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The effective removal of hybrid and acoustic echo, inherent within the 

telecommunication infrastructure, is the key to improving perceived voice quality 

standard. This project investigates adaptive filters and their use in system 

identification, specifically for the application of echo cancellation. The overall aim is 

to revoke echo on realistic test data exploiting particular algorithms to examine their 

properties and compare their effectiveness.   

 

This thesis includes the implementations of two particular well-known approaches, 

the Normalised Least-Mean-Square (NLMS) and sparse adaptive filter methods such 

as proportionate-NLMS (PNLMS), improved-PNLMS and µ -PNLMS. Simulation 

studies are undertaken and subjective performance measures, including mean squared 

error (MSE), echo return loss enhancement (ERLE) and normalised projection 

misalignment (NPM), are applied to confirm the potential of the methods. Further 

analyses are made to look at their computational complexity and robustness to 

sparsely impulse response.  

 

To improve convergence speed across different sparseness levels, three different 

approaches are proposed, namely Optimum-NLMS, Sparse-controlled-MPNLMS-1 

and Sparse-controlled-MPNLMS-2.    

 

 

Abstract 
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AEC:   Acoustic echo cancellation 

ERLE:  Echo return loss enhancement 

FIR:   Finite impulse response 

IIR:   Infinite impulse response 

IPNLMS:  Improved Proportionate Normalised Least-mean-square 
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PSTN:  Public switched telephone network 

SC-MPNLMS: Sparse Controlled µ - law Proportionate NLMS 

SNR:   Signal-to-noise ratio 

WGN:  White Gaussian noise 
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[ ]T.   Matrix transpose operator 

{.}E   Expectation operator 

2

2| . ||   Squared l2-norm 

n  Sample iteration 

L  Length of adaptive filter 

LT  Length of transmission room impulse responses 

LR  Length of receiving room impulse responses 

sT (n)  Transmission room source 

sR(n)  Receiving room source 

( )y n  Receiving room microphone signal 

ˆ( )y n  Adaptive filter output 

e(n)  a priori error 

w(n)  Uncorrelated measurement noise 

Q(n)  Diagonal tap selection control matrix 

J (n)  Cost function 

( )ih n   i
th
 channel near-end (receiving room) impulse response 

ˆ ( )ih n   i
th
 channel estimated response 

x ( )i n   i
th
 channel tap-input vector 

R    Input autocorrelation matrix 

2x
σ   Variance of zero mean input signal 

δ   Regularization parameter 

µ   Step-size parameter 

ξ   Control parameter for non-stationary unknown impulse response 
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Introduction 
 

 

1.1 Overview 
Digital Signal processing (DSP) is one of the fastest growing fields which can be 

found virtually in almost every engineering and scientific discipline, ranging from 

talking toys and music players to the challenges of next generation telecommunication 

infrastructure including 3G and wireless. Incorporating digital technology into the 

analogue world in which we live has increased the demand of DSP. This integration is 

accelerated by the flexibility and the usability of adaptive systems via digital 

manipulation.  

 

Adaptive filtering has been extensively used in the context of many fields, including 

telecommunication, geophysical signal processing, biomedical signal processing, the 

elimination of radar clutter and sonar processing. In the field of digital 

communications, adaptive filtering approaches are very important and have been 

applied in many applications such as noise cancelling, adaptive beam forming and 

blind equalisation.  

 

A specific application of noise cancelling, which is becoming prevalent in 

telecommunications, is echo cancellation. Several adaptive filtering algorithms have 

been proposed and investigated to overcome the echo problems in hands-free mobile 

and communication networks. For digital voice communications, such as distance 

learning education via video-conferencing, not only is accurate data transmission 

essential, superior audio quality in these multimedia functions is also required.  

 

Therefore, in order to let users hear excellent sound performance and ensure call 

clarity, there is a great need to initially remove echoes. 

CHAPTER 1 
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1.2 Project Objectives 
The aim of this project is to gain greater understanding into adaptive filters and their 

use in system identification, particularly for the application of echo cancellation. The 

overall aspire is to cancel echo on pragmatic test data employing particular algorithms 

to examine their properties and compare their effectiveness using simulations.  

However, the specific scope of this project is to implement and test using, two 

particular well-known approaches, the Normalised Least-Mean-Square (NLMS) and 

Sparse adaptive filter methods in order to inspect their computational complexity and 

speed of convergence to a stable error difference state within the MATLAB 

environment. 

 

This study finally seeks to present three different novel adaptive algorithms for 

acoustic echo cancellation. 

 

1.3 Thesis Organisation 
 

The six chapters of this thesis are organised as follows: 

 

Chapter 2 explains the different types of echo exists in telephony technology and 

describes the well known technologies that have been attempted up to the current 

generation.  

 

Chapter 3 gives a detailed theoretical analysis of adaptive filtering. In addition Wiener 

filter is presented, establishing the optimum linear filter that can be sought in 

stationary environments. The concept of mean-square error surface is then discussed 

to analyse adaptive filters. It further introduces the classical steepest descent 

algorithm and finally a brief preamble of the four basic classes of adaptive filtering 

applications. 

 

Chapter 4 reviews the main existing stochastic gradient based algorithms for sparse 

impulse responses. Different subjective performance measures are defined in order to 

compare each algorithm’s accuracy in predicting the unknown system and 

convergence speed. Computational complexities of those algorithms are considered 

for efficient implementation. Series of experiments are carried out to identify their 
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performances within and across all the algorithms, by defining a realistic test data for 

single channel stereophonic AEC.  

 

Chapter 5 proposes three different novel algorithms, which robust to sparse impulse 

response. The additional Computational complexity for each of them is reviewed and 

ultimately their performances are compared against the published algorithms.    

 

Chapter 6 concludes remarks and recommends possible future work. 

 

Appendix includes MATLAB codes for all the developed algorithms and for their 

experiments. It also includes a possible way to generate coloured signal in order to 

test the algorithms. 
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Echo Cancellation 
 

2.1 Introduction 
Wireless phones are increasingly being regarded as essential communications tools 

due to their flexibility. As the use for the in-car hands free telephony has gained much 

popularity in recent years due to the rise in safety concerns and the need for supplying 

services to a user by an automated service delivery system, digital wireless 

subscribers are becoming ever more critical of the voice quality they receive from 

network providers. One factor that affects the voice quality across a wireless network 

is echo.  

 

In telephone conversation, an echo is said to occur if the speaker hears repetition of 

his sound through the earpiece of his handset. This delayed replica is only noticeable 

if the amplitude of the echo is high or the time delay between the speech and the echo 

exceeds 35ms [1].  The study carried out at Bell laboratories found that echoes above 

250ms can make it impossible to have natural conversation. 

 

This chapter briefly discusses the different types of echoes that arise in the telephone 

communication, in order to describe the nature of the problem. The study also extends 

to the techniques that have been employed in the history to remove echoes from the 

channel.   

 

2.2 Types of Echo 
Acoustic echo is a type of echo which is produced by poor voice coupling between 

the earpiece and microphone in handsets and hands-free devices. 

  

CHAPTER 2 
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Figure 2.1: Illustration of acoustic echo 

 

As shown in figure 2.1, sound signal, x(n), from a loudspeaker is heard by a listener, 

as intended. However, this same sound also is picked up by the microphone, both 

directly and indirectly, after bouncing off the wall. The result of this reflection is the 

creation of echo which is transmitted back to the far end and is heard by the talker as 

echo. 

 

Hybrid echo is the other type of echo generated in the public-switched telephone 

network (PSTN) due to the impedance mismatch in the hybrid transformers. As 

illustrated in figure 2.2, when voice signals pass from the four-wire to the two-wire 

portion of the network, the energy in the four-wire section is reflected back to the 

speaker and create the echoed speech. 
 

 

 

 

 

 

 

 

 

Figure 2.2: Illustration of hybrid echo 

Due to the extent of those subjects, this project concerns only the acoustic echoes.  
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2.3 Technologies in Echo Cancellation [3] 
Subscribers use speech quality as the benchmark for assessing the overall quality of a 

network. In the case of automated service delivery system, echoes can seriously 

degrade the performance of such systems. For this reason, the effective removal of 

echo inherent within the digital cellular infrastructure is the key to maintaining and 

improving perceived voice quality on a call.  

 

In late 1950s, the emergence of echo suppression device facilitated the elimination of 

echoes generated in satellite communication. They were voice-activated switches that 

transmitted a voice path and then turned off to block any echo signal. The main issue 

with these gadgets is that they eliminated double-talk capabilities (parties at both ends 

can’t speak simultaneously).  

 

Nowadays, adaptive echo cancellers are used mostly in hands-free telephones where a 

loudspeaker and a microphone can be placed at a significant distance from each other. 

This approach utilized high-speed digital signal-processing (DSP) techniques to 

model and subtracts the echo from the return path and therefore, outperformed the 

suppression-based technique. 

 

2.4 Acoustic Impulse Response 
When a sound is generated in a room, the listener will first hear the sound via the 

direct path from the source. Shortly after, the listener will hear the reflections of the 

sound off the walls which will be attenuated, as shown in figure 2.3.  

 

 

 

 

 

 

 

 

 

Figure 2.3: A visual example of how sound propagates through a room 
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Each reflection will then in turn be further delayed and attenuated as the sound is 

reflected again and again off the walls. Further examination of the impulse response 

of a room yields the observation that the sound decays at an exponential rate [3]. 

Therefore, the impulse response of the room shown above may be similar to figure 

2.4.  
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Figure 2.4: Impulse response of the room shown in figure 2.3 

 

The echoes effects can be reduced by having absorbers around the wall. In the case, 

the impulse response has less active coefficients, as depicted in figure 2.5. The latter 

impulse response is said to be more sparse system than the former, due to the majority 

of its filter taps are inactive. 
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Figure 2.5: Sparse impulse response of the room in the presence of echo absorbers. 
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2.4 The Adaptive Echo Cancellation Process 
Figure 2.6 shows an acoustic echo canceller set-up by employing an adaptive filter. 

 

Figure 2.6: Single channel echo cancellation [2] 

 

In this report, [ ]
T
 denotes matrix transpose and E[ ] signifies mathematical 

expectation operator. Scalars are also indicated in plain lowercase, vectors in bold 

lowercase and matrices in bold uppercase. 

 

Notations and definitions: 

( )ng  = impulse response of transmission room 

         = T

t0 1 1[ ( ) ( ) ... ( )]Lg n g n g n−  where Lt is the length of ( )ng  

( )nh  = impulse response of receiving room 

         = T

r0 1 1
[ ( ) ( ) ... ( )]

L
h n h n h n−   where Lr is the length of ( )nh  

ˆ ( )nh  = impulse response of the adaptive filter 

         = T

0 1 1
ˆ ˆ ˆ[ ( ) ( ) ... ( )]

L
h n h n h n−    where L is the length of ˆ ( )nh  

  ( ) nx = input signal to the adaptive filter and the receiving room system 

          = T[ ( ) ( -1) ... ( -L+1)]x n x n x n  

sT (n) = transmission room source signal  

 sR (n) = receiving room source signal 

 w (n) = noise signal in receiving room 



 
Pradeep Loganathan     17 

The receiver attached in the transmission room (right hand side in figure 2.3) picks up 

the a time varying signal x(n) from a speech source sT(n) (far-end speaker) via 

impulse response of the transmission room g(n). The input signal x(n) is then 

transmitted to the loudspeaker in the near-end receiving room. The receiving room's 

microphone receives the desired signal y(n) which is the convoluted sum of the input 

signal and the impulse response of the receiving room h(n) along with near-end 

speech signal and some additive noise. Therefore, 

 

T

R( ) = ( ) ( ) + ( ) + s ( )y n n n w n nh x                                   (2.1) 

 

In absence of echo canceller, the received signal y(n) will be transmitted back to the 

origin with some delay. In the presence of an adaptive echo canceller, its objective is 

to estimate h(n) by taking into account the error signal e(n) at each iteration, where 

the e(n) is defined as 

 

T T

R

Output from the receiving room system Output from the adaptive filter( ) =  -  

ˆ= ( ) - ( )

ˆ= [ ( ) - ( )] ( ) +  ( ) + s ( )

e n

y n y n

n n n w n nh h x

  (2.2) 

 

In order to simplify the mathematical derivations of algorithms without loss of 

generality the following assumptions are made throughout this project: 

 

• The length of h (n), Lr is same as the length of ĥ (n), L. In a reality, the length 

of the adaptive filter is less than the receiving room impulse responses. This 

is due to the fact that the computational complexity of an adaptive algorithm 

increases monotonically with the length of the adaptive filter. Therefore, L 

must be long enough to achieve a low system mismatch and computational 

complexity. 

• There is no noise signal in the receiving room, w (n) = 0 

• There is no source signal in the receiving room, sR (n) = 0, i.e., no double-

talk is present. 

• A transversal finite impulse response (FIR) filter configuration is used, as 

shown in figure 2.7, due to its stability characteristics.  
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Figure 2.7: Adaptive transversal FIR filter 

 

For effective echo cancellation, e(n) must be significantly smaller in each iteration, as 

the filter coefficients converges to the unknown true impulse response h(n). Several 

adaptive algorithms are available for the weighs update and they generally exchange 

increased complexity for improved performance. 

 

2.5 Summary 
Echo cancellers can be potentially employed in telecommunication systems so that the 

undesired echoes, both acoustic and hybrid, can be diminished. The formation of 

single channel acoustic echo canceller has been looked at in some detail, where the 

functioning of the adaptive filter has been studied as a black box. The next chapter 

explains the theory behind the updates process of filter coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 1)x n L− +( 1)x n −( )x n

( )y n

( )e n

ˆ( )y n
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Fundamentals of Adaptive Filtering 
 

3.1 Introduction 
This chapter includes a review of the concepts that are directly relevant to adaptive 

filtering, in order to find the true impulse response of the receiving room. It starts by 

studying Wiener filters, the way to get the optimum solution, and then addressed the 

potential issues involved in the process. The Steepest decent algorithm, the recursive 

way to reach a sub-optimum solution is also studied by having knowledge in tracing 

their performance. Finally, the four classes of adaptive filters are discussed using 

block diagrams. 

  

3.2 Wiener Filters [5] 
Filters are normally designed using frequency domain concepts, but Wiener filters are 

developed using time-domain concepts, by realising the simplified system as shown in 

figure 3.1. 

 

 

 

 

 

Figure 3.1: Linear conceptual system for system estimation 

 

The quality of filter estimation is a function of the error signal, as shown by (2.2), 

which is the difference between the true system and the estimated system. This 

function can be considered as a cost incurred when the estimation is incorrect. 

CHAPTER 3 

( )x n ( )e n

ˆ( )y n

( )y n

( )nh

ˆ ( )nh
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Therefore, a best choice for cost function is the mean-square error (MSE), since it is 

always positive and non-decreasing with acquired error. 

2( ) { ( )}n E e n=J                                                         (3.1) 

 

Thus the optimum filter is defined as the filter of the set of all possible linear filters 

which minimises the MSE. Assuming that e
2
(n), x(n) and y(n) are statistically 

stationary, the definition of the e(n) can be substituted into (3.1) to yield an expression 

for the MSE cost function 

2

T T

2 T T T T

2 T T T T

( ) { ( )}

ˆ ˆ{[ ( ) ( )][ ( ) ( )]}

ˆ ˆ{[ ( ) ( ) ( )][ ( ) ( ) ( )]}

ˆ ˆ ˆ ˆ{ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

ˆ ˆ ˆ{ ( )} { ( ) ( ) ( )} { ( ) ( ) ( )} { ( ) ( ) (

n E e n

E y n y n y n y n

E y n n n y n n n

E y n y n n n y n n n n n n n

E y n E y n n n E y n n n E n n

=

= − −

= − −

= − − +

= − − +

h x x h

h x x h h x x h

h x x h h x x

J

ˆ) ( )}n nh

 

 

Since the ˆ ( )nh is not a random variable as the filter weights are not adjusted in this 

discussion, the cost function can be written as: 

2 T T T T

2 T T

ˆ ˆ ˆ ˆ( ) { ( )} { ( ) ( )} { ( ) ( )} { ( ) ( )}

ˆ ˆ ˆ{ ( )} 2

n E y n E y n n E y n n E n n

E y n

= − − +

= − +

h x x h h x x h

p h h Rh

J
              (3.2) 

 

where p is the L-by-1 cross-correlation vector between the input signal and the 

desired signal defined as follows: 

( ) ( )

( ) ( 1)
{ ( ) ( )}

( ) ( 1)

y n x n

y n x n
E y n n E

y n x n L

 
 − = =
 
 

− + 

p x
⋮

 

 

and R is the L-by-L auto-correlation matrix of the tap inputs in the transversal filter 

and can be defined as: 

T

( ) ( ) ( ) ( 1) ( ) ( 1)

( 1) ( ) ( 1) ( 1) ( 1) ( 1)
{ ( ) ( )}

( 1) ( ) ( 1) ( 1) ( 1) ( 1)

x n x n x n x n x n x n L

x n x n x n x n x n x n L
E n n E

x n L x n x n L x n x n L x n L

− − + 
 − − − − − + = =
 
 

− + − + − − + − + 

R x x

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯
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Thus, for the FIR filter the MSE cost function has a quadratic form in the impulse 

response vector ˆ ( )nh and the minimum can be obtained by setting the partial 

derivatives ofJ , with respect to each tap coefficient, to zero, as below. 

0 1 1

T

ˆ ˆ ˆ ˆ

ˆ2 2

0

Lh h h −

 ∂ ∂ ∂ ∂
∇ = =  

∂ ∂ ∂ ∂  

= −

=

h

Rh p

⋯
J J J J

J

                              (3.3) 

 

The optimum impulse response ˆ opth which minimises the MSE is thus the solution to 

a set of L simultaneous linear equation.  

ˆ
opt =Rh p                                                            (3.4) 

 

If the power spectral density of the input signal ( ) nx has non-zero frequencies, the R 

matrix is positive definite and hence is non-singular [4]. Therefore, inverse of R exists 

and the unique optimum impulse response is given by 

1ˆ
opt

−=h R p                                                          (3.5) 

 

The filter defined by (3.5) is the Wiener FIR filter or Levinson filter 

 

This method provides minimum MSE and therefore helps to estimate the unknown 

room impulse response more accurately. However, this approach is not appropriate in 

dealing with nonstationarity signals like speech signals and spectral characteristics or 

autocorrelation and cross-correlation are unknown. In such situations “estimate and 

plug” approach can be used, whereby the filter first estimates the statistical 

parameters and then exploits the results for computing the filter coefficients. But, this 

procedure is not favourable in real-time operation because of requiring complex and 

costly hardware arrangement. Instead, adaptive approach can be applied on the 

Wiener equation to obtain solution close to optimum.   
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3.3 Mean-Square Error Surface 

It can be seen from (3.2) that if the tap inputs of the transversal filter, ĥ , and the 

desired response are jointly stationary, the mean square error is a quadratic function of 

ĥ . For a given fixed ĥ , the MSE can be expressed as [5]  

2 T Tˆ ˆ ˆ2yσ= − +p h h RhJ                                           (3.6) 

 

where 2

yσ  is the variance of the desired signal, y(n), assuming it has zero-mean. It 

forms a (L+1) dimensional hyperparaboloid surface and has only positive values (i.e. 

convex surface). Figure 3.2 shows the parabolic surface by using only two weights for 

ĥ , for a numerical example. 
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Figure 3.2: Error performance surface of the two tap transversal filter. 

 

The minimum point of the error surface represents the Wiener solution, where the cost 

function shown by (3.6) attains its minimum value. At this point the minimum MSE 

value can be evaluated by substituting the optimum value from (3.5) into (3.6) as 

follows: 

2 T T

min

2 T T

2 T 1 T 1

2 T 1

ˆ ˆ ˆ2

ˆ ˆ ˆ2

2

y opt opt opt

y opt opt opt

y

y

σ

σ

σ

σ

− −

−

= − +

= − +

= − +

= −

p h h Rh

p h h Rh

p R p p R p

p R p

J
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The intersection of a plane parallel to the ĥ  plane consists of an ellipse representing 

equal MSE contours as depicted in figure 3.3. The minJ  defines the centre of those 

contours. 
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Figure 3.3: Contour plot of the error performance surface shown in figure 3.2 

 

3.4 Steepest-Descent Method 
The Wiener equation, (3.5), can be solved using Gaussian elimination, but the 

computation needs to be done every time the statistics of the input signal changes. 

Therefore, the engaged computational complexity makes it impossible in the real 

applications. The method of steepest decent is an efficient gradient type iterative 

technique that has been employed to optimise cost function.   

 

The process starts with a guess for the tap weights, ĥ , and calculates the associated 

MSE value using (3.6). Then the gradient vector, ∇J  which is in the direction of the 

greatest rate of change of the MSE cost function, is calculated using (3.3). Finally, a 

scaled version of the gradient, µ∇J , is subtracted from the guess to form new and 

improved tap weights, as follows. 

 

+1
ˆ ˆh hi i iµ= − ∇J                                            (3.7) 

where ˆ2 2
ˆi i

∂
∇ = = −

∂
Rh p

h
�

J
J                                                                                 (3.8) 
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The step size or the convergence factor, µ , must be a small positive scalar in order to 

give smaller MSE at each iteration until it reaches the minimum. Figure 3.4 is used to 

explain the theory behind for this gradient vector subtraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Explains steepest decent equation, (3.7) 

 

The activity diagram that summarised the procedures involves in the steepest decent 

algorithm can be shown in figure 3.5. 

 

Initialise the filter weights to an arbitrary set 

of values. 

Evaluate the gradient vector of the cost 

function with respect to filter weight.

Update the filter weights by taking a step in 

the opposite direction of the gradient vector

 

Figure 3.5: procedures involve in steepest decent algorithm 

 

According to the quadratic relation between the MSE and the filter coefficient, it is 

guaranteed that the error performance surface always has global minima and 

ĥ

If MSE of the initial guess = ‘a’  

Then gradient at ‘a’ = negative 

Therefore, +1
ˆ ˆh hi i iµ= + ∇J  

⇒ ĥ moves in +ve direction  towards  

the minima. 

If MSE of the initial guess = ‘b’  

Then gradient at ‘b’ = positive 

Therefore, +1
ˆ ˆh hi i iµ= − ∇J  

⇒ ĥ moves in –ve direction towards 

the minima. 



 
Pradeep Loganathan     25 

therefore, eventually reaches the minimum point after some iteration. The step size 

must be lies within the range 

max

1
0 µ

λ
< <                                                          (3.9) 

where maxλ  is the largest eigen-value of the auto-correlation matrix, R. 

 

3.6 Applications of Adaptive Filters 
An adaptive filter is a digital filter that adapts its performance continuously by 

updating the weighting of past iteration for smoothing or forecasting purposes. The 

concept is very popular in most areas, including Control Engineering, military 

applications and communication systems, due to its ability to work in an unknown 

environment.  

  

We looked at system identification class of adaptive filter for the application of 

acoustic echo cancellation, where the system is realised as in figure 3.6. The filter 

finds a linear model, ĥ , that closely match with the unknown system, h . Both  ĥ  and 

h  are driven by same input. The adaptive system is then used the output of the 

unknown system, y(n), as desired response and moved to a better prediction by 

calculating the error, e(n), between its output and the desired response at each 

iteration.  

ĥ( )n

h( )n

( )x n ( )y n

ˆ( )y n
( )e n

 

Figure 3.6: Conceptual adaptive system for identification [5] 

 

Adaptive filters are also used to provide an inverse model that represents the best fit 

to an unknown noisy system. In this class of application, the adaptive system is said to 

be converged when the transfer function of the adaptive system is close to the 

reciprocal of the unknown system’s transfer function. The adaptive filter setup for this 

purpose is illustrated in figure 3.7.     
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Figure 3.7: Conceptual adaptive system for inverse modelling [5] 

 

 

Another application of the adapter filter is for signal enhancement, where the primary 

signal consists of a desired signal ( )x n  that is corrupted by an additive noise 1( )w n . 

The input signal to the adaptive filter 2 ( )w n  is correlated with 1( )w n  but uncorrelated 

with ( )x n . The arrangement shown in figure 3.8 demonstrates this type of application 

and can be found in hearing aids and noise cancellation in hydrophones. 

 

 

 

 

 

Figure 3.8: Conceptual adaptive system for signal enhancement [5] 

 

In signal prediction application, the adaptive filter input consists of a delayed version 

of the desired signal as illustrated in figure 3.9. This filter is able to predict the present 

sample of the input signal using past values of the signal. This type is employed to 

estimate the speech parameters in speech coding prediction. 

 

 

 

 

 

 

Figure 3.9: Conceptual adaptive system for signal prediction [5] 

 

 

( )x n ˆ( )y n

( )y n

( )e n

1( ) ( )x n w n+

ˆ( )y n
2 ( )w n

( )x n
ˆ( )y n

( )e n

( )y n
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3.7 Summary 
Wiener filters can be employed to find the optimal filter which is, when applied to the 

input signal produces a signal that is close to the desired signal. But, this approach 

requires knowledge of certain statistical information of the input signal and needs to 

perform heavy computation each time the statistics changes. The well-known 

recursive optimization technique, steepest descent, can be applied to the Wiener filter, 

and eventually converge to the optimum solution from an arbitrary starting point on 

the error performance surface. It provides improved solution by progressing towards 

the minimum point on the error performance surface as the number of iterations 

increases.  

 

To be complete, the four types of adaptive filtering types have been looked with aid of 

their conceptual model diagrams. 
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Review of existing adaptive algorithms 
 

4.1 Introduction 
The method of steepest descent avoids the direct matrix inversion inherent in the 

Wiener equation, (3.5), explicit knowledge of the statistics of the input signal, is still 

required, according to (3.8). 

 

This chapter starts by studying the most common approach to adaptive filtering, the 

stochastic gradient based algorithms. Several modifications to this algorithm, are 

made in order to cope with practical constraints, and are discussed in later sections. 

Since a wide variety of algorithms are available in the literature, this chapter defines 

and analyses their performances using simulation results of three different subjective 

measures and computational requirements.       

 

4.2 Stochastic Gradient Based Algorithms 
Stochastic gradient based algorithms do not provide an exact solution to the problem 

of minimising the MSE as the steepest descent approach, rather approximates the 

solution. However, the requirement for stationary input or knowledge of auto-

correlation matrix, R, and the cross-correlation vector, p, in steepest descent approach 

are circumvented in this algorithm.  

 

This type of algorithms are widely used in various applications of adaptive filtering 

due to its low computational simplicity, proof of convergence in the stationary 

environment, unbiased convergence in the mean to the Wiener solution and stable 

behaviour in the finite-precision arithmetic implementations [6]. 

 

CHAPTER 4 
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4.2.1  Least Mean Square (LMS) [5] 

The weight update equation for LMS replaces the iterative step in the steepest descent 

algorithm with a time recursion and the gradient with an estimate of the gradient, as in 

(4.1).  

ˆ ˆ ˆ( 1) ( ) ( )n n nµ+ = − ∇h h J                                     (4.1) 

 

where the vector ˆ ( )nh  is an estimate of the Wiener filter, ˆ opth , at time n and the 

vector ˆ ( )n∇J  is an estimation of the gradient of MSE cost function at the point 

where the impulse response is  ˆ ( )nh . The exact gradient ( )n∇J  is defined in similar 

manner to (3.8). 

T 2

T

T

( )
( )

ˆ ( )

ˆ{[ ( ) ( ) ( )] }
ˆ ( )

ˆ{2[ ( ) ( ) ( )][ ( )]}

ˆ2 {[ ( )][ ( ) ( ) ( )]}

n
n

n

E y n n n
n

E y n n n n

E n y n n n

∂
∇ =

∂

∂
= −

∂

= − −

= − −

h

h x
h

h x x

x h x

J
J

                            (4.2) 

 

Therefore, the n
th
 time sample estimate of the gradient, ˆ ( )n∇J , is defined by taking 

the ensample average of the (n+1)
th
 time sample of (4.2). 

Tˆ ˆ( ) 2[ ( 1)][ ( 1) ( ) ( 1)]

2 ( 1) ( 1)

n n y n n n

n e n

∇ = − + + − +

= − + +

x h x

x

J
                              (4.3)   

 

Substitution of (4.3) into (4.1) yields 

ˆ ˆ( 1) ( ) 2 ( 1) ( 1)n n n e nµ+ = + + +h h x                                    (4.4) 

 

The resulting gradient based algorithm is known as the least-mean-square algorithm, 

since it seeks to minimise the MSE. The convergence factor, µ , must be chosen in 

the range as defined in (3.9) for the steepest descent case. The realisation of the LMS 

algorithm for a delay line input ( )x n  is illustrated in figure 4.1, where the required 

multiplication and addition operations are shown in detail. 
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Figure 4.1: LMS adaptive FIR filter [6] 

 

4.2.2 Normalised Least Mean Square (NLMS) [5] 

NLMS filter is structurally same as that of LMS, but it differs in the way that the taps 

weights are updated. In the LMS algorithm the weight adjustment is directly 

proportional to the tap input vector, ( )nx , according to (4.4). Therefore, when the 

( )nx vector is large, the LMS suffers from a gradient noise amplification problem. 

 

 To overcome this problem, the adjustment applied to the tap weight vector at each 

iteration is normalised with respect to the squared Euclidean norm of ( )nx [5]. 

2

2 NLMS

( 1) ( 1)ˆ ˆ( 1) ( ) 2
|| ( 1) || δ

n e n
n n

n
µ

+ +
+ = +

+ +
x

h h
x

                              (4.5) 

 

where 2

NLMSδ xσ=  , the variance of the input signal.  

δNLMS is the regularization parameter which prevents  division by zero during 

initialization when   ( )nx = 0. In order to maintain the stability the step size must be in 

the range 

2

2

{| ( 1)| } ( 1)
0 <  < 2

{| ( 1)| }

E n n

E e n
µ

+ +
+

x D
 

X

X

+ 1
z

−

( )x n

( )e nˆ( )y n

( )y n

0
ˆ ( )h n

1
z

−

X

X

+ 1
z

−

1
ˆ ( )h n

1
z

−

1
z

− X
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X
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where 2{| ( )| }E nx  - power of the tap inputs 

 2{| ( )| }E e n - power of the error signal, and 

 ( )nD  -  mean square deviation  

 

4.3 Sparse Algorithms 
A sparse impulse response has most of its components with small or zero magnitude 

and can be found in telephone networks. Due to the presence of bulk delays in the 

path only 8-10% exhibits an active region. Figure 4.2 shows a typical sparse impulse 

response, which can be realised in reality.  
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Figure 4.2: An example of a sparse impulse response exists in telephone networks. 

 

The NLMS algorithm does not take into account this feature when it presents in a 

system and therefore performs inadequately. This is because [7] 

 

• The need to adapt a relatively long filter 

• The unavoidable adaptation  noise occur at the inactive region of the tap 

weights  

 

While in the NLMS, the adaptation step is same for all components of the filter, in the 

sparse algorithms, such as PNLMS, IPNLMS and MPNLMS, adaptive step sizes are 

calculated from the last estimate of the filter coefficients in an efficient way that the 

step size is proportional to the size of the filter coefficients. This is resulted to adjust 

the active coefficients faster than the non-active ones. Therefore, the overall 

convergence time is reduced. 



 
Pradeep Loganathan     32 

4.3.1 Sparseness Measure 

Degree of sparseness can be qualitatively referred as a range of strongly dispersive to 

strongly sparse [7]. Quantitatively, the sparseness of an impulse response can be 

measured by the following sparseness measure [8][9]. 

 

1

2

|| ( )||
( ) = 1

- || ( )||

nL

L L L n
ξ

 
− 

 

h
h

h
                                        (4.6) 

where  
1

1

0

| ( ) || | ( ) |
L

l

l

n h n
−

=

=∑h ,  

1
2

0

2 ( )| ( ) ||
L

l

l

h nn
−

=

= ∑h , and 

L is the length of filter h. The measure takes values between 0 and 1 where the 

lower bound can be obtained by using the uniform filter [1 ...1]
T 
and the upper limit 

can be achieved by using the Dirac filter [1 0 ...0]
T
. 

 

4.3.2 Proportionate-Normalised Least Mean Square (PNLMS) [10][11]: 

In order to track sparse impulse response faster Proportionate NLMS (PNLMS) was 

introduced from the NLMS equation. The coefficient update equation of the PNLMS 

is slightly differ from NLMS with the extra step size update matrix Q as shown below 

and the rest of the terms are carried over from NLMS.  

T

PNLMS

( ) ( 1) ( 1)ˆ ˆ( 1) ( )
( 1) ( ) ( 1)+δ

n n e n
n n

n n n
µ

+ +
+ = +

+ +
Q x

h h
x Q x

                  (4.7) 

where PNLMS NLMSδ δ / L= , and the diagonal matrix 

{ }0 1 -1

0

1

-1

( ) = diag ( ) ( ) ( 1)

( ) 0 0

0 ( )

0

0 0 ( 1)

L

L

n q n q n q n

q n

q n

q n

−

 
 
 =
 
 

− 

Q ⋯

⋯

⋯ ⋮

⋮ ⋮ ⋱

⋯

 

controls the step size. These control matrix elements can be expressed as  

1

0

( )
( )

1
( )

l
l

L

ii

k n
q n

k n
L

−

=

=

∑
                                                     (4.8) 

{ }{ }0 -1
ˆ ˆ ˆ( ) max max ,| h ( ) | ... | h ( ) | , | h ( ) |l L lk n n n nρ γ= × with l = 0, 1... L-1         (4.9) 
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Parameters ρ andγ  have typical values of 5 / L  and 0.01 [7], respectively. The former 

prevents coefficients from stalling when they are much smaller than the largest 

coefficient and the latter prevents ĥ ( )l n from stalling during initialisation stage. 

 

4.3.3 Improved Proportionate Normalised Least Mean Square (IPNLMS) [7] 

An improvement of PNLMS is the IPNLMS algorithm, which employs a combination 

of proportionate (PNLMS) and non-proportionate (NLMS) updating technique, with 

the relative significance of each controlled by a factorα . (4.9) is updated as follows 

for the IPNLMS approach.  

1

| ( ) |1
( ) (1 )

2 2 | ( ) ||

l
l

h n
k n

L n

α
α

−
= + +

+∈h
                                  (4.10) 

where ∈  is a small positive number. Results from [7] shows that the good choice for 

α  are 0, -0.5 and -0.75. The regularisation parameter should be taken as follows, in 

order to achieve the same steady state misalignment compare to that of NLMS using 

same step size. 

IPNLMS NLMS

1
δ δ

2L

α−
=                                                  (4.11) 

 

(4.10) is made up of the sum of two terms, where the first is a constant and the second 

term is a function of the weight coefficients. It can be noticed that, when α = -1 the 

second term in (4.10) becomes zero and therefore the k becomes 1/L. It means that the 

same update will be made to all filter coefficients regardless of their individual 

magnitudes. So, for this α  value IPNLMS performs as NLMS. For α  close to unity, 

the second term dominates the equation and as a result it behaves as PNLMS.  

 

4.3.4 µ - Proportionate Normalised Least Mean Square (MPNLMS) [12] 

The MPNLMS algorithm calculates the optimal proportionate step size in order to 

achieve the fastest convergence during the whole adaptation process until the adaptive 

filter reaches its steady state. The definition for kl(n) of MPNLMS is differed as 

follows from that of  previous proportionate algorithms.  
 

{ }{ }0 -1
ˆ ˆ ˆ( ) max max ,F(|h ( ) |)...F(| h ( ) |) ,F( | h ( ) |)l L lk n n n nρ γ= ×             (4.12) 
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where 
ˆln(1 | h ( ) |)ˆF( | h ( ) |)

ln(1 )

l
l

n
n

µ
µ

+
=

+
,                                                                    (4.13) 

ˆ| h ( ) | 1,l n ≤  and  1µ ε=   

 

The constant 1 inside the logarithm is to avoid obtaining negative infinity at the initial 

stage when ˆ| h ( ) | 0l n =  . The denominator ln(1 )µ+ normalizes ˆF( | h ( ) |)l n  to be in the 

range [0, 1]. The vicinity ε  is a very small positive number, and its value should be 

chosen based on the noise level. ε  = 0.001 is a good choice for echo cancellation, as 

the echo below -60 dB is negligible. 

 

4.4 Performance Measures 
The choice of one algorithm over the wide variety of others needs to be addressed to 

differentiate it from the rest, so that one can pick a right algorithm for his particular 

application. The following three measures deal with different concepts in applications 

akin to echo cancellation. 

 

 

4.4.1 Mean Square Error (MSE) 

MSE is one of the ways to define an objective function that satisfies the optimality 

and non-negativity properties. It is the expected value of the square of the error and 

can be seen from (4.14) that the lower MSE value is favourable.  

 2MSE( ) = { ( )}n E e n                                                (4.14) 

 

4.4.2 Echo Return Lossless Enhancement (ERLE) 

It measures the attenuation of the echo signals in an Acoustic Echo Cancellation 

system. It can be witnessed from (4.15) that a higher ERLE corresponds to higher 

reduction in echo. 

2

10 2

( )
ERLE( ) = 10 log dB

( )

y n
n

e n
×                                       (4.15) 

 

4.4.3 Normalised Projection Misalignment (NPM) [13] 

The normalized projection misalignment measures the closeness of the estimated 

impulse response ( ˆ ( )nh ) to that of the unknown impulse response ( ( )nh ).   
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It can be expressed as follows:  

T

10 T

ˆ1 ( ) ˆNPM( ) 20 log || ( ) || dB
ˆ ˆ|| || ( ) ( )

n
n n

n n

 
= × − 

 

h h
h h

h h h
 

 

where the denominator is defined as the squared l2-norm operator. To achieve a good 

performance, the misalignment must be close to zero, which is the case when the 

length of unknown filter (LR) is close to that of adaptive filter (L). It is interesting to 

note that when the filter has only one tap the term inside the logarithm becomes zero 

and therefore yields negative infinity for NPM.     

 

4.5 Computational Complexity 
It is also necessary to examine the computational complexity of an algorithm. 

Although many factors contribute to the complexity of an algorithm, the relative 

complexity of the four algorithms in terms of the total number of additions, 

multiplications, divisions and logarithms per iteration is assessed from figure 4.3 to 

4.6, along with their MATLAB implementation code on the left. 

 

The followings should be noted: 

• The comparison between two numbers takes one subtraction. In this content, 

subtraction is counted as addition.  

• The computation of the norm2 2

2| ( ) ||nh  requires two multiplications and one 

addition using the following recursive method. 

 

2 2 2

2 2( ) || ( 1) || (1 ) ( )n n x nλ= − + −h h  where λ is the forgetting factor [2] 

 

 
 

Figure 4.3: MATLAB implementation code of NLMS and related computations 
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Figure 4.4: MATLAB implementation code of PNLMS and related computations 

 

 

 

 

 

Figure 4.5: MATLAB implementation code of IPNLMS and related computations 

 

 

 

 

 

 

Figure 4.6: MATLAB implementation code of MPNLMS and related computations 
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The following table summarised the computational operations for the all four 

algorithms. It can be noticed that the overall computational complexity is increased or 

stayed same when the improvement is made. To compensate this issue their 

performances must be significantly higher.  

 

  NLMS PNLMS IPNLMS MPNLMS 

Addition L+4 4L +3 4L +7 5L +3 

Multiplication 2L +3 6L+3 5L +5 7L +3 

Division 1 L+2 L+2 L+3 

Logarithm 0 0 0 L 
 

Table 4.1: Computational complexities of the four algorithms. 

 

 4.6 Simulation Results 
Individual results for the four algorithms that described in sections 4.2.2 and 4.3 in an 

echo cancellation experiment are presented and discussed in this section using two 

different types of input signals and 4 different levels of sparse measures. All of the 

simulations are performed using synthetic data via MATLAB and the 

implementations codes can be found in appendix. 

 

4.6.1 Experiment Setup 

Figure 4.7 shows the signals necessary for this experiment. In order to obtain more 

accurate results, compared to the practical situation, the input signals are chosen 

realistically as follows.     

 

Figure 4.7: Illustrates the required signals for the echo cancellation experiment 

 



 
Pradeep Loganathan     38 

The source signal, x(n), is generated using the randn command with the vector size of 

sL where sL = (sampling frequency * simulation time). 8 kHz is chosen as the 

sampling frequency and 2.5 seconds is for the simulation time.  

 

The receiving room impulse response, h(n), is generated synthetically using the 

method proposed in [10], so that the sparseness can be controlled easily. The method 

starts by defining vector u  

T1/ 2/ ( 1)/
1 1[ 1 ]u

p

L
L L e e eψ ψ ψ− − − −
× ×=u 0 ⋯  

 

 where the leading zeros with length pL  models the length of the bulk delay and 

u pLL L= − is the length of the decaying window which can be controlled by ψ . 

Smaller the ψ value yields more sparse system. The synthetic impulse response can 

then be expressed as 

( )
p p p u

u p u p

L L L L

L L L L

n
× ×

× ×

 
 
  

+=
0 0

u p
0 B

h  

 

where diag{ },
u pL L× = bB  and vector b and p are zero-mean white Gaussian noise 

vectors with length uL  and L , respectively. p  is used to model the merging inactive 

regions in the pulse response. Figure 4.9 shows two impulse responses that can be 

attained using this approach, by setting the impulse length L =256, the bulk delay 

length pL =30 and ψ  to infinity (non-sparse) and 8 (sparse). 

 

Figure 4.9: Non-sparse (left) and Sparse (right) impulse responses using ψ = infinity 

and ψ =8, respectively. 
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The input source signal, x(n), is filtered through the in-built FIR filter (i.e. filter 

command with denominator coefficients set to 1) using the generated impulse 

response, h(n) (numerator coefficients). A white Gaussian noise signal, w(n), with 30 

dB SNR (signal-to-noise ratio) is added to the filtered signal to generate the output 

signal, y(n).  

 

The source signal, x(n), is now fed as the input signal to the adaptive filter, whereas 

the y(n) is used as the desired signal. There is a trade-off in choosing the optimum 

step size, as higher the value results to converge quicker, but may be far more apart 

(mis-adjustment) from the Wiener optimum solution.  

 

In most of the analysis the convergence speed is measured using the time to reach the 

-20 dB level of the NPM. Previous studies in the concept of echo cancellation have 

proved that at the -20 dB of NPM level echo canceller gives satisfactory performance. 

In order to simplify calculations, adaptive filter with 256 taps is used throughout the 

project, even though 1024 taps are typically required [7]. 

 

A series of experiments are carried for the four algorithms, namely NLMS, PNLMS, 

IPNLMS and MPNLMS, separately, in order to understand their theories. And in each 

experiment the adaptive process is repeated 10 times to obtain the ensample average 

of the error and the NPM values. These values are then averaged over 100 blocks to 

get smooth graphs. Simulation results are presented under each algorithm and their 

strengths and weaknesses are identified.  

 

The step size parameter for the adaptive process is chosen in such a way that all the 

algorithms achieve same steady state for the NPM measure. This is achieved by 

setting a sensible step size for NLMS and then step size for others are obtained by 

attaining the same steady state as NLMS.    
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Experiment 1: Trade-off in choosing the step size 

The simulations start to study the trade-off in choosing the best step size for its 

adaptive process. Figure 4.10 shows the plot of the NPM value of NLMS algorithm 

against different step sizes, when the filter coefficients are initialised to zeros. 

Different step sizes can be chosen randomly, but by theory it must be in the range 

between 0 and 1.  
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Figure 4.10: plot of NPM value vs. different step sizes, for non-sparse system. 

 

It can be seen from figure 4.10 that the smaller step size, for example 0.2, exploits 

better performance in converging to the true system, about -33 dB for this example. 

But it takes longer to reach the -20 dB point, about 8000 iterations as in this case. 

While for 0.8, the steady state is achieved at -25 dB and it intersects the -20 dB line in 

about 2000 iterations.   

 

Out of these four values, 0.4 is a good choice for the step size, since it gives a 

satisfactory performance in the presence of 30 dB SNR level and also by taking into 

account the involved trade-off between mis-adjustment and the convergence speed.  
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Experiment 2: Find step size for all algorithms to achieve same NPM steady state. 

This experiment is carried out by setting 0.4 to the step size of NLMS, and tuned the 

others step sizes to achieve the same NPM steady state. It is found that, for a system 

with randomly chosen sparseness level, the steady state is achieved by using 0.4 for 

PNLMS and IPNLMS and 0.3 for MPNLMS. Figure 4.11 shows the steady 

convergence of the algorithms. 
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Figure 4.11: Same NPM steady state convergence of NLMS, PNLMS, IPNLMS and 

MPNLMS algorithms. 

 

 

4.6.2 NLMS Performance 

 

Experiment 3: Performance of NLMS in different sparse systems. 

Further experiment is carried out to find the performance of NLMS in different sparse 

systems. Figure 4.12 shows the MSE, ERLE and NPM results for this experiment, 

where the different sparseness is obtained using ψ = Infinity, ψ = 100, ψ = 40 and 

ψ = 8, respectively. The four different impulse responses are shown in different 

colours on the bottom right hand side of figure 4.12.    
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Figure 4.12: plot of MSE, ERLE and NPM for different sparse systems controlled by 

ψ = Infinity, ψ = 100, ψ = 40 and ψ = 8. 

 

Figure 4.12 shows that the MSEs for the different sparse systems are not same at 

steady state. In the sparse case (black plot) it has less error between the adaptive filter 

output and the desired response. Since the error signal is sent back to the origin, 

sparse response is favourable here, compare to the non-sparse system. Moreover, the 

ERLE and NPM become better as sparseness is increased. This is because, as the 

impulse response becomes sparser (i.e. less active taps), more coefficients are already 

reached their optimum (or close to optimum) values even at the beginning of the 

adaptive process, due to the zero initialisation.  
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Experiment 4: Effect of sparseness on rate of convergence for NLMS  

100 different sparseness measures (ξ ) are obtained (covers about 62% of the 

sparseness range) by adjusting the standard-deviation of the inactive taps. The time 

taken to cut the desired NPM level is plotted against ξ  in figure 4.13. The time taken 

is calculated by dividing the number of iterations to reach the point by the sampling 

frequency. 
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Figure 4.13: plot of Time to reach the -20dB NPM against different sparseness 

measures of 100 systems. 

 

Figure 4.13 proves that there is not a strict linear relationship between the 

convergence speed and sparseness measure. But the stair case shape graph proves that 

within some segments of sparseness measure the convergence speed is exactly same 

and there is a constant drop across these segments. The mathematical analysis from 

[12] says that the convergence speed for NLMS is dependant only on the largest 

distance between the optimum tap weight and its initial value. Within the segments, 

the experimental observation obeys the theory, but not consistently throughout the all 

sparse systems, even though the all time highest tap weight is 1. This experiment 

suggests that the sparseness measure also plays a role in finding the exact 

convergence speed.  
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4.6.3 PNLMS Performance 

 

Experiment 5: Performance of PNLMS in different sparse system 

The experiment 3 procedures are repeated by using the PNLMS algorithm and the 

simulation result is presented in figure 4.14.      
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Figure 4.14: plot of MSE, ERLE and NPM for different sparse systems controlled by 

ψ = Infinity, ψ = 100, ψ = 40 and ψ = 8 

 

MSE, ERLE and NPM develop into better performance as the system gets sparser for 

same reason as in the case of NLMS. In addition, the curves start off steeply and slow 

down dramatically after the initial period, which is hinting its ability to provide fast 

initial convergence. The deviation between the NPM curves gets larger as the system 

changes towards sparse. It is evidenced that the relative performance of PNLMS in 

sparse system is higher and as a result it could be favourable in cancelling echoes in 

sparse situations.     
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4.6.4 IPNLMS Performance 

 

Experiment 6: Performance of IPNLMS in different sparse system 

The controlling factor α is chosen to be -0.5 in this simulation, since it gives better 

performance in both sparse and non-sparse responses, compared to -0.75 and 0. 

Figure 4.15 is obtained by performing the procedures of the experiment 3 for the case 

of IPNLMS algorithm. 
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Figure 4.15: plot of MSE, ERLE and NPM for different sparse systems controlled by 

ψ = Infinity, ψ = 100, ψ = 40 and ψ = 8 

 

It can be seen from figure 4.15 is that more favourable result is obtained for MSE, 

ERLE and NPM as the system gets sparser. The performance in the very sparse 

system, in particular, is very appreciative for IPNLMS, and therefore it can also be 

utilized in sparse systems.  A point to note here is that, further experiments using α = 

-0.75 and α = 0 are carried out and the former gives better performance for non-

sparse system and the latter gives better performance for sparse system.   
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4.6.5 MPNLMS Performance 

 

Experiment 7: Performance of the MPNLMS in different sparse system 

Experiment 3 is repeated for MPNLMS algorithm and the resulting graph is plotted in 

figure 4.16. 
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Figure 4.16: plot of MSE, ERLE and NPM for different sparse systems controlled by 

ψ = Infinity, ψ = 100, ψ = 40 and ψ = 8 

 

In very sparse system the performance of the MPNLMS is very affective, as all three 

performances give the steepest graphs as a result of earliest convergence. However, its 

performance is degraded in non-sparse system, due to the effect of the logarithm in 

the tap weight update equation.  
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4.7 Comparisons and discussions 
 

Effect of sparseness on rate of convergence for NLMS, PNLMS, IPNLMS and 

MPNLMS is studied comparatively by repeating the experiment 4 for all the 

algorithms and the resulting graph is plotted in figure 4.17.  
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Figure 4.17: Plot of Time to reach the -20dB NPM against different sparseness 

measures of 100 systems for NLMS, PNLMS, IPNLMS and MPNLMS. 

 

Figure 4.17 tells that there may be a second order relationship between the 

convergence speed and the sparseness measure. When going from non-sparse to 

sparse the speed of convergence is reduced significantly by following an increasing 

negative gradient type of curve (convex). In non-sparse system (ξ ~0.3), NLMS 

performs the best and PNLMS gives the worst performance. On the other end, 

MPNLMS performs best whereas NLMS performs badly. 

 

For NLMS, constant tap weight is applied to all the taps regardless of their 

magnitudes. In non-sparse system, since the taps are initialised to zeros, in early 

stages its error is high. As a result it step size becomes higher and consequently 
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converges quickly. For the sparse case, since most of the taps are in their optimum, 

the resulting error is smaller. So that it relative convergence speed slows down as the 

step size is reduced. 

 

For PNLMS in non-sparse case, half of its active regions get the Q (refer (4.7) factors 

below 1 and the lower active regions get the Q factors above 1. In sparse systems all 

the active regions get the Q factors much higher than 1, according to (4.8). Therefore, 

its convergence speed gets faster when it slides towards sparse systems (ξ ~0.8). As it 

can be seen from figure 4.17 is that PNLMS is favourable only in sparse systems.    

 

Out of these four algorithms, IPNLMS presents good performance over all sparse 

levels. The reason is simply because it is a combination of the best non-sparse 

algorithm (NLMS) and the second best sparse algorithm (PNLMS). 

 

Performance of MPNLMS stays same up-until the sparse is significantly developed 

(ξ ~0.6). And then it follows steepest convex curve shape. This is resulted from the 

effect of logarithm, when the tap weights get smaller the rate of reduction of their F 

values (refer (4.13)) increase. Therefore, when the system’s impulse response changes 

from non-sparse to sparse, the denominator of (4.8) (i.e. average of F) reduces very 

quickly and as a result the rate of convergence speed increases dramatically.  

 

All these observations are hinting that including the sparseness measure in the weight 

update equation may help to improve their performance throughout all circumstances.   
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4.8 Summary 
 

The process involved in the three different approaches in system identification may be 

summarised using figure 4.18. The Wiener filter reaches the optimum solution in one 

step, whereas the steepest descent and the stochastic gradient methods reach a sub-

optimum solution by taking calculated and estimated steps, respectively.  

Wiener process Stochstic gradientSteepest descent
 

Figure 4.18: Summarised the process of the three well-known approaches in system 

identification using contour plots. 

 

The performances of four stochastic gradient based algorithms, NLMS, PNLMS, 

IPNLMS and MPNLMS, have been looked for a range of different sparse systems, 

separately and comparatively. The results showed that NLMS is better in non-sparse 

system, whereas the MPNLMS is superior for sparse impulse response. Furthermore, 

none of them perform well across all sparseness level.   
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Novel Algorithms for Sparse Systems 
 

5.1 Introduction 
In reality, the impulse response of the receiving room does not follow a same path. 

The path may vary with time due to change in room characteristics, including 

temperature, pressure and movement of talker. Therefore, there is a need for an 

algorithm which can work effectively and robust to sparse impulse response for AEC.  

 

This chapter includes three different novel techniques that can be applied to overcome 

the above challenge. It starts by describing the algorithms and then looks at their 

computational complexity. Finally, experimental results for these algorithms are 

compared with the published algorithms. 

 

5.2 Novel Algorithms 
 

5.2.1 Optimum Normalised Least Mean Square (ONLMS) 

It is well known that the NLMS algorithm obtains very fast convergence for non-

sparse impulse response due to its convergence process being essentially independent 

on the individual tap weights.  On the other hand MPNLMS performs better in sparse 

system by using an optimum technique proposed in [12]. 

   

In order to exploit the advantages of theses main types of adaptive algorithm, a 

switching structure which combines the above two is proposed. This is motivated by 

the switching technique applied in PNLM++. The description of the algorithm follows 

as below. 

CHAPTER 5 
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As showed in [12], the tap adaptation equation of coefficients can be written as  

ˆ ˆ( ) [1 (1 λ) ] opt

nn = − −h h                                                    (5.1) 

where λ = step size  variance of input×   

 

Let  pn  is the convergence time for the p
th
 coefficient to reach the ∈- vicinity of its 

optimal value for a give small positive number∈ . Then, the coefficient convergence 

time for the p
th
 coefficient is calculated as 
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ˆ ˆh [1 (1 λ) ]h  = 
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p

opt p

p
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n

− − − ∈

− ∈

=
∈ −

=
∈ −

= − −
∈

=
∈ −

                                        (5.2) 

 

Since ∈  and λ  are constants, the convergence time is only dependent on its optimal 

magnitude. Therefore the overall convergence time for the NLMS algorithm is 

defined as 

,maxĥ 1
ln / ln

(1 λ)
NLMS

opt
n =

∈ −
                                    (5.3) 

 

For  0 < λ < 1 the denominator can be estimated as 

1
ln ln1 ln(1 λ)

(1 λ)

 0 ( λ) =  λ

= − −
−

≈ − −

 

Now, equation 5.3 is simplified to 

,maxĥ1
ln

λ
NLMS

opt
n ≈

∈
                                                    (5.4) 
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For the proportionate algorithms, a step size control factor pg  needs to be assigning 

to all coefficients in order to get different step sizes to different coefficients. 

Following from equation 5.3, coefficient convergence time for the p
th
 coefficient is 

calculated as 

,maxĥ1
ln

λ

opt

p

p

n
g

≈
∈

                                               (5.5) 

But the overall convergence time in this case is the sum of the individual tap weights. 

So, it can be defined as  

,max

1

ĥ1
ln

λ

L

MPNLMS

opt

p p

n
g=

≈
∈∑                                       (5.6) 

 

But, the step size control vector must satisfy the following condition. 

1

L

p
p

g L
=

=∑                                                           (5.7) 

 

Substituting equation 5.7 into 5.6 yields: 

,max

1

ĥ1
ln

λ

L

MPNLMS

opt

p

n
L =

≈
∈∑                                              (5.8) 

 

Since, NLMS performs better than MPNLMS in non-sparse system, it follows that 

,max ,max

1

,max ,max

1

ˆ ˆh h1 1
ln ln

λ λ

ˆ ˆh h1
ln ln

L

L

NLMS MPNLMS

opt opt

p

opt opt

p

n n

L

L

=

=

<

<
∈ ∈

<
∈ ∈

∑

∑

                                             (5.9) 

 

By testing the above condition at each iteration, the algorithm switches to NLMS 

adaptive process if it satisfies the condition, otherwise employs MPNLMS technique. 

In reality, since the optimum tap weights are not available, the switching condition 

must be adapted as follows 

,max ,max

1

ˆ ˆh h1
constant ln ln

L
opt opt

pL =

× <
∈ ∈∑                                     (5.10) 
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Let the left hand side of equation 5.10 be ‘a’ and the right hand side be ‘b’, then the 

operation of the ONLMS can therefore be summarised as in figure 5.1. 

 

 

Figure 5.1: The flow chart of the ONLMS algorithm 

 

5.2.2 Sparse-controlled MPNLMS 1 (SC-MPNLMS-1) 

The experimental studies from section 4.6 tell that for efficient convergence speed the 

sparseness measure needs to be added in the weight update equation. In non-sparse 

system, the denominator of the ( )lq n  factor (in equation 4.8) for MPNLMS becomes 

higher and therefore gives less emphasise for the ( )lq n . As a result it convergence 

slows down for the non-sparse system.  

 

In order to study this issue further, an experiment is carried out to see any relation 

between sparseness measure and the denominator of the ( )lq n . The table 5.1 

summarised the results.  

sparseness 
measure (ξ ) 

denominator of 
the ( )lq n  

0.9272 0.1978 

0.8423 0.2244 

0.6949 0.3124 

0.49 0.4877 

0.4241 0.5311 

0.3787 0.5594 

0.2618 0.6516 

0.2173 0.7341 

Table 5.1: Summarised the results of denominator of the MPNLMS’s ( )lq n  vector for 

different sparseness measure.  
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As it can be seen from table 5.1 is that the sparseness is inversely proportional to the 

denominator of the ( )lq n  vector. The top three sparse measures (ξ ) in the table result 

better performance for MPNLMS and the remaining ones (shaded in table) give worse 

performance than that of the NLMS. Therefore, in order to balance the effect of the 

denominator, the following modification is made to the ( )lq n  

( )
( )

max( ( ), )

l
l

l

k n
q n

k n ξ
=                                             (5.11) 

  

This modification allows to set ( )lq n  to 1 for the tap weights meeting the following 

condition 

( )lk n ξ>                                                         (5.12) 

 

In the non-sparse system above condition may be true for all the tap weights and as a 

result the above modification allows behaving as a NLMS algorithm. On the other 

hand, for sparse case the ( )lq n  denominator chooses the sparseness measure except 

for the few active taps with high magnitudes. 

 

5.2.3 Sparse-controlled MPNLMS 2 (SC-MPNLMS-2) 

A different technique can be followed by employing the SC-IPNLMS approach [10] to 

the MPNLMS. It is also taking into account the sparseness of an impulse response. As 

MPNLMS performs badly in sparse systems, the proposed SC-MPNLMS-2 algorithm 

improves the performance of MPNLMS by emphasising the proportionate term if the 

impulse response is significantly non-sparse. The computation of the ( )lq n can be 

expressed as  

1

0

ˆ ( )[1 0.5 ( )] ˆ( ) [1 0.5 ( )]
( )

l
l L

ii

k nn
q n n

L k n

ξ
ξ −

=

−
= + +

∑
                        (5.13) 

 

For relatively less sparse impulse responses, the SC-MPNLMS-2 allocates a higher 

weighting to the first term. In order to avoid the dividing by zero or a small number in 

the computation of sparseness measure at the early stages of the adaptive process, this 

adapting process can be employed for n L≥ . For n L< the elements of the ( )lq n is 

computed using the actual MPNLMS equation. 
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5.3 Computational Complexity 
Achieving slightly better performance by carrying out heavier computations is not 

acceptable in this context. Additional computations need to be done on top of the 

MPNLMS computations is analysed below the three novel algorithms. 

 

5.3.1 Optimum Normalised Least Mean Square (ONLMS) 

Computation for the testing condition is needs to be done in addition to the MPNLMS 

computation. Even though the right hand side of the equation 5.10 involves 

logarithmic calculation for L times, this data is readily available from the computation 

of the F factor, as in the equation 4.13. Therefore, an addition of some more memory 

is required to save the value. However, the extra computation to calculate the left 

hand side of the equation and then comparison can not be avoidable. Whenever it 

switches to perform NLMS adaptation process its computation is reduced compare to 

performing MPNLMS all time.   

 

 5.3.2 Sparse-controlled MPNLMS 1 (SC-MPNLMS-1) 

 The additional complexity arises from the computation of the sparseness measure and 

comparison function. Given that   /( - )L L L  can be computed off line, remaining 

norm1 and norm2 functions are needed to compute, which will take additional 2L 

additions.  

 

5.3.3 Sparse-controlled MPNLMS 2 (SC-MPNLMS-2) 

On top of the MPNLMS computation, the sparseness measure computation needs to 

be done as stated in the SC-MPNLMS-1 process. Other than that L+2 multiplications 

2 additions and one division is required to calculate the weighting vector, according to 

equation 5.13. 
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5.4 Comparisons and Discussions 
The NLMS, PNLMS, IPNLMS, MPNLMS, SC-MPNLMS-1 and SC-MPNLMS-2 

algorithms are analysed experimentally in this section. 

  

The step size for the both SC-MPNLMS are adjusted in order to achieve the same 

steady state NPM as that for NLMS, PNLMS, IPNLMS and MPNLMS. These 

correspond to SC-MPNLMS-1 SC-MPNLMS-2 0.4µ µ= = . Figure 5.2 shows convergence result 

for all these published and novel algorithms. 
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Figure 5.2: Plot of Time to reach the -20dB NPM against different sparseness 

measures of 100 systems for NLMS, PNLMS, IPNLMS, MPNLMS, SC-MPNLMS-1 

and SC_MPNLMS-2. 

 

SC-MPNLMS-1 performs almost similar to MPNLMS in sparse system and gives 

acceptable performance close NLMS and IPNLMS in sparse system. This is because 

in non-sparse system all (or most) of the ( )lk n  are greater thanξ , therefore ( )lq n =1 

as in the case of NLMS.  
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SC-MPNLMS-2 gives an overall best performance throughout all values ofξ . It 

achieves this desired result by taking into account theξ , which was a forgotten factor 

in the main existing algorithms. 

 

5.5 Summary 

It has been shown that attaching the sparseness measure (ξ ) into the tap update 

equation can exhibit promising performance in all ξ  level for AEC, in terms of NPM. 

But, extra computations need to be done to achieve this.   
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Conclusion 
 

6.1 Conclusion 
 

This project has addressed the significant problem caused by undesirable echoes that 

result from coupling between the loud speakers and microphones in the near end 

room. The research for this project focuses on the development of the adaptive 

filtering algorithms for sparse and non-sparse systems, emphasising on the 

achievement of fast convergence rate with relatively low computational cost. 

 

The trade-off between convergence speed and the steady state misalignment is an 

important issue in this context, and can be balanced by choosing a sensible step size 

for the adaptive processes.  

 

A series of experiments carried out both within and across NLMS, as well as a few 

other proportionate techniques, namely PNLMS, IPNLMS and MPNLMS, help to 

investigate their strengths and weaknesses. NLMS gives better performance in non-

sparse system, whereas MPNLMS performs well in sparse impulse response. The 

combination of non-sparse and sparse technique, IPNLMS, exhibits an overall of 

better performance in all sparse levels. This identified an important factor – the 

sparseness measure (ξ ), which affects their convergence speed.  

 

By introducing ξ  together with employing MPNLMS approach, adaptive algorithms 

for acoustic echo cancellation can achieve fast convergence and robustness to sparse 

impulse response. The proposed algorithms, known as SC-MPNLMS-1 and 

SCMPNLMS-2, take into account this factor differently via the coefficient update 

function. Simulation results show that the SC-MPNLMS-2 exhibits more robustness 

CHAPTER 6 
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to sparse systems than the other techniques. Though their computational complexities 

are slightly higher than the existing main stochastic algorithms, both new algorithms 

perform better in all ξ  levels. 

 

6.2 Future Works 
 

The work within this thesis could be further extended in a number of directions, as 

listed below. 

• Early works for this project is found that the different initialisations give 

different convergence time. The figure 6.1 shows the convergence speed of the 

NLMS adaptive process when the tap weights are initialised to a) zeros, b) 

ones and c) random numbers. Therefore, optimum weights initialisation 

should be further investigated. 
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Figure 6.1: Time to reach the -20 dB NPM level vs. the sparseness measure using 

different taps initialisations. 

  

 

• The theory behind the ONLMS algorithm provides good reasoning to obtain 

optimum performance independent on the sparse level. 3.33 for the constant in 

the test condition provides a good result over NLMS and PNLMS, although, 



 
Pradeep Loganathan     60 

further exploration is needed to make the constant value optimum, so that its 

performance is optimum throughout all sparse measure (ξ ). 

 

• Throughout this project all the algorithms are tested using zero mean white 

Gaussian noise. It is preferred to check these algorithms with coloured signal. 

In order to compare their performances with each other the step sizes for all 

algorithms need to be set to achieve same steady state NPM level. Some 

testing is already initiated by using the coloured signal presented in Appendix 

2 and found that the step size of NLMS and IPNLMS should be set to 0.4, 

while 0.6 for PNLMS.  
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 MATLAB Simulation Codes 
 

NLMS 
 

function [e,npm] = nlms (input, d, mu, h) 

%   d    = desired signal 

%   L    = weight tap number 

%   mu   = step size of LMS filter 

%   x    = weight vector input 

 

x        = zeros(length(h),1); 

randn('state', 5); 

weight   = 0*randn(length(h),1); 

e        = zeros(length(input),1); 

npm      = zeros(length(input),1); 

 

epsilon  = sum(input.^2)/length(input); 

 

for n= 1: length(input);                  

   x           = [input(n); x(1:end-1)]; 

   output(n)   = weight' * x; 

   e(n)        = d(n) - output(n); 

   weight      = weight + (mu/ (epsilon + x'*x)) * x * e(n); 

   npm(n)      = norm(h-

(((h'*weight)/(weight'*weight))*weight))/norm(h); 

end 

NLMS 
PNLMS 

 

function [e,npm] = pnlms (input, d, mu, h); 

%   [wevn,e] = nlms (input, d, mu, h); 

%   d    = desired signal 

%   L    = weight tap number 

%   mu   = step size of LMS filter 

%   x    = weight vector input 

 

x        = zeros(length(h),1); 

% randn('state', 5); 

weight   = ones(length(h),1); 

e        = zeros(length(input),1); 

npm      = zeros(length(input),1); 

 

epsilon  = sum(input.^2)/(length(input)*length(h)); 

Appendix 1 
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for n= 1: length(input);                  

   x           = [input(n); x(1:end-1)]; 

   output(n)   = weight' * x; 

   e(n)        = d(n) - output(n); 

    

   a = max([0.01;abs(weight)]); 

   k = max((5/length(h))*a,abs(weight)); 

   Q = length(h)*(k/sum(k));  

    

   weight      = weight + ((mu*e(n)*(Q.*x))/((x'*(Q.*x))+ epsilon)); 

    

   npm(n)      = norm(h-

(((h'*weight)/(weight'*weight))*weight))/norm(h); 

end   

 

 

IPNLMS 
 

 

function [e,npm] = ipnlms (input, d, mu, h, a); 

%   d    = desired signal 

%   L    = weight tap number 

%   mu   = step size of LMS filter 

%   x    = weight vector input 

 

x        = zeros(length(h),1); 

weight   = zeros(length(h),1);                                               

e        = zeros(length(input),1); 

npm      = zeros(length(input),1); 

 

% a = -0.75;  % alpha (0,-0.5,-0.75) 

epsilon  = (1-a)*(sum(input.^2)/(length(input)*2*length(h))); 

 

for n= 1: length(input);                  

   x           = [input(n); x(1:end-1)]; 

   output(n)   = weight' * x; 

   e(n)        = d(n) - output(n); 

    

   Q = ((1-

a)/(2*length(h)))+(((1+a)*abs(weight))/((2*sum(abs(weight)))+eps));  

    

   weight      = weight + ((mu*e(n)*(Q.*x))/((x'*(Q.*x))+ epsilon)); 

    

   npm(n)      = norm(h-

(((h'*weight)/(weight'*weight))*weight))/norm(h); 

end 

 

MPNLMS 
 

 

function [e,npm] = mpnlms (input, d, mu, h,alp); 

%   [wevn,e] = nlms (input, d, mu, h); 

%   d    = desired signal 

%   L    = weight tap number 

%   mu   = step size of LMS filter 

%   x    = weight vector input 

 

x        = zeros(length(h),1); 
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weight   = zeros(length(h),1);                                               

e        = zeros(length(input),1); 

npm      = zeros(length(input),1); 

 

%a = -0.5;  % alpha (0,-0.5,-0.75) 

epsilon  = (1-alp)*(sum(input.^2)/(length(input)*2*length(h))); 

 

for n= 1: length(input);                  

   x           = [input(n); x(1:end-1)]; 

   output(n)   = weight' * x; 

   e(n)        = d(n) - output(n); 

    

   delta =  1/0.001; 

   F = log(1+delta*(abs(weight)))/log(1+delta); 

   a = max([0.01;F]); 

   k = max((5/length(h))*a,F); 

   Q = length(h)*(k/sum(k));  

    

   weight      = weight + ((mu*e(n)*(Q.*x))/((x'*(Q.*x))+ epsilon)); 

    

   npm(n)      = norm(h-

(((h'*weight)/(weight'*weight))*weight))/norm(h); 

end 

 

 

SC-MPNLMS-1 
function [e,npm] = scmpnlms1 (input, d, mu, h); 

%   [wevn,e] = nlms (input, d, mu, h); 

%   d    = desired signal 

%   L    = weight tap number 

%   mu   = step size of LMS filter 

%   x    = weight vector input 

 

x        = zeros(length(h),1); 

weight   = zeros(length(h),1);                                               

e        = zeros(length(input),1); 

npm      = zeros(length(input),1); 

 

a = 0;  % alpha (0,-0.5,-0.75) 

epsilon  = (1-a)*(sum(input.^2)/(length(input)*2*length(h))); 

 

for n= 1: length(input);                  

   x           = [input(n); x(1:end-1)]; 

   output(n)   = weight' * x; 

   e(n)        = d(n) - output(n); 

    

   delta =  1/0.001; 

   F = log(1+delta*(abs(weight)))/log(1+delta); 

   a = max([0.01;F]); 

   k = max((5/length(h))*a,F); 

    

   len = length(h); 

   if n<len 

       Q = len*(k/sum(k)); 

   else 

       sp  = (len/(len-sqrt(len)))* (1-

(sum(abs(weight))/(sqrt(len)*sqrt(sum(abs(weight).*abs(weight)))))) ; 

       Q = (k./max(k,sp)); 

   end; 
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   weight      = weight + ((mu*e(n)*(Q.*x))/((x'*(Q.*x))+ epsilon)); 

    

   npm(n)      = norm(h-

(((h'*weight)/(weight'*weight))*weight))/norm(h); 

end 

 

 

 

SC-MPNLMS-2 
 

 

function [e,npm] = scmpnlms2 (input, d, mu, h); 

%   [wevn,e] = nlms (input, d, mu, h); 

%   d    = desired signal 

%   L    = weight tap number 

%   mu   = step size of LMS filter 

%   x    = weight vector input 

 

x        = zeros(length(h),1); 

% randn('state', 5); 

weight   = zeros(length(h),1);                                               

e        = zeros(length(input),1); 

npm      = zeros(length(input),1); 

 

al = -0.5;  % alpha (0,-0.5,-0.75) 

epsilon  = (1-al)*(sum(input.^2)/(length(input)*2*length(h))); 

 

for n= 1: length(input);                  

   x           = [input(n); x(1:end-1)]; 

   output(n)   = weight' * x; 

   e(n)        = d(n) - output(n); 

    

   delta =  1/0.001; 

   F = log(1+delta*(abs(weight)))/log(1+delta); 

   a = max([0.01;F]); 

   k = max((5/length(h))*a,F); 

    

   len = length(h); 

       

   if (n > length(h)) 

       sp  = (len/(len-sqrt(len)))* (1-

(sum(abs(weight))/(sqrt(len)*sqrt(sum(abs(weight).*abs(weight)))))) ; 

       Q = ((1+(0.5*sp))*(k/sum(k))) + ((1-(0.5*sp))/length(h)); 

   else 

       Q = length(h)*(k/sum(k)); 

   end; 

 

 

 

Sparse Impulse Response Generator 
 

 

function h = SIRgen (Lh, Lp, tau, b, p) 

 

Lu   = Lh - Lp; 

f    = exp(-(1/tau)*[0:Lu-1]'); 

u    = [zeros(Lp,1); f]; 

 

B    = diag(b); 
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top  = [zeros(Lp,Lp) zeros(Lp,Lu)]; 

bot  = [zeros(Lu,Lp) B]; 

 

h    = [top; bot]*u+p; 

h    = h./max(h); 

 

Noise Generator With Specified SNR Level 
 

 

function [corruptsignal, newnoise, confirmSNR]= gennoise(signal, 

noise, SNR); 

%   

*********************************************************************

** 

%   This function generates a new corrupted signal based on a given 

SNR. 

%   It also generates the new noise sequence as output. 

%   New SNR is confirmed via confirmSNR. 

%   Usage: [newnoise, corruptsignal, confirmSNR]= gennoise(signal, 

noise, SNR); 

%   

*********************************************************************

** 

 

 

signalpow=(signal'*signal)/length(signal); 

noisepow= (noise'*noise)/length(noise); 

 

newnoise= sqrt((signalpow/((10^(SNR*0.1))*noisepow)))*noise; 

 

corruptsignal= signal+newnoise; 

confirmSNR= 10*log10(signalpow/((newnoise'*newnoise)/length(noise))); 

 

 

Run File To Plot T20 Vs. Sparseness Measure  
 

 

clear all; 

 

fs      = 8000; 

SimTim  = 2.5; 

mu      = 0.4; 

SNR     = 30; 

 

Lh      = 256; 

Lp  = 30; 

tau     = 8; % smaller tau, more sparse  

colour  = ['b','m','r','k']; 

wbar    = waitbar(0,'NLMS + PNLMS + IPNLMS + MPNLMS'); 

 

for count = 1:2 % 4 different algorithm 

    ind = zeros(1,100); 

    XX  = zeros(1,100); 

 for cc = 1:100 % 100 different mu values 0.1 - 1.0 

                   

  randn('state', 6); 

  B    = randn((Lh-Lp),1); 

             

        con = (cc-1)* 0.005; 
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  randn('state', 16); 

  P    = con * randn(Lh,1); % inactive taps 

        XX(cc)  = std(P); 

     

  h  = SIRgen (Lh, Lp, tau, B, P); 

     

  for trial = 1:10 % 10 experiments 

      waitbar((((cc-1)*10)+trial)/1000); 

   randn('state', 50+trial); 

   source  = randn(fs*SimTim,1); 

     

      y   = filter(h,1,source); 

     

   randn('state', 30+trial); 

   noise   = randn(length(y),1); 

   y       = gennoise(y, noise, SNR); 

   yy(:,trial) = y; 

    

   if (count ==1) 

    [e,npm] = scmpnlms1 (source, y, 0.4, h); 

   else 

    [e,npm] = scmpnlms1 (source, y, 0.7, h); 

   end;   

     

   ee(:,trial) = e; 

      nnpm(:,trial) = npm; 

  end; 

 

  e = mean(ee')'; 

  y = mean(yy')'; 

  npm = mean(nnpm')'; 

   

    

  a = [1/3;2/3;3/3]; 

         

  NPM = zeros(length(npm)/100,1); 

  for i=1:(length(npm)/100) 

      data   = npm((i*100)-100+1:(i*100)); 

      NPM(i) = mean(data); 

  end; 

   

         

%   NPM = filter(a,1,NPM); 

        z   = 20*log10(NPM); 

        zz = find(z<=-20);  % finding the T20 

        ind(cc) = zz(1); 

 

    end; 

    figure (1) 

    plot(XX,ind/fs,colour(count)); 

    xlabel('standard deviation of inactive taps'); 

 ylabel('Time to reach -20dB (s)'); 

    hold on; 

    grid on; 

     

end; 

close(wbar); 
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Run File to Plot MSE, ERLE and NPM 
 

  

clear all; 

 

fs      = 8000; 

SimTim  = 2.5; 

mu      = 0.3; 

SNR     = 30; 

 

Lh      = 256; 

tau     = [Inf 100 40 8]; % smaller tau, more sparse  

colour  = ['b','g','r','k','c']; 

wbar     = waitbar(0,'NLMS + PNLMS + IPNLMS + MPNLMS'); 

 

for cc =1:4 % different sparse 

 for count = 1:4 % different algorithm 

  for trial = 1:10 % ensample 

      waitbar((((cc-1)*50)+((count-1)*10)+trial)/200); 

   randn('state', 50+trial); 

   source  = randn(fs*SimTim,1); 

     

      if (tau(cc) == Inf) 

          Lp  = 0; 

      else 

          Lp  = 30; 

      end; 

           

   randn('state', 6+trial); 

   B    = randn((Lh-Lp),1); 

      randn('state', 16+trial); 

   P    = 0.005*randn(Lh,1); 

     

   h  = SIRgen (Lh, Lp, tau(cc), B, P); 

   hh(:,trial) = h;   

   y   = filter(h,1,source); 

     

   randn('state', 30+trial); 

   noise   = randn(length(y),1); 

   y       = gennoise(y, noise, SNR); 

   yy(:,trial) = y; 

    

   if (count ==1) 

    [e,npm] = nlms (source, y, mu, h); 

   elseif (count ==2) 

    [e,npm] = nlms (source, y, mu, h); 

         elseif (count ==3) 

    [e,npm] = mpnlms (source, y, mu, h); 

            elseif (count ==4) 

    [e,npm] = scmpnlmsx (source, y, mu, h); 

   else 

    [e,npm] = optimum (source, y, mu, h); 

   end;   

     

   ee(:,trial) = e; 

      nnpm(:,trial) = npm; 

  end; 

 

  e = mean(ee')'; 

  y = mean(yy')'; 
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  npm = mean(nnpm')'; 

  h = mean(hh')'; 

    

  MSE = zeros(length(e)/100,1); 

  for i=1:(length(e)/100) 

      data   = e((i*100)-100+1:(i*100)).^2; 

      MSE(i) = mean(data); 

  end; 

      

  a = [1/3;2/3;3/3]; 

  MSE = filter(a,1,MSE); 

  figure (cc) 

  subplot 221; 

  ax1  = 0:100:100*(length(MSE)-1); 

  plot(ax1,10*log10(MSE),colour(count)); 

  xlabel('number of iterations (n)'); 

  ylabel('MSE (dB)'); 

  hold on; 

        

  SERLE = zeros(length(e)/100,1); 

  for i=1:(length(e)/100) 

      E = e((i*100)-100+1:(i*100)).^2; 

      Y = y((i*100)-100+1:(i*100)).^2; 

      SERLE(i) = sum(Y)/sum(E); 

  end; 

       

  SERLE = filter(a,1,SERLE); 

  subplot 222; 

  ax2  = 0:100:100*(length(SERLE)-1); 

  plot(ax2,10*log10(SERLE),colour(count)); 

  xlabel('number of iterations (n)'); 

  ylabel('ERLE (dB)'); 

  hold on; 

   

  NPM = zeros(length(npm)/100,1); 

  for i=1:(length(npm)/100) 

      data   = npm((i*100)-100+1:(i*100)); 

      NPM(i) = mean(data); 

  end; 

      

  NPM = filter(a,1,NPM); 

  subplot 223; 

  ax3  = 0:100:100*(length(NPM)-1); 

  plot(ax3,20*log10(NPM),colour(count)); 

  xlabel('number of iterations (n)'); 

  ylabel('NPM (dB)'); 

  hold on; 

 end; 

     

 figure (cc); 

 axx(1) = subplot (2,2,1); 

 axx(2) = subplot (2,2,2); 

 axx(3) = subplot (2,2,3); 

 linkaxes(axx,'x'); 

 

 subplot 224; 

 plot(0:(Lh-1),h); 

end; 
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Coloured Signal 
 

 

In order to generate the coloured signal (i.e. a signal with different levels of 

frequency), an all-pole IIR (Infinite Impulse Response) filter is used with a complex 

conjugate pair of poles. The position of the poles is chosen to be 0.9 from the origin 

of the z-plane to gain a small over-shoot at about 2 kHz. The numerator of the filter 

coefficient is chosen to be 1 and the denominator is obtained as [1 -1.732 0.827], 

using the MATLAB in-built filter design tool box, to meet the design specifications. 

Figure 4.8 shows the frequency response of the two types of x(n). 
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Figure 4.8: Frequency response of the two types of input signal, x(n). 
 

Appendix 2 


