EE1 and ISE1 Communications I

Pier Luigi Dragotti

Lecture twelve
Lecture Aims

• Angle Modulation
 – Phase and Frequency modulation
 – Concept of instantaneous frequency
 – Examples of phase and frequency modulation
 – Power of angle-modulated signals
Consider a modulating signal $m(t)$ and a carrier $v_c(t) = A \cos(\omega_c t + \theta_c)$.

The carrier has three parameters that could be modulated: the amplitude A (AM) the frequency ω_c (FM) and the phase θ_c (PM).

The latter two methods are closely related since both modulate the argument of the cosine.
Instantaneous Frequency

• By definition a sinusoidal signal has a constant frequency and phase: $A \cos(\omega_c t + \theta_c)$

• Consider a generalized sinusoid with phase $\theta(t)$: $\phi(t) = A \cos \theta(t)$

• We define the instantaneous frequency ω_i as:

$$\omega_i(t) = \frac{d\theta}{dt}$$

• Hence, the phase is

$$\theta(t) = \int_{-\infty}^{t} \omega_i(\alpha) d\alpha.$$
Phase modulation

We can transmit the information of $m(t)$ by varying the angle θ of the carrier. In phase modulation (PM) the angle $\theta(t)$ is varied linearly with $m(t)$:

$$\theta(t) = \omega_c t + k_p m(t)$$

where k_p is a constant and ω_c is the carrier frequency. Therefore, the resulting PM wave is

$$\phi_{PM}(t) = A \cos[\omega_c t + k_p m(t)]$$

The instantaneous frequency in this case is given by

$$\omega_i(t) = \frac{d\theta}{dt} = \omega_c + k_p \dot{m}(t)$$
Frequency modulation

In PM the instantaneous frequency ω_i varies linearly with the derivative of $m(t)$. In frequency modulation (FM), ω_i is varied linearly with $m(t)$. Thus

$$\omega_i(t) = \omega_c + k_f m(t).$$

where k_f is a constant. The angle $\theta(t)$ is now

$$\theta(t) = \int_{-\infty}^{t} [\omega_c + k_f m(\alpha)]d\alpha = \omega_c t + k_f \int_{-\infty}^{t} m(\alpha)d\alpha.$$

The resulting FM wave is

$$\phi_{FM}(t) = A \cos \left[\omega_c t + k_f \int_{-\infty}^{t} m(\alpha)d\alpha \right]$$
Sketch FM and PM signals if the modulating signal is the one above (on the left). The constants k_f and k_p are $2\pi \times 10^5$ and 10π, respectively, and the carrier frequency $f_c = 100\, MHz$.
• Instantaneous angular frequency $\omega_i = \omega_c + kf m(t)$

• Instantaneous frequency $f_i = f_c + \frac{kf}{2\pi} m(t) = 10^8 + 10^5 m(t)$

$$
(f_i)_{min} = 10^8 + 10^5[m(t)]_{min} = 99.9\text{MHz}
$$

$$
(f_i)_{max} = 10^8 + 10^5[m(t)]_{max} = 100.1\text{MHz}
$$
PM example

- Instantaneous frequency
 \[f_i = f_c + \frac{k_p}{2\pi} \dot{m}(t) = 10^8 + 5\dot{m}(t) \]

 \[(f_i)_{\text{min}} = 10^8 + 5[\dot{m}(t)]_{\text{min}} = 10^8 - 10^5 = 99.9\text{MHz} \]

 \[(f_i)_{\text{max}} = 10^8 + 5[\dot{m}(t)]_{\text{max}} = 10^8 + 10^5 = 100.1\text{MHz} \]
Power of an Angle-Modulated wave

- General angle modulated waveform

\[\phi(t) = A \cos \theta(t) \]

- Instantaneous phase and frequency vary with the time, but amplitude \(A \) remains constant.

- Thus, the power of angle–modulated waves is always \(\frac{A^2}{2} \).
Conclusions

Examined

- Instantaneous frequency
- PM and FM modulations
- Examples of PM and FM signals