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ABSTRACT

Consider the problem of sampling signals which are not bandlim-
ited, but still have a finite number of degrees of freedom per unit
of time, such as, for example, piecewise polynomial or piecewise
sinusoidal signals, and call the number of degrees of freedom per
unit of time the rate of innovation. Classical sampling theory does
not enable a perfect reconstruction of such signals since they are
not bandlimited.

In this paper, we show that many signals with finite rate of in-
novation can be sampled and perfectly reconstructed using kernels
of compact support and a local reconstruction algorithm. The class
of kernels that we can use is very rich and includes functions sat-
isfying Strang-Fix conditions, Exponential Splines and functions
with rational Fourier transforms. Extension of such results to the
2-dimensional case are also discussed and an application to image
super-resolution is presented.

1. INTRODUCTION

Sampling theory plays a central role in modern signal processing
and communications, and has experienced a recent revival thanks,
in part, to the recent advances in wavelet theory [9]. In the typi-
cal sampling setup depicted in Figure 1, the original continuous-
time signalx(t) is filtered before being (uniformly) sampled with
sampling periodT . The filtering may be a design choice or, as it
is usually the case, may be due to the acquisition device. If we
denote withy(t) = h(t) ∗ x(t) the filtered version ofx(t), the
samplesyn are given by

yn = 〈x(t), ϕ(t/T − n)〉 =

∫ ∞

−∞
x(t)ϕ(t/T − n)dt

where the sampling kernelϕ(t) is the scaled and time-reversed
version ofh(t).

The key problem then is to find the best way to reconstruct
x(t) from the given samples, and the key questions are: (i) What
classes of signals can be reconstructed? (ii) What classes of ker-
nels allow such reconstructions? (iii) What kind of reconstruc-
tion algorithms are involved? Ideally, we would like to be able
to reconstruct large classes of signals, using simple reconstruction
algorithms and, most important, with general and physically real-
izable kernels.

This paper includes research conducted jointly with Pancham
Shukls [6], Jesse Berent [2] and Loic Baboulaz [1].
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Fig. 1. Sampling setup. Here,x(t) is the continous-time signal,
h(t) the impulse response of the acquisition device andT the sam-
pling period. The measured samples areyn = 〈x(t), ϕ(t/T−n)〉.

The classical answer to the sampling problem is provided by
the famous Shannon sampling theorem which states the conditions
to reconstruct bandlimited signals from their samples. In this case,
the reconstruction process is linear and the kernel is the sinc func-
tion. Recently, it was shown that it is possible to develop sampling
schemes for classes of signals that are neither bandlimited nor be-
long to a fixed subspace [11]. The common feature of such signals
is that they have a parametric representation with a finite number
of degrees of freedom and are, therefore, called signals with finite
rate of innovation (FRI) [11].

In this paper, we further extend these results and show that
many 1-D and 2-D signals with a local finite rate of innovation
can be sampled and perfectly reconstructed using a wide range of
sampling kernels and a local reconstruction algorithm. As in [11],
the reconstruction process is based on the use of a locator or an-
nihilating filter, a tool widely used in spectral estimation [7] and
error correction coding [3]. In our context, the main property the
kernel has to satisfy is to be able to reproduce polynomials or ex-
ponentials. Thus, functions satisfying Strang-Fix conditions (e.g.,
splines and scaling functions), exponential splines and functions
with rational Fourier transforms can be used in our formulation.
This last family of kernels is of particular importance since most
linear devices used in practice have a transfer function which is
rational.

The paper is organized as follows: In the next section we
present the families of sampling kernels that are used in our sam-
pling schemes. Section 3 presents our main sampling results, in
particular, we show how to sample and perfectly reconstruct streams
of Diracs. In Section 4, we use the results of the previous section
to show that piecewise sinusoidal signals can be sampled as well.
We then move to the 2-D case in Section 5, where an application
to image super-resolution is also presented and finally conclude in
Section 6.



2. SAMPLING KERNELS

As mentioned in the introduction, the signalx(t) is usually fil-
tered before being sampled. The samplesyn are given byyn =
〈x(t), ϕ(t/T − n)〉, where the sampling kernelϕ(t) is the time
reversed version of the filter’s impulse response. The impulse re-
sponse of the filter depends on the physical properties of the acqui-
sition devise and, in most cases, is specified a-priori and cannot be
modified. It is therefore important to develop sampling schemes
that do not require the use of very particular or even physically
non-realizable filters. In our formulation we can use a wide range
of different kernels. For the sake of clarity, we divide them into
two families:

1. Polynomial reproducing kernels: Any kernelϕ(t) that to-
gether with its shifted versions can reproduce polynomials
of maximum degreeN . That is, any kernel that satisfies

∑
n

cm,nϕ(t− n) = tm m = 0, 1, ..., N (1)

for a proper choice of the coefficientscm,n.

2. Exponential reproducing kernels: Any kernelϕ(t) that to-
gether with its shifted versions can reproduce complex ex-
ponentials of the formeαmt with αm = α0 + mλ and
m = 0, 1, ..., N . That is, any kernel satisfying

∑
n

cm,nϕ(t− n) = eαmt (2)

for a proper choice of the coefficientscm,n.

In both cases, the choice ofN depends on the local rate of innova-
tion of the original signalx(t) as will become clear later on.

The first family of kernels includes any function satisfying the
so-called Strang-Fix conditions [8] and therefore any scaling func-
tion that generates a wavelet basis. The second one includes any
composite function of the formϕ(t)∗β~α(t) with β~α(t) = βα0(t)∗
βα1(t)∗ ...∗βαN (t) andαm = α0+mλ for m = 0, 1, ..., N , and
whereβαm(t) is an exponential spline (E-splines) [10]. This sec-
ond family of kernels is of interest also because one can show that
many functions with rational Fourier transform can be converted
into functions that reproduce exponentials and can therefore be
used to sample FRI signals.

3. RECONSTRUCTION OF 1-D FRI SIGNALS

In this section, we assume that the sampling kernel is of compact
supportL, that is,ϕ(t) = 0 for t 6∈ [−L/2, L/2] whereL is an
integer for simplicity. We show that it is possible to sample and
perfectly reconstruct streams of Diracs using kernels that repro-
duce polynomials or exponentials. Extensions of these results to
the case of stream of differentiated Diracs, piecewise polynomial
signals and non-uniform splines are also possible but are omitted.

The key feature of the reconstruction scheme is that it allows
to retrieve the polynomial or the exponential moments of the orig-
inal signalx(t) from its samples. Since signals such as stream of
Diracs are completely specified by a finite number of moments,
perfect reconstruction is possible.

More precisely, assume that the sampling kernelϕ(t) satis-
fies the Strang-Fix conditions [8], that is, a linear combination
of shifted versions ofϕ(t) can reproduce polynomials of maxi-
mum degreeN (see Equation (1)). Consider a stream,x(t), of K

Diracs:x(t) =
∑K−1

k=0 akδ(t − tk), t ∈ R. Call yn the observed
samples, that is,yn = 〈x(t), ϕ(t − n)〉 where, for simplicity, we
have assumedT = 1. Call τm =

∑
n cm,nyn, m = 0, 1, ..., N

the weighted sum of the observed samples, where the weightscm,n

are those in Equation (1) that reproducetm. We have that

τm =
∑

n cm,nyn

(a)
= 〈x(t),

∑
n cm,nϕ(t− n)〉

(b)
=

∫∞
−∞

∑K−1
k=0 akδ(t− tk)tmdt

=
∑K−1

k=0 aktm
k m = 0, 1, ..., N

(3)

where (a) follows from the linearity of the inner product and (b)
from the polynomial reproduction formula in (1). The integral in
(b) represents precisely them-th order moment of the original
signalx(t). Hence, proper linear combinations of the observed
samples provide the firstN + 1 moments of the signal.

The discrete signalτm =
∑K−1

k=0 aktm
k m = 0, 1, .., N is

very often encountered in spectral estimation and in that context
the parameterak andtk of τm are retrieved using the annihilating
filter method. This method operates as follows:

Call hm m = 0, 1, ..., K the filter withz-transform

H(z) =

K∑
m=0

hmz−m =

K−1∏

k=0

(1− tkz−1). (4)

That is, the roots ofH(z) correspond to the locationstk. It clearly
follows that

hm ∗ τm =

K∑
i=0

hiτm−i =

K∑
i=0

K−1∑

k=0

akhit
m−i
k = 0. (5)

The filter hm is thus called annihilating filter since it annihilates
the observed signalτm. The zeros of this filter uniquely define the
set of locationstk since the locations are distinct. The filter coef-
ficientshm are found from the system of equations in (5). Since
h0 = 1, the identity in (5) leads to a Yule-Walker system of equa-
tions involving at least2K consecutive values ofτm and has, in
this case, a unique solution sincehm is unique for the given signal.
Given the filter coefficientshm, the locations of the Diracs are the
roots of the polynomial in (4). Notice that, since we need at least
2K consecutive values ofτm to solve the Yule-Walker system, we
need the sampling kernel to be able to reproduce polynomials of
maximum degreeN ≥ 2K − 1.

Given the locationst0, t1, ..., tk, the weightsak are obtained
by solving, for instance, the firstK consecutive equations in (3).
These equations lead to a Vandermonde system which yields a
unique solution for the weightsak given that thetk ’s are distinct.

Thus, a stream ofK Diracs is uniquely determined from the
samplesyn = 〈x(t), ϕ(t/T − n)〉, if the sampling kernelϕ(t)
can reproduce polynomials of maximum degreeN ≥ 2K−1. The
problem is that the reconstruction scheme becomes more and more
complex and unstable when the numberK of Diracs increases. It
is therefore critical to see if we can take advantage of the locality
of the sampling kernel to develop a sequential, local reconstruction
algorithm. Intuitively, if we have groups of Diracs separated by
empty intervals, then we should be able to separate these groups
and reconstruct them sequentially. Indeed, it is possible to show
that if there are at mostK Diracs in an interval of size2KL, we



are assured that there is a sufficient number of zero samples that
separates two groups ofK Diracs and so it is possible to apply the
above algorithm sequentially on each group ofK Diracs. We can
thus summarize the discussion of this section as follows:

Theorem 1 Assume a sampling kernelϕ(t) that can reproduce
polynomials of maximum degreeN ≥ 2K−1 and of compact sup-
port L. An infinite-length stream of Diracsx(t) =

∑
n∈Z anδ(t−

tn) is uniquely determined from the samples defined byyn =
〈x(t), ϕ(t/T − n)〉 if there are at mostK Diracs in an interval of
size2KLT .

The situation stays the same when the kernel is able to repro-
duce exponentials rather than polynomials. Assume, for instance,
that our kernel is able to reproduce exponential of the formeαmt

with αm = α0 + mλ andm = 0, 1, ..., N . For instance,ϕ(t) is
an E-splineβ~α(t) with ~α = (α0, α1, ..., αN ) andαm = α0 +mλ
or a composite functionϕ(t) ∗ β~α(t). Consider again a stream of
K Diracsx(t) =

∑K−1
k=0 akδ(t − tk). The samplesyn are then

given byyn = 〈x(t), ϕ(t− n)〉 and, using Eq. (2), it follows that

sm =
∑

n cm,nyn =
∫∞
−∞ x(t)eα0+mλtdt

=
∑K−1

k=0 akeα0+mλtk m = 0, 1, ..., N.

This means that proper linear combinations of the samplesyn lead
to a signalsm of the formsm =

∑K−1
k=0 akeα0+mλtk . The inter-

esting point is that the annihilating filter method can also be used
when the observed signal is of the formsm =

∑K−1
k=0 akeαmt and

αm = α0 + mλ and, therefore, the locations and the amplitudes
of the Diracs can be retrieved using the annihilating filter method
as in the polynomial case.

4. SAMPLING PIECEWISE SINUSOIDAL SIGNALS

Consider a piecewise sinusoidal signal like, for instance, the one
shown in Figure 2(a). Clearly, it is not possible to sample it us-
ing classical Shannon theory since the signal is not bandlimited.
Despite the fact that the signal has a finite number of degrees of
freedom, previous methods would not work either. This happens
because the signal contains innovation in both the temporal and
the spectral domains. Yet, a proper combination of the annihilat-
ing filter method and the sampling theory developed before leads
to an exact sampling scheme for this case as well.

Assume the signal to reconstruct is the one shown in Figure 2.
The scheme operates as follows (for more details we refer to [2]):
we first recover the sinusoidal parameters with an annihilating fil-
ter. Callyn = 〈x(t), ϕ(t− n)〉 the observed samples whereϕ(t)
is a generic kernel. The samples generated by the sinusoid and that
are not influenced by the two discontinuities can be annihilated us-
ing the filterH(z) = (1− ejω0z−1)(1− e−jω0z−1). The filter’s
coefficients can be found solving a Yule-Walker system similar to
the one shown before and the knowledge ofhn allows us to retrieve
all the parameters of the sinusoid. The next step is to retrievet0
andt1. By applying the filterhn on the samples we have that ([2])

zn = yn ∗ hn = 〈xδ(t), ϕ(t− n) ∗ β~α(t− n)〉,
where the new signalxδ(t) is a stream of differentiated Diracs
located att0 andt1 andβ~α is an E-spline. Therefore, if the original
kernelϕ(t) can reproduce polynomials or proper exponentials, we
can retrieve the locationst0 andt! using the results of Section 3.
We therefore retrieve the entire signal.

The same methodology can be used also when the signals con-
tains more pieces and more sinusoids for piece.
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Fig. 2. Sampling piecewise sinusoidal signals. (a) Original piece-
wise sinusoidal signalx(t) with one sinusoid of frequencyω0. (b)
Sampled signal. (c) Annihilated signalzn. These samples are
equivalent to those obtained by sampling a stream of differentiated
Diracs located att0 andt1 with the new kernelϕ(t) ∗ β~α(t).

5. SAMPLING SCHEMES FOR 2-D SIGNALS WITH
FINITE RATE OF INNOVATION

In this section we concentrate only on kernels that reproduce poly-
nomials. In particular, we assume that the 2-D sampling kernel
ϕxy(x, y) is given by the tensor product of a 1-D functionϕ(x)
that reproduces polynomials. That is,ϕx,y(xy) = ϕ(x)ϕ(y) and
ϕ(x) satisfies Eq (1).

The sampling schemes of Section 3 are based on the fact that
a stream ofK Diracs is uniquely determined by its first2K mo-
ments. Since it is possible to retrieve these moments from the
samplesyn, it is possible to reconstruct the original signal. The
situation in 2-D is very similar, but complex rather than real mo-
ments are needed in this context.

Consider first a set ofK 2-D Diracs. That is,f(x, y) =∑K
k=0 akδ(x−xk, y−yk). The samples areyn,m = 〈f(x, y), ϕxy(x−

n, y − m)〉 and, by construction, the kernelϕxy(x, y) is able to
reproduce polynomials of the formxnyl, n = 0, 1, ..., N , l =
0, 1, ..., N . It is easy to show that with the right linear combina-
tion of the samplesyn,m, we can estimate the complex moments
of f(x, y) in much the same way as we estimated the real moments
in the 1-D case. Thus, we end-up observing

τm =

∫ ∫
f(x, y)(x + jy)mdxdy m = 0, 1, ..., N.

Sincef(x, y) is a set ofK Diracs, the complex moments off(x, y)
have the following form

τm =

K−1∑

k=0

akzm
k

where thezks represent the locations of theK Diracs in complex
form: zk = xk + jyk. As in the 1-D case, the complex locations
of the Diracs and their amplitudes are found using the annihilating



(a) (b)

Fig. 3. (a) An original imageg(x, y) of size3767 × 3767 pixels
consists of three bilevel polygons: triangle, rectangle, and pen-
tagon. (b) The set of50 × 50 samples produced by the inner
products ofg(x, y) with a B-Spline sampling kernelϕxy(x, y) =
β9

xy(x, y) with support631× 631 pixels that can reproduce poly-
nomials up to degree nine. The original image is reconstructed
from this samples exactly.

filter method. Therefore, as in the 1-D case, the reconstruction
algorithm in 2-D operates in three steps:

1. Estimate the firstN ≥ (2K − 1) complex momentsτm of
f(x, y) from the samplesyn,m.

2. Find the filterhm that annihilatesτm. The roots of the filter
represents the locations of the Diracs in complex form.

3. Estimate the amplitudes of the Diracs by solving a Vander-
monde system.

If the kernel has compact support, it is possible to sample sets of
Diracs with more thanK Diracs. We just need group of at most
K Diracs to be separated enough so that they can be reconstructed
independently.

Bi-level polygonal images are also uniquely determined by
their complex moments [4, 5]. Consider a simply connected con-
vex polygon withK vertices, it is possible to show that [4, 5]

τ̂m = m(m− 1)

∫ ∞

−∞

∫ ∞

−∞
f(x, y)zm−2dxdy =

K−1∑

k=0

ρkzm
k ,

where thezks represent the locations of the vertices of the polygon
in complex coordinates. Therefore, as in the previous case, by
estimating the complex moments from the samplesyn,m and by
using the annihilating filter, we can retrieve the locations of the
vertices of the polygons and, therefore, the original signal. An
example of this sampling scheme is shown in Figure 3.

Moments are sometimes used for image registration. With the
techniques presented above we are able to retrieve the original mo-
ments from undersampled images and use them for registration in
the case we want to perform image super-resolution. An example
of such an approach is shown in Figure 4, for more detail we refer
to [1].

6. CONCLUSIONS

We have presented new schemes to sample signals with finite rate
of innovation. We have shown that it is possible to sample and
perfectly reconstruct many FRI signals using a wide range of sam-
pling kernels. The classes of kernels that can be used include func-
tions satisfying Strang-Fix conditions and therefore scaling func-
tions for wavelet bases and E-splines.

(a) (b)

Fig. 4. Super-resolution using 100 images. (a) Low resolution
image (65× 65). (b) Super-resolved image (2000× 2000)

Extensions to the 2-dimensional case have been presented as
well and we have shown that these results find application in image
super-resolution.
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