconstruction of x(t) with the annihilating filter method is instead

exact to machine precision and is shown in Figure 7(d).

Notice that the coarse version xJ(t) of x(t) is the version that we would normally obtain

when using a classical sampling scheme where the reconstruction process is linear and the whole

sampling operation is equivalent to projecting x(t) onto the subspace VJ = span{ϕJ,n(t)}n∈Z.

Thus, this example gives a clear indication of the gain that one obtains by replacing a classical

linear reconstruction method with a non-linear, yet with reasonable complexity, scheme based on

the annihilating filter method.

Scaling functions and wavelets are intimately related as indicated in particular by Eq. (16).

It seems therefore natural to imagine that, in some cases, wavelets can be used to sample FRI
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signals in much the same way as scaling functions. This is, in fact, true in the case of piecewise

polynomial signals.

Assume x(t) is a piecewise polynomial signal with pieces of maximum degree N − 1 (N > 0)

and consider the samples d0,n = 〈x(t), ψ(t − n)〉, where we are assuming T = 1 and ψ(t) is a

wavelet with at least N vanishing moments. Denote by L the support of ψ(t) and assume that

there is at most one discontinuity in an interval of size 2L. It follows that

d0,n = 〈x(t), ψ(t− n)〉

(a)
= 〈x(t), dN

dtN

[
1

22N
√

2
βN−1(2t− n) ∗ ϕ(2t− n) ∗R1(2t− n)

]
〉

(b)
= (−1)N 〈dNx(t)

dtN
, 1

22N
√

2
βN−1(2t− n) ∗ ϕ(2t− n) ∗R1(2t− n)〉,

where in (a) we used the fact that

Ψ̂(ω) =
1√
2

(
1− e−jω/2

2

)N

R̂1(ejω/2)ϕ̂(ω/2) =
(jω)N

22N
√

2
β̂N−1(ω/2)R̂1(ejω/2)ϕ̂(ω/2)

and (b) follows from integration by parts. Since R̂1(ejω/2) 6= 0 for ω = 0, the new kernel can

reproduce polynomials of maximum degree 2N − 2 and it is easy to show that it has the same

support as ψ(t). The signal dNx(t)
dtN

is a stream of differentiated Diracs and by hypothesis there is

at most one Dirac in an interval of size L with a total number of weights K̂ = N − 1. This means

that the hypotheses of Theorem 4 are satisfied and d0,n is a sufficient representation of x(t). We

can thus summarize these findings with the following corollary to Theorem 4.

Corollary 3: Assume a wavelet function ψ(t) with N vanishing moments and compact support

L. An infinite-length piecewise polynomial signal x(t) with pieces of maximum degree N − 1

(N > 0) is uniquely defined by the samples yn = 〈x(t), ψ(t/T − n)〉 if there is at most one

discontinuity in an interval of size 2LT .

The above corollary thus indicates that the knowledge of a piecewise polynomial signal at a

single scale is normally sufficient to reconstruct the entire signal exactly.

V. The Exponential Case

We have seen in Section III and IV that we can use the property that ϕ(t) reproduces polyno-

mials to reduce our sampling problem to that of finding the coefficients ak and tk of the discrete

signal τm =
∑K−1

k=0 akt
m
k , m = 0, 1, ..., N and this is achieved using the annihilating filter method.

The interesting point is that the annihilating filter method can also be used for an observed signal

of the form sm =
∑K−1

k=0 ake
αmt and αm = α0 + mλ. For this reason, FRI signals can be sam-

pled and reconstructed using kernels that reproduce exponentials. The reconstruction scheme is
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the same as in the polynomial case. First, the signal sm =
∑K−1

k=0 ake
αmt is estimated from the

samples yn, then locations and amplitudes of the Diracs are retrieved from sm.

Assume that our kernel is of compact support and that it is able to reproduce exponential of

the form eαmt with αm = α0 +mλ and m = 0, 1, ..., N . For instance, ϕ(t) is an E-spline β~α(t) with

~α = (α0, α1, ..., αN ) and αm = α0 + mλ or a composite function ϕ(t) ∗ β~α(t). Consider again a

stream of K Diracs x(t) =
∑K−1

k=0 akδ(t−tk). The samples yn are then given by yn = 〈x(t), ϕ(t−n)〉
and, using Eq. (5), it follows that

sm =
∑

n

cm,nyn =
∫ ∞

−∞
x(t)e(α0+mλ)tdt =

K−1∑

k=0

ake
α0tkemλtk m = 0, 1, ..., N.

This means that, as in the polynomial case, proper linear combinations of the samples yn lead to a

signal sm of the form sm =
∑K−1

k=0 âku
m
k , where âk = ake

α0tk and uk = eλtk . Since m is an integer,

the new measurements sm have a form similar to the measurements τm of the polynomial case and,

as in that case, the exponentials uk and the amplitudes âk are retrieved using the annihilating

filter method. Finally, from the âk’s and uk’s, we retrieve the amplitudes and locations of the

original Diracs. Again, since the kernel has compact support, this reconstruction algorithm can

be applied to any stream of Diracs with local rate of innovation ρ2KTL(t) ≤ 1/TL. We can thus

summarize the above analysis as follows

Theorem 5: Assume a sampling kernel ϕ(t) of compact support L and that can reproduce

exponentials e(α0+mλ)t with m = 0, 1, ..., N and N ≥ 2K − 1. An infinite-length stream of Diracs

x(t) =
∑

n∈Z anδ(t−tn) is uniquely determined from the samples defined by yn = 〈x(t), ϕ(t/T−n)〉
if there are at most K Diracs in an interval of length 2KTL.

Notice that this theorem reduces to Theorem 2 when α0 = λ = 0. Moreover, notice that, by

using the same procedure indicated in the previous sections, it is possible to extend the above

results to the case of stream of differentiated Diracs and of piecewise polynomial signals. We omit

the proofs of these extensions since they are straightforward.

The exponent αm in the exponential eαmt can be either real or complex. An interesting case is

when αm is purely imaginary and is given by αm = jω0m, m = 0, 1, ..., N . In this case, in fact,

we have that

sm =
∑

n

cm,nyn =
∫ ∞

−∞
x(t)ejmω0tdt = x̂(mω0).

In other words, when αm = jω0m, it is possible to retrieve the Fourier coefficients x̂(0), x̂(ω0), ..., x̂(Nω0)

of x(t) from its samples. This partial knowledge of the spectrum of x(t), which is incidentally not

bandlimited, is sufficient to reconstruct the original signal exactly as shown by Theorem 5 and

its extensions. This analysis also establishes an even tighter link between our sampling scheme

and the one presented in [34] which is also based on the reconstruction of x(t) from its Fourier
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coefficients. Our method, however, remains very attractive in many situations since it is local and

can be used with a wider range of different kernels as shown in the next section.

VI. Kernels with Rational Fourier Transform

Consider a classical continuous-time linear time-invariant system where the input x(t) and

output y(t) are related by linear differential equations of the form

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a0y(t) = bm

dmx

dtm
+ bm−1

dm−1x

dtm−1
+ · · ·+ b0x(t).

The transfer function of this system is rational and is similar to the one in (6). This system

represents the basic building block in classical system theory, and is sufficiently general to model

most linear electrical, mechanical or electro-mechanical systems. Most important, many such

systems can be used to sample signals with finite rate of innovation. The reason why we can use

such kernels in our sampling formulation is that we can convert a kernel ϕ(t) with rational Fourier

transform as in (6) into a kernel that reproduces exponentials. This is achieved by filtering the

samples yn = 〈x(t), ϕ(t− n)〉4 with an FIR filter with z-transform H(z) =
∏N

m=0(1− eαmz).

For example, assume that ϕ̂(ω) = 1
jω−α and yn = 〈x(t), ϕ(t− n)〉. Then H(z) = (1− eαz) and

we have that

zn = hn ∗ yn = yn − eαyn+1
(a)
= 〈x(t), ϕ(t− n)− eαϕ(t− n− 1)〉

(b)
= 〈x(t), βα(t− n)〉,

where (a) follows from the linearity of the inner product and (b) from the fact that the Fourier

transform of ϕ(t− n)− eαϕ(t− n− 1) is e−jωnβ̂α(ω). Therefore, by filtering the samples yn with

the filter H(z) = (1 − eαz) we obtain a new set of samples zn that are equivalent to those that

would have been obtained by sampling the original signal x(t) with the E-spline βα(t).

Likewise, when the original kernel has N +1 poles at locations ~α = (α0, α1, ..., αN ), by filtering

the samples yn = 〈x(t), ϕ(t − n)〉 with the filter H(z) =
∏N

m=0(1 − eαmz) we have that zn =

hn∗yn = 〈x(t), β~α(t−n)〉 and the new kernel is of compact support and reproduces the exponentials

{eα0t, eα1t, ..., eαN t}.
In the most general case, the kernel has a frequency response as in (6) and by filtering the

samples with the digital filter H(z) =
∏N

m=0(1 − eαmz) we obtain a new kernel with Fourier

transform
∏I

i=0(jω − bi)β̂~α(ω). Functions with such Fourier transform are sometimes called gen-

eralized E-spline [28] and clearly are still able to reproduce the exponentials {eα0t, eα1t, ..., eαN t}.
Moreover, notice that since we are assuming I < N , these new kernels have compact support.

4We are assuming T = 1 for simplicity.
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Thus, the above analysis together with Theorem 5 and its extensions, allows us to say that

acquisition devices with rational Fourier transform can be used to sample signal with FRI. The

condition that need to be satisfied, however, is that the poles of this system are located at

αm = α0 + mλ, m = 0, 1, .., N , and the necessary number of such poles depends as usual on

the local complexity of the signal. Clearly these linear systems also need to be stable or at least

meta-stable. For this reason, the real part of their poles has to be negative or zero.

As an example, we now show how to estimate a piecewise constant signal at the output of an

RC circuit.

Example 1: Consider the classical RC circuit shown in Figure 8 and call H(ω) = α/(α + jω)

with α = 1/RC its transfer function. Assume that the input voltage is a step function x(t) =

Au(t − t0). The output y(t) = h(t) ∗ x(t) is given by y(t) = Au(t − t0) − Ae−α(t−t0)u(t − t0).

The output voltage is then uniformly sampled with sampling period T = 1 leading to the samples

yn = Au(n− t0)−Ae−α(n−t0)u(n− t0). Alternatively, we can say that yn = 〈x(t), ϕ(t− n)〉 with

ϕ(t) = h(−t).5 Our aim is to retrieve x(t) from the samples yn. Notice that at this stage neither

the original signal x(t) nor the sampling kernel ϕ(t) have compact support. Yet, we know from the

theories developed in the previous sections that x(t) can be reconstructed from its samples. Two

actions are needed in order to reconstruct it. First, the sampling kernel needs to be converted into

an exponential spline. Second, the derivative of the signal needs to be computed. As indicated

before, this is achieved by filtering the samples yn with a proper digital filter. In this case, the

digital filter has z-transform H1(z) = (z − 1)(eαz − 1).

The filtering of yn with (eαz − 1) yields

gn = eαyn+1 − yn = 〈x(t), eαϕ(t− n− 1)− ϕ(t− n)〉 = 〈x(t), αβα(t− n)〉.

The filtering of gn with (z − 1) gives (see also Eq. (15))

g(1)
n = gn+1 − gn = 〈dx(t)

dt
, αβα(t− n) ∗ β0(t− n)〉.

Thus, the new samples g
(1)
n are equivalent to those that one would obtain by sampling dx(t)/dt

with the new kernel ϕα(t) = αβα(t) ∗ β0(t). The signal dx(t)/dt is a Dirac centered at t0 and

with amplitude A. The new kernel ϕα(t) = αβα(t) ∗ β0(t) is of compact support L = 2 and

can reproduce a constant function and the exponential eαt. This means that the hypotheses of

Theorem 5 are satisfied and that we can retrieve A and t0 from the samples g
(1)
n . To show how

to retrieve these two parameters, recall that yn = Au(n − t0) − Ae−α(n−t0)u(n − t0) and assume

for simplicity that t0 ∈]0, 1]. Then

Y (z) =
A

z − 1
− Aeαt0

eαz − 1
5Recall that the identity ϕ(t) = h(−t) implies that ϕ̂(ω) = H(−ω).
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Fig. 8. Reconstruction of a piecewise constant signal x(t) from its samples yn. In this example the

acquisition device is a typical RC circuit. The input voltage x(t) is piecewise constant and the output

y(t) is uniformly sampled. From the samples yn and after a proper digital filtering, it is possible to

retrieve the exact locations ti and amplitudes Ai of the discontinuities of x(t).

and G(1)(z) = H1(z)Y (z) = (z − 1)(eαz − 1)Y (z) = A(eαt0 − 1) + A(eα − eαt0)z. For this reason,

we have that
1

eα − 1

∑
n

g(1)
n =

1
eα − 1

G(1)(z)
∣∣∣∣
z=1

= A

and that
1

1− e−α

∑
n

eαng(1)
n =

1
1− e−α

G(1)(z)
∣∣∣∣
z=e−α

= Aeαt0 .

Thus, we retrieve the amplitude A from the first sum and the location t0 from the second one.

Notice that with this RC circuit we can sample any piecewise constant signal that has at most

one discontinuity in an interval of length 4T . To sample signals with higher local rate of innovation,

we need an electrical circuit with more than one pole. For instance, to sample a piecewise constant

signal that may contain two arbitrarily close discontinuities, we need a third-order RC circuit with

three poles at location α, 2α and 3α.

VII. The Noisy Scenario

In many practical situations the samples we have access to are corrupted by noise and the usual

assumption is that the noise is additive, white and Gaussian. Thus, we measure ŷn = yn + en

where en is the additive noise.6 We have seen that in our reconstruction schemes we first estimate

the signal’s moments from the samples and then the signal is reconstructed from its moments

using techniques encountered in spectral estimation. This second problem, i.e., robust estimation

of the signal from its noisy moments, has been extensively studied, in particular, by the array

processing community and any of the techniques developed in that context can, in principle, be

used in our scenario as well. For an insightful review of those techniques we refer to the recent

paper [13] and to the book [22].
6In our set-up, we are assuming that the input continuous-time signal x(t) is noiseless and that noise is introduced

by the acquisition device after sampling. In many practical situations, the original signal may already have noise.

In this case, if the sampling kernels are orthogonal with respect to their shifts, the noise is still uncorrelated after

sampling, but this is not the case otherwise. This latter situation (e.g., correlated noise) is not considered here.
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In this section, instead, we concentrate on the estimation of the moments from the noisy samples.

In particular, we present a simple algorithm that reduces the estimation error by oversampling.

We also show that the proposed estimator is asymptotically unbiased.

The new sampling setup is shown in Figure 9. Here, the support of the kernel remains the same,

but the sampling period is reduced by an integer factor M . The observed (noiseless) samples can

be written as yn = 〈x(t), ϕ(t/T − n/M)〉. From now on we assume that x(t) is a stream of

K Diracs, x(t) =
∑K−1

k=0 akδ(t − tk), that the signal has finite length and call the finite set of

samples generated by the signal y0, y1, ..., yMJ−1. Moreover, we assume that the sampling kernel

has compact support and can reproduce polynomials up to degree N . This means that, if we

choose a function ϕ̃(t) that is quasi-biorthonormal of order M with ϕ(t), we have that

∑

n∈Z
cm,Mn+iϕ(t/T − n− i/M) = tm m = 0, 1, . . . N and i = 0, 1, . . .M − 1 (19)

where

cm,Mn+i =
1
T

∫
tmϕ̃(t/T − n− i/M)dt.

Note that ϕ̃(t) can be chosen to have compact support.

Let us concentrate for the moment on the case M = 2, or the case where we are oversampling by

a factor two. Since two consecutive samples are now obtained by shifting the kernel by T/2 rather

than T , we can separate even and odd samples and treat them independently. In particular, the

even and odd samples are given by

y2n = 〈x(t), ϕ(t/T − n)〉,

y2n+1 = 〈x(t), ϕ(t/T − n− 1/2)〉.
(20)

T/M

x(t)
ϕ

Acquisition Device

h(t)=   (−t/T) n ϕy(t)
y =<x(t),   (t/T−n/M)>

Fig. 9. Oversampled acquisition for noise reduction. In the oversampled scenario, the sampling period is

reduced to T/M , where M is integer and represents the oversampling factor.

For this reason, we can write τm (see (7) and (20)) in two different ways. First, using (19) with
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M = 2 and i = 0:

τm =
∑J−1

n=0 cm,2ny2n = 〈x(t),
∑

n cm,2nϕ(t/T − n)〉

=
∫∞
−∞

∑K−1
k=0 akδ(t− tk)tmdt =

∑K−1
k=0 akt

m
k m = 0, 1, ..., N.

Second, using (19) with M = 2 and i = 1:

τm =
∑J−1

n=0 cm,2n+1y2n+1 = 〈x(t),
∑

n cm,2n+1ϕ(t/T − n− 1/2)〉

=
∫∞
−∞

∑K−1
k=0 akδ(t− tk)tmdt =

∑K−1
k=0 akt

m
k m = 0, 1, ..., N.

In other words, in the oversampled case, the moments of x(t) can be retrieved from either the

even or the odd samples.

In the noisy scenario, we can use this fact to reduce the effect of noise. Call ŷn = 〈x(t), ϕ(t/T −
n/2)〉 + en the noisy samples. We separate the even from the odd samples and estimate the

moments of x(t) from these two sets independently. We have that

τ̂ (i)
m =

J−1∑

n=0

cm,2n+iŷ2n+i = τm +
J−1∑

n=0

cm,2n+ie2n+i, i = 0, 1.

Our final estimated moment is then the average:

τ̄m =
1
2
(τ̂ (0)

m + τ̂ (1)
m ) = τm +

1
2
(
J−1∑

n=0

cm,2ne2n +
J−1∑

n=0

cm,2n+1e2n+1).

The extension to the case where M > 2 is now clear. The observed samples ŷn = 〈x(t), ϕ(t/T −
n/M)〉 + en are divided into their polyphase components ŷ

(i)
n = ŷMn+i, i = 0, 1, ..., M − 1. The

moments of x(t) are retrieved from each set of samples ŷ
(i)
n independently and the final estimated

moments are given by the average

τ̄m =
1
M

M−1∑

i=0

τ̂ (i)
m = τm +

1
M

(
J−1∑

n=0

M−1∑

i=0

cm,Mn+ieMn+i), m = 0, 1, ..., N.

Since the noise is assumed i.i.d Gaussian with variance σ2, the mean square estimation error is:

E[(τ̄m − τm)2] =
1

M2
σ2(

J−1∑

n=0

M−1∑

i=0

c2
m,Mn+i) ≤

1
M

JA2σ2, (21)

where A = max |cm,Mn+i| and, since m and n are bounded and ϕ̃(t) is of compact support, A is

upper bounded independently of M . Therefore, Eq. (21) indicates that, on average, we reduce the

effect of noise by a factor
√

M and that our estimation of the moments is asymptotically consistent

and unbiased. Moreover, since the reconstruction of x(t) is obtained through operations that are

continuous for small perturbations, the reconstruction of x(t) from the moments is asymptotically

unbiased as well. For a precise proof of this last statement we refer to [23], [22].
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M=1 M=2 M=4 M=8

σ = 10−1 0.25T 0.22T 0.19T 0.17T

σ = 10−2 0.15T 0.10T 0.07T 0.041T

σ = 5 · 10−3 0.075T 0.06T 0.046T 0.03T

TABLE I

Effect of the oversampling in the reconstruction of a stream of Diracs. The samples have been corrupted

with additive Gaussian noise. Here, M indicates the oversampling factor. The error is measured as the

average absolute difference between the true and the estimated Diracs’ locations and is expressed as a

function of the sampling period T . Thus, an average error 0.25T means that the reconstruction has an

average accuracy of a quarter of the sampling period.

A quantitative analysis of the benefit of oversampling is presented in Table I. In this experiment,

we assume that the input signal is made of K = 2 Diracs with fixed amplitude one and that the

Diracs are uniformly distributed in t ∈ [−16T, 16T ]. The observed samples are corrupted by

additive Gaussian noise with variance σ2. The sampling kernel is given by the convolution of the

E-spline βα(t) with α = −0.1 and a B-spline of order 2K − 1. This means that the kernel can

reproduce tmeαt with m = 0, 1, ..., 2K − 1 and α = −0.1. In this context, the E-spline is only

used to increase the stability of the reconstruction algorithm since the function tmeαt is more

stable than tm. The table shows the average absolute error in estimating the Diracs’ locations

over 1000 experiments for different values of the noise. The reconstruction algorithm operates as

follows: the noisy samples are hard thresholded with a threshold equal to 3σ, then the moments

are estimated using the above scheme. Finally locations and amplitude of the Diracs are retrieved

from the moments using the usual approach of Section III.

We can notice from the table that the reconstruction error is indeed reduced by oversampling.

Also, the results are consistent with the theory. For instance, the two cases (M = 1, σ = 5 · 10−3)

and (M = 4, σ = 10−2) leads to roughly the same performance as anticipated by the theory. An

example of the reconstruction is shown in Figure 10. In this case, we do not use oversampling

(M = 1), the input signals has K = 3 Diracs and the noise has standard deviation σ = 0.1.

It is also of interest to analyze the stability of the algorithm for different values of K. Table II

shows the average error for the case K = 1, 2, ..., 4. As it can be noticed, the reconstruction

process is very stable for small values of K. This seems to indicate that, in the case of noisy

measurements and strong noise, our reconstruction scheme is reliable when the input signal has

a low local rate of innovation (e.g., at most one Dirac in an interval of size 2LT ).

To conclude, we show in Figure 11 a last simulation for the case of piecewise constant signals.
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Fig. 10. Illustration of the reconstruction of a stream of K = 3 Diracs in the noisy case. Notice that in this

simulation we are not using oversampling (M = 1). (a) The original signal. (b) Sample values before

adding noise. (c) The noisy samples. In this case the noise is additive white Gaussian with standard

deviation σ = 0.1. (d) Reconstructed signal (continuous line) and original signal (dashed line).

K=1 K=2 K=4 K=8

σ = 10−1 0.17T 0.25T 2.5T 3.2T

σ = 10−2 0.02T 0.15T T 2.8T

σ = 10−3 10−4T 0.02T 0.6T 1.7T

TABLE II

Local complexity vs. reconstruction fidelity. In this simulations we are not using oversampling (M = 1).

In this example, the sampling kernel is the box function and the algorithm tries to estimate one

discontinuity per time. The noise standard deviation is σ = 10−2. The reconstruction shown is

in fact quite faithful with an SNR=27dB.

VIII. Conclusions

We have presented new schemes to sample signals with finite rate of innovation. We have shown

that it is possible to sample and perfectly reconstruct many FRI signals using a wide range of

sampling kernels. The classes of kernels that can be used include functions satisfying Strang-Fix
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Fig. 11. Reconstruction of a piecewise constant signal. (a) The original signal. (b) Reconstructed signal

(SNR=27dB).
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conditions and therefore scaling functions for wavelet bases, E-splines and functions with rational

Fourier transform. This last class of kernels is of particular interest in engineering since many

acquisition devices used in communications, control, but also for A/D conversion can be modeled

in this way. Thus, these new sampling schemes may have an impact in these engineering areas in

the future.

Another important feature of our sampling scheme is that the reconstruction algorithm is local.

This makes this technique more resilient to noise. We have in fact shown that signals with small

local rate of innovation can be well reconstructed also in the presence of noise. In this context,

we have also presented a novel algorithm that reduces the effect of the noise by oversampling.

Extensions to the multi-dimensional case as well as to the case of piecewise sinusoidal signals

are presented in [21] and [2] respectively and may have applications in image super-resolution and

spread spectrum communication.
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