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Abstract

In hands-free telephony, the acoustic coupling between the loudspeaker and the microphone

generates echoes that can seriously degrade user experience. For this reason, effective

Acoustic echo cancellation (AEC) is important to maintaining and improving the perceived

voice quality of a call.

Traditionally, adaptive filters have been deployed in acoustic echo cancellers to estimate

the Acoustic impulse response s (AIRs) using adaptive algorithms. The performances of a

range of algorithms, including Normalized least-mean-square (NLMS), Proportionate nor-

malized least-mean-square (PNLMS), μ-law proportionate normalized least-mean-square

(MPNLMS) and Improved proportionate normalized least-mean-square (IPNLMS), are

studied in the context of both AEC and Network echo cancellation (NEC). This analysis

presents insights into their tracking performances under both time-invariant and time-

varying system conditions.

In the context of AEC, it is shown that the level of sparseness in AIRs can vary greatly in

a mobile environment. When the response is strongly sparse, convergence of conventional

approaches is poor. Drawing on techniques originally developed for NEC, we propose a

class of AEC algorithms that can not only work well in both sparse and dispersive cir-

cumstances, but also adapt dynamically to the level of sparseness using a new sparseness-

controlled approach. Simulation results, using White Gaussian noise (WGN) and speech

input signals, show improved performance over existing methods. The proposed algorithms

achieve these improvements with only a modest increase in computational complexity.
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Chapter 1

Introduction

1.1 Overview

Wireless phones are increasingly being regarded as essential communications tools due

to their flexibility. As the use for the in-car hands free telephony has gained much popu-

larity in recent years due to the rise in safety concerns, and also the need for an automated

service delivery system, digital wireless subscribers are becoming ever more critical of the

voice quality they receive from network providers. One factor that affects the voice quality

is echo.

An echo is said to occur when delayed and possibly distorted versions of a signal are

reflected back to the source of that signal. Acoustic echo is a type of echo which is

produced by poor voice coupling between the earpiece and microphone in handsets and

hands-free devices. As shown in Fig. 1.1, sound signal, x(n), from a loudspeaker is heard

by a listener, as intended. However, this same sound also is picked up by the microphone,

both directly and indirectly, after bouncing off the wall. The result of this reflection is

the creation of echo which is transmitted back to the far end and is heard by the talker

as echo.

Hybrid echo is the other type of echo generated in the Public switched telephone

network (PSTN) due to the impedance mismatch by the two-to-four wire conversion in the

hybrid transformers. The network echo response in such systems is typically of length 64-

128 ms, characterised by an unknown bulk delay dependant on network loading, encoding

and jitter buffer delays [1]. This results in an ‘active’ region in the range of 8-12 ms
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Figure 1.1: Illustration of acoustic echo in a Loudspeaker-Room-Microphone sys-
tem (LRMS).

duration and consequently, the impulse response is dominated by ‘inactive’ regions where

coefficient magnitudes are close to zero, making the impulse response sparse.

One of the earliest methods for echo cancellation in satellite communication is to insert

echo suppression devices. They were voice-activated switches that transmitted a voice path

and then turned off to block any echo signal. The main issue with these gadgets is that

they eliminated double-talk capabilities (parties at both ends cant speak simultaneously).

Nowadays, adaptive filters are used in echo cancellers which model and subtracts the

echo from the return path and therefore, outperformed the suppression-based technique.

This technique is being crucial for many other applications in the field of telecommunica-

tion, such as noise cancellation and channel equalization [2]. Although adaptive filters can

be used when the echo path is initially unknown, their application is unavoidable when

facing varying environments.

Traditionally, echo cancellers are realized by a Finite impulse response (FIR) structure

to achieve echo cancellation using algorithms such as the NLMS algorithm. For sparse

systems such as encountered in NEC, the NLMS algorithm suffers from slow convergence

and therefore new algorithms have been proposed for sparse adaptive filtering.

Several approaches have been proposed to overcome the NLMS weakness for NEC, in-

cluding sparse adaptive algorithms, Fourier [3] and Wavelet [4] based adaptive algorithms,

variable step-size (VSS) algorithm [5] [6] [7], data reusing technique [8] [9], partial update

adaptive filtering techniques [10] [11] and sub-band adaptive filtering (SAF) schemes [12].
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Sparse adaptive algorithms have been derived from NLMS to improve the performance

in sparse system identification. These algorithms have also been proposed in frequency

domains not only to exploit the computational efficiency of the fast Fourier transform to

achieve fast convolution, but also to use the pseudo-orthogonality property of the discrete

Fourier transform [13] to speed up the convergence rate. The VSS algorithm improves the

performance of the adaptive algorithm by employing larger step-size at the beginning of

the adaptation, for fast initial convergence, and a smaller step-size during later stage of

adaptation, in order to achieve low mis-adjustment. The data reusing is another technique

which was introduced to achieve improvement in convergence rate. This approach reuses

the current desired response and data vector repeatedly to update the adaptive tap-weight

vector several times during each iteration. Partial update algorithms are proposed to

reduce the computational complexity of an adaptive filter by updating only a subset of filter

coefficients for each iteration based on selection criteria. SAF has also been introduced

in AEC to achieve complexity reduction whilst achieving an improved rate of convergence

compared to the conventional full-band structure.

In this paper, we will devote our attention to sparse adaptive algorithms, as they are

still of interest because of their ease of implementation, and the frame work that we will

propose in this paper can be applied to most of the above techniques.

One of the first sparse adaptive filtering algorithms for NEC is PNLMS [14] in which

each filter coefficient is updated with an independent step-size that is linearly proportional

to the magnitude of that estimated filter coefficient. It is well known that PNLMS has

very fast initial convergence for sparse impulse responses after which its convergence rate

reduces significantly, sometimes resulting in a slower overall convergence than NLMS. In

addition, PNLMS suffers from slow convergence when estimating dispersive impulse re-

sponses [15][16]. To address the latter problem, subsequent improved versions, such as

PNLMS++ [15], were proposed. The PNLMS++ algorithm achieves improved conver-

gence by alternating between NLMS and PNLMS for each sample period. However, as

shown in [17], the PNLMS++ algorithm only performs best in the cases when the impulse

response is sparse or highly dispersive.

An IPNLMS [17] algorithm was proposed to exploit the ‘proportionate’ idea by intro-

ducing a controlled mixture of proportionate (PNLMS) and non-proportionate (NLMS)
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Figure 1.2: Adaptive system for acoustic echo cancellation in a Loudspeaker-Room-
Microphone system (LRMS).

adaptation. A sparseness-controlled IPNLMS (SC-IPNLMS) algorithm was proposed

in [18] to improve the robustness of IPNLMS to the sparseness variation in impulse re-

sponses. Composite proportionate NLMS and NLMS (CPNLMS) [19] adaptation was

proposed to control the switching of PNLMS++ between the NLMS and PNLMS al-

gorithms. For sparse impulse responses, CPNLMS performs the PNLMS adaptation to

update the large coefficients and subsequently switches to NLMS, which has better per-

formance for the adaptation of the remaining small taps. The MPNLMS [20] algorithm

was proposed to address the uneven convergence rate of PNLMS during the estimation

process. As proposed in [20], MPNLMS uses optimal step-size control factors to achieve

faster overall convergence until the adaptive filter reaches its steady state.

The main limitation of all these adaptive algorithms is that their performances are

subject to a tradeoff between the speed of convergence and high precision. Algorithms

with higher step-size achieves faster convergence, but the mismatch between the true

system and the predicted system is worse compared to that with smaller step-size. To

overcome this tradeoff, a combination framework was proposed in [21], which adaptively

combines two independent Least-mean-square (LMS) filters with large and small step

sizes to obtain fast convergence with low mis-adjustment.

Although sparse adaptive filtering algorithms, such as those described above, have

originally been developed for NEC, it has been shown in [22] that such algorithms give

good convergence performance in the AEC system.
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1.2 Problem formulation

The time variation of the near-end AIR, in the AEC system illustrated in Fig. 1.2,

may arise due to, for example, a change in temperature [23], pressure and changes in the

acoustic environment [24]. Variation in the sparseness of AIRs can also occur in AEC

within an enclosed space.

We formulate the problem by considering an example case illustrated in Fig. 1.3, where

the distance, a, between a loudspeaker and the user using, for example, a wireless micro-

phone is varying. It shows two AIRs, generated using the method of images [25][26] using

room dimensions of 8 × 10 × 3 m and 0.57 as the reflection coefficient. The loudspeaker

is fixed at 4 × 9.1 × 1.6 m in the Loudspeaker-room-microphone system (LRMS) while

the microphone is positioned at 4 × 8.2 × 1.6 m and 4 × 1.4 × 1.6 m giving impulse re-

sponses as shown in Fig. 1.3 (a) and (b) for a = 0.9 m and a = 7.7 m respectively. As can

be seen, the sparseness of these AIRs varies with the loudspeaker-microphone distance.

Hence, algorithms developed for mobile hands-free terminals are required to be robust to

the variations in the sparseness of the acoustic path.

1.3 Report organization

The four chapters of this report are organized as follows:

Chapter 2 reviews the main adaptive algorithms for echo cancellation and presents a

new class of algorithms that are robust to the sparseness variation of AIRs. These algo-

rithms compute a sparseness measure of the estimated impulse response at each iteration

of the adaptive process and incorporate it into their conventional methods. As will be

shown, the proposed sparseness-controlled algorithms achieve fast convergence for both

sparse and dispersive AIRs and are effective for AEC.

Chapter 3 details the planning and time-line for implementation of feasible future

research areas.

Chapter 4 concludes remarks of this report.
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Figure 1.3: Loudspeaker-Room-Microphone system (LRMS) and two acoustic Impulse
Responses, generated using the method of images, for the cases when the separation is
0.9 m and 7.7 m.
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Chapter 2

Adaptive algorithms for echo
cancellation

This chapter starts by reviewing the main conventional adaptive algorithms for echo

cancellation, with introducing notations used throughout this report. A class of algo-

rithms employing sparseness measure of the estimated impulse response is formulated in

Section 2.2. The computational complexity of the proposed algorithms are discussed in

Section 2.4, while simulation results comparing their performances under stationary and

non-stationary environment are presented in Section 2.5 and Section 2.6.2, respectively.

2.1 Review of algorithms for echo cancellation

Figure 1.2 shows a LRMS and an adaptive filter ĥ(n) = [ĥ0(n)ĥ1(n) . . . ĥL−1(n)]T

deployed to cancel acoustic echo, where L is the length of the adaptive filter assumed

to be equal to the unknown room impulse response and [·]T is the transposition op-

erator. Defining the input signal x(n) = [x(n) x(n − 1) . . . x(n − L + 1)]T and

h(n) = [h0(n) h1(n) . . . hL−1(n)]T as the unknown impulse response, the output of

the LRMS is given by

y(n) = hT (n)x(n) + w(n), (2.1)

where w(n) is additive noise and the error signal is given by

e(n) = y(n)− ĥT (n− 1)x(n). (2.2)

Several adaptive algorithms such as those described below have been developed for either

AEC or NEC.
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Many adaptive algorithms can be described by (2.2) and the following set of equations:

ĥ(n) = ĥ(n− 1) +
μQ(n− 1)x(n)e(n)

xT (n)Q(n− 1)x(n) + δ
, (2.3)

Q(n− 1) = diag
{
q0(n− 1) . . . qL−1(n− 1)}, (2.4)

where μ is a step-size and δ is the regularization parameter. The diagonal step-size control

matrix Q(n) is introduced here to determine the step-size of each filter coefficient and is

dependent on the specific algorithm.

2.1.1 The NLMS, PNLMS and MPNLMS algorithms

The NLMS algorithm is one of the most popular for AEC due to its straightforward

implementation and low complexity compared to, for example, the recursive least squares

algorithm. For NLMS, since the step-size is the same for all filter coefficients, Q(n) = IL×L

with IL×L being an L× L identity matrix.

One of the main drawbacks of the NLMS algorithm is that its convergence rate reduces

significantly when the impulse response is sparse, such as often occurs in NEC. The poor

performance has been addressed by several sparse adaptive algorithms such as those de-

scribed below that have been developed specifically to identify sparse impulse responses

in NEC applications.

The PNLMS [14] and MPNLMS [20] algorithms have been proposed for sparse sys-

tem identification. Diagonal elements ql of the step-size control matrix Q(n) for the

PNLMS and MPNLMS algorithms can be expressed as

ql(n)=
κl(n)

1
L

∑L−1
i=0 κi(n)

, 0 ≤ l ≤ L− 1, (2.5)

kl(n)=max
{

ρ×max{γ,

F (|ĥ0(n)|) . . . F (|ĥL−1(n)|)}, F (|ĥl(n)|)
}

, (2.6)

where F (|ĥl(n)|) is specific to the algorithm. The parameter γ = 0.01 in (2.6) prevents

the filter coefficients ĥl(n) from stalling when ĥ(0) = 0L×1 at initialisation and ρ, with a
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typical value of 0.01, prevents the coefficients from stalling when they are much smaller

than the largest coefficient.

The PNLMS algorithm achieves a high rate of convergence by employing step-sizes that

are proportional to the magnitude of the estimated impulse response coefficients where

elements F (|ĥl(n)|) are given by

F (|ĥl(n)|) = |ĥl(n)|. (2.7)

Hence, PNLMS employs larger step-sizes for ‘active’ coefficients than for ‘inactive’ co-

efficients and consequently achieves faster convergence than NLMS for sparse impulse

responses. However, it is found that PNLMS achieves fast initial convergence followed by

a slower second phase convergence [20].

The MPNLMS algorithm was proposed to improve the convergence of PNLMS. It

achieves this by computing the optimal proportionate step-size during the adaptation

process. The MPNLMS algorithm was derived such that all coefficients attain a converged

value to within a vicinity ε of their optimal value in the same number of iterations [20].

As a consequence, F (|ĥl(n)|) for MPNLMS is specified by

F (|ĥl(n)|) = ln(1 + β|ĥl(n)|), (2.8)

with β = 1/ε and ε is a very small positive number chosen as a function of the noise

level [20]. It has been shown that ε = 0.001 is a good choice for typical echo cancellation.

The positive bias of 1 in (2.8) is introduced to avoid numerical instability during the

initialization stage when |ĥl(0)| = 0, ∀l.

It is important to note that both PNLMS and MPNLMS suffer from slow convergence

when the unknown system h(n) is dispersive [15][16]. This is because when h(n) is disper-

sive, kl(n) in (2.6) becomes significantly large for most 0 ≤ l ≤ L− 1. As a consequence,

the denominator of ql(n) in (2.5) is large, giving rise to a small step-size for each large coef-

ficient. This causes a significant degradation in convergence performance for PNLMS and

MPNLMS when the impulse response is dispersive such as can occur in AIRs.
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2.1.2 The IPNLMS algorithm

The IPNLMS [17] algorithm was originally developed for NEC and was further devel-

oped for the identification of acoustic room impulse responses [22]. It employs a combi-

nation of proportionate (PNLMS) and non-proportionate (NLMS) adaptation, with the

relative significance of each controlled by a factor αIP such that the diagonal elements of

Q(n) are given as

ql(n) =
1− αIP

2L
+

(1 + αIP)|ĥl(n)|
2‖ĥ(n)‖1 + δIP

, 0 ≤ l ≤ L− 1. (2.9)

where ‖ ·‖1 is defined as the l1-norm and the first and second terms are the NLMS and the

proportionate terms respectively. It can be seen that IPNLMS is the same as NLMS when

αIP = −1 and PNLMS when αIP = 1. Use of a higher weighting for NLMS adaptation,

such as αIP = 0, −0.5 or −0.75, is a favorable choice for most AEC/NEC applications [17].

It has been shown that, although the IPNLMS algorithm has faster convergence than

NLMS and PNLMS regardless of the impulse response nature [17], we note from our

simulations that it does not outperform MPNLMS for highly sparse impulse responses

with the above choices of αIP.

2.2 Characterisation of framework for robust convergence

In this Section, we quantify the degree of sparseness in AIRs. We provide an illustrative

example to show how the sparseness of AIRs varies with the loudspeaker-microphone

distance in an enclosed space such as when the user is using a wireless microphone for

tele/video conferencing. This serves as a motivation for us to develop new algorithms

which are robust to the sparseness variation of AIRs in the next Section. In addition, we

also demonstrate how the choice of ρ in (2.6) affects the step-size of each filter coefficient

for PNLMS.

2.2.1 Variation of sparseness in AIRs

The degree of sparseness for an impulse response can be quantified by [18][27]

ξ(n) =
L

L−√L

{
1− ‖h(n)‖1√

L ‖h(n)‖2

}
(2.10)
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It can be shown [18][27] that 0 ≤ ξ(n) ≤ 1. In the extreme but unlikely case when

hl(n) =
{ ±k, l = l1,

0, 0 ≤ l ≤ L− 1, l �= l1,
(2.11)

where l1 ∈ {[0, L−1]} and k ∈ �, then ξ(n) = 1. On the other hand, when hl(n) = ±k ∀l,
then ξ(n) = 0, as shown in Fig. 2.1. In reality h(n) and hence ξ(n) is time-varying

and depends on factors such as temperature, pressure and reflectivity [23]. As explained

before, the sparseness of AIRs ξ(n) varies with the location of the receiving device in an

open or enclosed environment. We will show how ξ(n) can also vary with the loudspeaker-

microphone distance in an enclosed space.
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Figure 2.1: Sparseness measure of different impulse responses.

Consider an example case where the distance, a, between a fixed position loudspeaker

and the talker using a wireless microphone is varying. Figure 2.2 illustrates how ξ(n) of

such AIRs varies with a for a room of dimension 8×10×3 m and the loudspeaker is placed

at 4× 9.1× 1.6 m. In this illustrative example, the AIRs are generated using the method

of images [25][26] with 1024 coefficients. For each loudspeaker-microphone distance a, the

microphone is directly in front of the loudspeaker. As can be seen, ξ(n) reduces with

increasing a, since for increasing a, the sound field becomes more diffuse. Since ξ(n) varies

with a, we propose to incorporate ξ(n) into PNLMS, MPNLMS and IPNLMS in order to

improve their robustness to the sparseness of AIRs in AEC. Since h(n) is unknown during

adaptation, we employ ξ̂(n) to estimate the sparseness of an impulse response, where at

each sample iteration,

ξ̂(n) =
L

L−√L

{
1− ‖ĥ(n)‖1√

L ‖ĥ(n)‖2

}
. (2.12)
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Figure 2.2: Sparseness measure against the distance between loudspeaker and microphone,
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of 8× 10× 3 m.

2.2.2 Effect of ρ on step-size control matrix Q(n) for PNLMS

As explained in Section 2.1.1, the parameter ρ in (2.6) was originally introduced to

prevent freezing of the filter coefficients when they are much smaller than the largest

coefficient. Figure 2.3 shows the effect of ρ for both sparse and dispersive AIRs on the

convergence performance of PNLMS measured using the normalized misalignment defined

by

η(n) =
‖h(n)− ĥ(n)‖22

‖h(n)‖22
. (2.13)

A zero mean WGN sequence is used as the input signal while another WGN sequence

w(n) is added to give an Signal-to-noise ratio (SNR) of 20 dB. Impulse responses as

shown in Fig. 1.3 (a) and (b) are used as sparse and dispersive AIRs, and μPNLMS = 0.3.

It can be seen from this illustration that, for a sparse h(n), we desire a low value of ρ

while, for a dispersive unknown system h(n), we desire a high value of ρ. This is due to

the resulting effect of how different values of ρ affect the step-size control element ql(n)

as illustrated in Fig. 2.4. It can be observed that a higher value of ρ will reduce the

influence of the proportional update term meaning that all filter coefficients are updated
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at a more uniform rate. This provides a good convergence performance for PNLMS for a

dispersive AIR. On the other hand, a lower ρ will increase the degree of proportionality

hence giving good convergence performance when the AIR is sparse. As a consequence of

this important observation, we propose to incorporate ξ̂(n) into ρ for both PNLMS and

MPNLMS as described in the next section.
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Figure 2.3: Convergence of the PNLMS for different values of ρ using WGN input sig-
nal. Impulse responses in Fig. 1.3 (a) and (b) are used as sparse and dispersive AIRs
respectively. [μPNLMS = 0.3, SNR = 20 dB]

2.3 A class of Sparseness-controlled algorithms

We propose to improve the robustness of PNLMS, MPNLMS and IPNLMS to varying

levels of sparseness of impulse response such as encountered in, for example, AEC. As will

be shown in the following, this is achieved by incorporating the sparseness measure of the

estimated AIRs into the adaptation process.

2.3.1 The proposed SC-PNLMS and SC-MPNLMS algorithms

In order to address the problem of slow convergence in PNLMS and MPNLMS for dis-

persive AIR, we require the step-size control elements ql(n) to be robust to the sparseness

of the impulse response. Several choices can be employed to obtain the desired effect of

achieving a high ρ when ξ̂(n) is small when estimating dispersive AIRs. We consider an

example function

ρ(n)=e−λξ̂(n), λ ∈ R
+. (2.14)
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The variation of ρ(n) in PNLMS for the exponential function is plotted in Fig. 2.5 for the

cases where λ = 4, 6 and 8. It can be noted that a linear function ρ(n) = 1 − ξ̂(n) also

achieves our desired condition. We have tested this case and found it to perform worse

than the more general form of (2.14), so we will not consider it further.

It can be seen that low values of ρ(n) are allocated for a large range of sparse impulse

responses such as when ξ̂(n) > 0.4. As a result of small values in ρ(n) using (2.14), the pro-

posed sparseness-controlled PNLMS algorithm (SC-PNLMS) inherits the proportionality

step-size control over a large range of sparse impulse response. When the impulse response

is dispersive, such as when ξ̂(n) < 0.4, the proposed SC-PNLMS algorithm inherits the

NLMS adaptation control with larger values of ρ(n). As explained in Section 2.2.2 and

Fig. 2.4, this gives a more uniform step-size across hl(n). Hence, the exponential function

described by (2.14) will achieve our overall desired effect of the robustness to sparse and

dispersive AIRs.

The choice of λ is important. As can be seen from Fig. 2.5, a larger choice of λ will

cause the proposed SC-PNLMS to inherit more of PNLMS properties compared to NLMS

giving good convergence performance when AIR is sparse. On the other hand, when the
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AIR is dispersive, λ must be small for good convergence performance. Hence, we show in

Section 2.5.1 that a good compromise is given by λ = 6, though the algorithm is not very

sensitive to this choice in the range of 4 ≤ λ ≤ 6.

Incorporating ρ(n) in a similar manner for the MPNLMS algorithm, the resulting

sparseness-controlled MPNLMS algorithm (SC-MPNLMS) inherits more of the MPNLMS

properties when the estimated AIR is sparse and distributes uniform step-size across hl(n),

as in NLMS, when the estimated AIR is dispersive. In addition, we note that when

n = 0, ‖ĥ(0)‖2 = 0 and hence, to prevent division by a small number or zero, ξ̂(n) can

be computed for n ≥ L in both SC-PNLMS and SC-MPNLMS. When n < L, we set

ρ(n) = 5/L as described in [17]. The SC-PNLMS algorithm is thus described by (2.2)-

(2.7), (2.12) and (2.14), whereas SC-MPNLMS is described by (2.2)-(2.6), (2.8), (2.12)

and (2.14) with λ = 6, as summarised in Table 2.1.

2.3.2 The SC-IPNLMS algorithm

We choose to incorporate sparseness-control into the IPNLMS algorithm (SC-

IPNLMS) [18] in a different manner compared to SC-PNLMS and SC-MPNLMS because,
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Table 2.1: The Sparseness-controlled Algorithms

Initialisations:
ĥ(0) = 0L×1

0 < μ ≤ 1
αSC−IP = −0.75 (SC-IPNLMS)

λ = 6 (SC-PNLMS, SC-MPNLMS)

ρ(n) = 5/L, n < L (SC-PNLMS, SC-MPNLMS)

β = 1000 (SC-MPNLMS)

General Computations:
e(n) = y(n)− ĥT (n− 1)x(n)

ĥ(n) = ĥ(n− 1) +
μQ(n− 1)x(n)e(n)

xT (n)Q(n− 1)x(n) + δ

Q(n− 1) = diag
{
q0(n− 1), . . . , qL−1(n− 1)}

ξ̂(n) =
L

L−√L

{
1− ‖ĥ(n)‖1√

L ‖ĥ(n)‖2

}
, n ≥ L

SC-PNLMS

ql(n) =
κl(n)

1
L

∑L−1
i=0 κi(n)

, 0 ≤ l ≤ L− 1

kl(n) = max
{

ρ(n)×max{γ,

|ĥ0(n)|, . . . , |ĥL−1(n)|}, |ĥl(n)|
}

ρ(n) = e−λξ̂(n), n ≥ L

SC-MPNLMS

ql(n) =
κl(n)

1
L

∑L−1
i=0 κi(n)

, 0 ≤ l ≤ L− 1

kl(n) = max
{

ρ(n)×max{γ,

F(|ĥ0(n)|), . . . ,F(|ĥL−1(n)|)}, F(|ĥl(n)|)
}

F(|ĥl(n)|) = ln(1 + β|ĥl(n)|)
ρ(n) = e−λξ̂(n), n ≥ L

SC-IPNLMS

ql(n) =
[1− 0.5ξ̂(n)

L

] (1− αSC−IP)
2L

+[1 + 0.5ξ̂(n)
L

] (1 + αSC−IP)|ĥl(n)|
2‖ĥ(n)‖1 + δIP
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as can be seen from (2.9), two terms are employed in IPNLMS for control of the mix-

ture between proportionate and NLMS updates. The proposed SC-IPNLMS improves the

performance of the IPNLMS by expressing ql(n) for n ≥ L as

ql(n)=

[
1− 0.5ξ̂(n)

L

]
(1− αSC−IP)

2L
+[

1 + 0.5ξ̂(n)
L

]
(1 + αSC−IP)|ĥl(n)|

2‖ĥ(n)‖1 + δIP

. (2.15)

As can be seen, for large ξ̂(n) when the impulse response is sparse, the algorithm

allocates more weight to the proportionate term of (2.9). For comparatively less sparse

impulse responses, the algorithm aims to achieve the convergence of NLMS by applying

a higher weighting to the NLMS term. An empirically chosen weighting of 0.5 in (2.15)

is included to balance the performance between sparse and dispersive cases. In addition,

normalization by L is introduced to reduce significant coefficient noise when the effective

step-size is large for sparse AIRs with high ξ̂(n).

Figure 2.6 illustrates the step-size control elements ql(n) for SC-IPNLMS in estimating

different unknown AIRs. As can be seen, for dispersive AIRs, SC-IPNLMS allocates

a uniform step-size across hl(n) while, for sparse AIRs, the algorithm distributes ql(n)

proportionally to the magnitude of the coefficients. As a result of this distribution, the SC-

IPNLMS algorithm varies the degree of NLMS and proportionate adaptations according

to the nature of the AIRs. In contrast, in standard IPNLMS the mixing coefficient αIP

in (2.9) is fixed a priori. The SC-IPNLMS algorithm is described by (2.2)-(2.4), (2.12)

and (2.15), as specified in Table 2.1.

2.4 Computational Complexity

The relative complexity of NLMS, PNLMS, SC-PNLMS, IPNLMS, SC-IPNLMS,

MPNLMS and SC-MPNLMS in terms of the total number of additions (A), multipli-

cations (M), logarithm (Log) and comparisons (C) per iteration is assessed in Table 2.2.

The additional complexity of the proposed sparseness-controlled algorithms, on top of their

conventional method, arises from the computation of the sparseness measure ξ̂(n). Given
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Figure 2.6: Magnitude of ql(n) for 0 ≤ l ≤ L − 1 against the magnitude of coefficients
ĥl(n) in SC-IPNLMS and different sparseness measures of 8 systems.

that L/(L−√L) in (2.10) can be computed off-line, the remaining l-norms require an addi-

tional 2L additions and L multiplications. The SC-PNLMS and SC-MPNLMS algorithms

additionally require computations for (2.14). Alternatively, a look-up table with values of

ρ(n) defined in (2.14) can be computed for 0 ≤ ξ̂(n) ≤ 1. Segment PNLMS (SPNLMS)

is proposed in [28], to approximate the μ-law function in MPNLMS using line segments.

Since ‖ĥ(n)‖1 computation is already available from IPNLMS in (2.9), SC-IPNLMS only

requires an additional L+3 additions and L+7 multiplications. The total computational

complexity for an illustrative example of L = 1024 is given in Table 2.3.

2.5 Simulation Results

We present simulation results to evaluate the performance of the proposed SC-PNLMS,

SC-MPNLMS and SC-IPNLMS algorithms in the context of AEC. In addition, we show an

example case of how SC-IPNLMS can be employed in NEC. Throughout our simulations,

algorithms were tested using a zero mean WGN and a male speech signal as inputs while

another WGN sequence w(n) is added to give an SNR of 20 dB. We assumed that the

length of the adaptive filter L = 1024 is equivalent to that of the unknown system. Two
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Table 2.2: Complexity of algorithms - Addition (A), Multiplication (M), Logarithm (Log)
and Comparison (C).

Algorithm A M Log C
NLMS L + 4 3L + 2 0 0

PNLMS 2L + 2 7L + 3 0 2L

SC-PNLMS 4L + 3 8L + 6 0 2L

IPNLMS 3L + 3 8L + 2 0 0

SC-IPNLMS 4L + 6 9L + 9 0 0

MPNLMS 3L + 2 8L + 3 L 2L

SC-MPNLMS 5L + 3 9L + 6 L 2L

Table 2.3: Complexity for the case of L = 1024 - Addition (A), Multiplication (M),
Logarithm (Log) and Comparison (C).

Algorithm A M Log C
NLMS 1028 3074 0 0

PNLMS 2050 7171 0 2048

SC-PNLMS 4099 8198 0 2048

IPNLMS 3075 8194 0 0

SC-IPNLMS 4102 9225 0 0

MPNLMS 3074 8195 1024 2048

SC-MPNLMS 5123 9222 1024 2048
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receiving room impulse responses h(n) for AEC simulations have been used as described

in Fig. 1.3. The sparseness measure of these AIRs are computed using (2.10) giving

(a) ξ(n) = 0.83 and (b) ξ(n) = 0.59 respectively.

2.5.1 Effect of λ on the performance of SC-PNLMS for AEC

SC-PNLMS was tested as shown in Fig. 2.7 for different λ values in (2.14) to illustrate

the time taken to reach -20 dB normalized misalignment using a WGN sequence as the

input signal. A step-size of μ = 0.3 was used in this experiment. We see from the result

that, for each case of λ, the SC-PNLMS has a higher rate of convergence for a sparse system

compared to a dispersive system. This is due to the initialisation choice of ĥ(0) = 0L×1,

where most filter coefficients are initialized close to their optimal values. In addition, a

smaller value of λ is favorable for the dispersive AIR, since SC-PNLMS performs similarly

to NLMS for small λ values. On the contrary, a higher value for λ is desirable for the

sparse case. It can be noted that SC-PNLMS is exactly NLMS for λ = 0. It can also be

seen that a range of good value for λ is 4 ≤ λ ≤ 6. Figure 2.8 shows the performance

of SC-PNLMS with an echo path change introduced from Fig. 1.3 (a) to (b) at 4.5 s, for

λ = 0, 4, 6 and 8. We observe from this result that the convergence rate of SC-PNLMS is

high when λ is small for a dispersive channel. This is because, as explained in Section 2.3.1,

the proposed algorithm inherits properties of the NLMS for a small λ value. For a high

λ, the SC-PNLMS algorithm inherits properties of PNLMS giving good performance for

sparse AIR before the echo path change. As can be seen, a good compromise of λ is given

by λ = 6.

2.5.2 Convergence performance of SC-PNLMS for AEC

Figure 2.9 compares the performance of NLMS, PNLMS and SC-PNLMS using WGN

as the input signal. The step-size parameter for each algorithm is chosen such that all

algorithms achieve the same steady-state. This is achieved by setting μNLMS = μPNLMS =

μSC−PNLMS = 0.3. An echo path change was introduced from Fig. 1.3(a) to 1.3(b) while λ

for the SC-PNLMS algorithm is set to 6. It can be seen from Fig. 2.9 that the convergence

rate of SC-PNLMS is as fast as PNLMS for sparse and much better than PNLMS for

dispersive, therefore achieving our objective of improving robustness to varying sparseness.
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This is because SC-PNLMS inherits the beneficial properties of both PNLMS and NLMS.

It can be seen from the result that SC-PNLMS achieves high rate of convergence similar

to PNLMS giving approximately 5 dB improvement in normalized misalignment during

initial convergence compared to NLMS for a sparse AIR. After the echo path change, for

a dispersive AIR, the SC-PNLMS maintains its high convergence rate over NLMS and

PNLMS giving approximately 4 dB improvement in normalized misalignment compared

to PNLMS.

Figure 2.10 shows simulation results for a male speech input signal where we used

the same parameters as in the case of WGN input signal. As can be seen, the proposed

SC-PNLMS algorithm achieves the highest rate of convergence, giving convergence as fast

as PNLMS and approximately 7 dB improvement during initial convergence compared to

NLMS for the sparse AIR. For dispersive AIR, SC-PNLMS performs almost the same as

NLMS with approximately 4 dB improvement compared to PNLMS.
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Figure 2.10: Relative convergence of NLMS, PNLMS and SC-PNLMS using speech input
signal with echo path changes at 58 s. Impulse response is changed from that shown in
Fig. 1.3 (a) to (b) and μNLMS = 0.3, μPNLMS = μSC−PNLMS = 0.1, SNR = 20 dB.

2.5.3 Convergence performance of SC-MPNLMS for AEC

Figure 2.11 illustrates the performance of NLMS, MPNLMS and SC-MPNLMS us-

ing WGN as the input signal. As before, the step-sizes were adjusted to achieve the

same steady-state misalignment for all algorithms. This corresponds to μNLMS = 0.3,

μMPNLMS = μSC−MPNLMS = 0.25. We have also used λ = 6 for SC-MPNLMS. As can

be seen from this result, the SC-MPNLMS algorithm attains approximately 8 dB im-

provement in normalized misalignment during initial convergence compared to NLMS and

same initial performance followed by approximately 2 dB improvement over MPNLMS for

the sparse AIR. After the echo path change, SC-MPNLMS achieves approximately 3 dB

improvement compared to MPNLMS and about 8 dB better performance than NLMS

for dispersive AIR. As shown in Fig. 2.12, with speech signal as the input, the proposed

SC-MPNLMS algorithm achieves approximately 10 dB improvement during initial con-

vergence compared to NLMS and 2 dB compared to MPNLMS for the sparse AIR. For

dispersive AIR, the SC-MPNLMS algorithm achieves an improvement of approximately

4 dB compared to both NLMS and MPNLMS.
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Figure 2.11: Relative convergence of NLMS, MPNLMS and SC-MPNLMS using WGN
input signal with an echo path change at 3.5 s. Impulse response is changed from that
shown from Fig. 1.3 (a) to (b) and μNLMS = 0.3, μMPNLMS = μSC−MPNLMS = 0.25, SNR =
20 dB.
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input signal with echo path changes at 16 s. Impulse response is changed from that shown
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signal with an echo path change at 3.5 s. Impulse response is changed from that shown
from Fig. 1.3 (a) to (b) and μNLMS = μIPNLMS = 0.3, μSC−IPNLMS = 0.7, SNR = 20 dB.

2.5.4 Convergence performance of SC-IPNLMS for AEC

For SC-IPNLMS performance comparison, we used μNLMS = μIPNLMS = 0.3,

μSC−IPNLMS = 0.7 in order to attain same steady state performance. Proportionality con-

trol factors αIP = αSC−IP = −0.75 have been used for both IPNLMS and SC-IPNLMS. It

can be seen from Fig. 2.13 and 2.14 that by using both WGN and speech input signals,

SC-IPNLMS achieves approximately 10 dB improvement in normalized misalignment dur-

ing initial convergence compared to NLMS for the sparse AIR. For a dispersive AIR, the

SC-IPNLMS achieves a 5 dB improvement compared to NLMS. For a speech input, the

improvement of SC-IPNLMS over IPNLMS is 3 dB for both sparse and dispersive AIRs.

On the other hand, the improvement of SC-IPNLMS compared to NLMS are 10 dB and

6 dB for sparse and dispersive AIRs, respectively.
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Figure 2.14: Relative convergence of NLMS, IPNLMS and SC-IPNLMS using speech input
signal with echo path changes at 58 s. Impulse response is changed from that shown in
Fig. 1.3 (a) to (b) and μNLMS = μIPNLMS = 0.3, μSC−IPNLMS = 0.8, SNR = 20 dB.

2.5.5 Convergence performance of the algorithms for various AIRs with
different sparseness in AEC

We extracted eight different impulse responses from the set of AIRs with sparseness

measure 0.58 ≤ ξ ≤ 0.93 as shown in Fig. 2.2. The time taken to reach -20 dB normal-

ized misalignment is plotted against ξ(n) for NLMS, PNLMS, SC-PNLMS, IPNLMS and

SC-IPNLMS in Fig. 2.15, and for NLMS, MPNLMS and SC-MPNLMS in Fig. 2.16. As

before, all step-sizes have been adjusted so that the algorithms achieve the same steady-

state normalized misalignment. These correspond to μNLMS = μPNLMS = μSC−PNLMS =

μIPNLMS = 0.3, μMPNLMS = μSC−MPNLMS = 0.25 and μSC−IPNLMS = 0.7. It can be seen

that when the AIRs are sparse, the speed of initial convergence increases significantly

for each algorithm. This is because many of the filter coefficients are initialized close to

their optimum values since during initialisation, ĥ(0) = 0L×1. In addition, the sparseness-

controlled algorithms (SC-PNLMS, SC-MPNLMS and SC-IPNLMS) give the overall best

performance compare to their conventional methods across the range of sparseness mea-

sure. This is because the proposed algorithms take into account the sparseness measure

of the estimated impulse response at each iteration.
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Figure 2.17: Sparse network impulse responses, sampled at 8 kHz, giving (a) ξ(n) = 0.88
and (b) ξ(n) = 0.85 respectively.

2.5.6 Convergence performance of SC-IPNLMS for NEC

We provide additional simulations to illustrate the performance of SC-IPNLMS in the

context of NEC. Figure 2.17 shows two network impulse responses, sampled at 8 kHz. The

sparseness of these network impulse responses computed using (2.12) are (a) ξ(n) = 0.88

and (b) ξ(n) = 0.85 respectively. As before, we used a WGN input signal while another

WGN sequence is added to give an SNR of 20 dB. Figure 2.18 shows the performances

of NLMS, IPNLMS, for αIP = −0.5 and −0.75, and the proposed SC-IPNLMS algorithm

with αSC−IP = −0.75. An echo path change was introduced using impulse responses as

shown from Fig. 2.17 (a) to (b) at 2 s. We can see from the result that the performance

of IPNLMS is dependent on αIP. More importantly, a faster rate of convergence can be

seen for SC-IPNLMS compared to NLMS and IPNLMS both at initial convergence and

also after the echo path change.

2.6 Tracking performance under time-varying unknown
echo system

As mentioned before, acoustic channels are inherently time-varying systems. It is

therefore necessary to consider the performances of the adaptive algorithms under a time-

varying system model.
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2.6.1 Non-stationary echo system

First-order Markov model

If the channel changes slowly in time, it can be adequately represented by first order

Markov channel [29]. The modified first-order Markov model [29] [30] is employed to

represent a time-varying unknown system

h(n) = βh(n− 1) + s(n)
√

1− β2, (2.16)

where s(n) is an uncorrelated noise with elements drawn from a normal (Gaussian) dis-

tribution with zero mean and variance σ2
s . 0 << β < 1 controls the relative contributions

to the instantaneous values of the “system memory” and “innovations” [29]. It can be

noted that the greater β is the stronger the correlation of the sequence {h}, and β = 1

represents a stationary environment.

Figure 2.19 shows the sparseness measure of the generated impulse responses with

L = 1024, using the modified Markov model in (2.16) with parameters set to σ2
s = 1
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Figure 2.19: Sparseness measure of the generated impulse responses using the modified
Markov model with L = 1024, σ2

s = 1 and β = 0.9999, against iteration number (n) and
generated impulse responses at n = 0, 1000 and 8000, respectively.

and β = 0.9999, against iteration number (n). Even though these impulse responses

cover approximately 70% of the sparseness range, the strength of the echo effects are not

decaying at an exponential rate in magnitude for the later reflections, as can be noted

from the impulses responses shown in Fig. 2.19.

Image model

A more realistic AIRs can be obtained using the method of image proposed in [25][26].

Figure 2.20 illustrates the sparseness measure of the generated impulse responses with L =

1024 against iteration number (n). For this illustration, we assumed that a loudspeaker is

fixed at 4× 9.1× 1.6 m inside a room with a dimension of 8× 10× 3 m, and a user using

a wireless microphone is moving away from the loudspeaker.

It can be noted that the bulk delay represented by the leading zeros in the impulse

responses is proportional to the separation distance between the loudspeaker and the

microphone at that particular time instance. Moreover, this cannot be modeled using the

first order Markov model in Fig. 2.19 .
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Figure 2.20: Sparseness measure of the generated impulse responses using the method of
image with L = 1024 against iteration number (n) and generated impulse responses at
n = 200, 4000 and 8000, respectively.

2.6.2 Simulation results

We present simulation results to compare the performances of the conventional and

the proposed algorithms for time-varying system identification using the image model in

the context of AEC. The input signal is zero mean WGN with σ2
x = 1 and the rest of the

parameters were carried from the Section 2.5 simulations.

We chose to start these simulations with the impulse response generated at n = 200

in Fig. 2.20, which describes that the talker is 20 cm away from the loudspeaker. Inside

NLMS, PNLMS, MPNLMS, IPNLMS, SC-PNLMS, SC-MPNLMS and SC-IPNLMS adap-

tations, every 40 iterations we switched to the next impulse response, which was generated

when the wireless microphone has moved 1 mm further away from the fixed loudspeaker.

Using 8 kHz as the sampling frequency, every 40 iterations is equivalent to every 5 ms,

and therefore this setup is comparable to the microphone is moving at a constant velocity

of 0.2 ms−1.

Figure 2.21 - 2.23 illustrate the tracking performance of the algorithms under time-

varying echo system. As it can be seen from the figures that the proposed algorithms gave
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Figure 2.21: Relative tracking performances of NLMS, PNLMS and SC-PNLMS, using
WGN input signal, under time-varying unknown system conditions simulated using the
image model.

better tracking performances, compared to their conventional methods. These results

reinforce our previous conclusions about the suitability of SC-PNLMS, SC-MPNLMS and

SC-IPNLMS to build echo cancelers with improved robustness to echo system sparsity.
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Figure 2.22: Relative tracking performances of NLMS, MPNLMS and SC-MPNLMS, using
WGN input signal, under time-varying unknown system conditions simulated using the
image model.
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Figure 2.23: Relative tracking performances of NLMS, IPNLMS and SC-IPNLMS, using
WGN input signal, under time-varying unknown system conditions simulated using the
image model.
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Chapter 3

Future Work

This chapter details the planning and time-line for implementation of the feasible fu-

ture research areas. Some listed plans may be modified as we progress, in favor of more

promising areas that may arise during the research.

3.1 Thesis Plan

Chapters in my final thesis will address the following topics:

• Chapter 1 - Introduction:

A general introduction on the sparse algorithms and their uses in many dif-

ferent applications, along with their limitations within such applications,

will be addressed in this chapter.

• Chapter 2 - A class of sparseness controlled algorithms for echo cancella-

tion:

This chapter will present the conventional sparse adaptive algorithms and

the new class of AEC algorithms that can not only work well in both

sparse and dispersive circumstances, but also adapt dynamically to the

level of sparseness using a new sparseness-controlled approach drawing on

techniques originally developed for NEC. It will also include the compu-

tational complexities of those algorithms, along with simulation results,
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using WGN and speech input signals in order to compare performances

over existing methods.

• Chapter 3 - Mathematical analysis of sparse algorithms

The convergence performance of adaptive algorithms under time-invariant

and time-varying unknown system conditions will be analyzed theoreti-

cally. So that, their performances at any particular instance in the con-

vergence process can be predicted using the model. This is something that

has some practical usefulness for setting the step-sizes and other parame-

ters.

• Chapter 4 - Sparseness-controlled in frequency / time-frequency domain

It is well-known that a sparse echo path can be identified faster than a dis-

persive echo path with same length. Therefore, transforming a dispersive

echo path to a sparse path, using existing or possibly a new transformation,

will improve the convergence speed of a dispersive system identification.

This study will be included in this chapter.

• Chapter 5 - Blind multi-channel identification

This chapter will include the detailed literature on the classical blind

multi-channel identification. In a system with two microphones and one

loudspeaker, it is interesting to study the relation between the two micro-

phones. This chapter will include this study and possibly an extension of

this work to M channels.

• Chapter 6 - Conclusion

This chapter will conclude the remarks of the research and propose some

possible extensions.

3.2 Research schedule

A detailed schedule relating to the proposed future works is shown in a Gaunt-chart as

illustrated in Fig. 3.1.
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Figure 3.1: Research schedule.
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Chapter 4

Conclusions

This report has addressed the significant problem caused by undesirable echoes that

result from coupling between the loud speakers and microphones in the near end room. The

research for this report has focused on the development of the adaptive filtering algorithms

for sparse and dispersive systems, emphasising on the achievement of fast convergence rate

with a modest increase in the computational cost.

We have presented a class of sparseness-controlled algorithms which achieves improved

convergence compared to classical NLMS and typical sparse adaptive filtering algorithms.

We have incorporated the sparseness measure into PNLMS, MPNLMS and IPNLMS for

AEC to achieve fast convergence that is robust to the level of sparseness encountered in

the impulse response of the echo path. The resulting SC-PNLMS, SC-MPNLMS and SC-

IPNLMS algorithms take into account the sparseness measure via a modified coefficient

update function.

It has been shown that the proposed sparseness-controlled algorithms are robust to

variations in the level of sparseness in AIR with only a modest increase in computational

complexity. Moreover, we have shown that these proposed algorithms have same or faster

convergence in NEC and with time-varying echo system.

Finally, some feasible future work has been proposed according to the current demands

in such fields.
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