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• Introduction
– Problem statement and motivation
– Signals with Finite Rate of Innovation (FRI)
– Sampling kernels

• 1-D  case
– Kernels that reproduce polynomials (i.e. ‘moments’)
– Annihilating filter method (Prony’s method)
– Sampling of streams of Diracs and piecewise polynomial signals.

• 2-D case
– Polynomial reproduction in 2-D, and moments from samples.
– Sampling sets of Diracs, bilevel polygons, polygonal lines, and 

quadrature domains (e.g. circles, ellipses, cardioids).

• Application (image super-resolution)

• Conclusion

Outline



3

x(t)
h(t) = '(−t=T )

y(t)

T

Acquisition device

yn = hx(t); '(t=T − n)i

Given the samples                                  , we want to reconstruct x(t).yn = hx(t);'(t=T −n)i

Natural questions:

• What signals         can be sampled?

• What kernels          can be used?

• What reconstruction algorithm?

'(t)

x(t)

Is there any life beyond  ‘bandlimited-sinc’ space?

Introduction: Problem statement and motivation

We consider uniform sampling!
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Introduction: Sampling for sparsity

∗
Perfect Reconstruction?

Why sampling?

• Many natural phenomena  are continuous and required to be observed and 
processed by sampling.

• Important for hybrid analog/digital processing.

• Related to the notion of sparsity of signals; important in data transmission and 
storage.

• Useful in image resolution enhancement and super-resolution.

1000× 1000 25× 25
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Introduction: Classical to FRI

Classical sampling formulation:

• Sampling of         is equivalent to projecting         onto  the shift-invariant  

subspace 

• If                  perfect reconstruction is possible.

• Reconstruction process is linear: 

• For bandlimited signals 

x(t) x(t)

x(t) 2 V;

'(t) = sinc(t).

V = spanf'(t=T − n)gn∈Z.

x̂(t) =
P

n yn '(t=T − n).

x(t)
yn '(t)~'(t)

T

x̂(t)

What is special about         ? – bandlimited!

The signal                                              has a finite number                  of  degrees of 
freedom per unit time.

Intuition: If the number of samples      per unit of time is greater than or equal to the 
degrees of freedom      then we can reconstruct         from its samples

x(t)

x(t)
yn

yn

ρ = 1=T

ρ

x̂(t) =
P

n yn '(t=T − n)
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Introduction: Signals with Finite Rate of Innovation (FRI)

Definition [VetterliMB02]: The number      of degrees of freedom per unit time is 
called rate of innovation. A signal with a finite      is called signal with finite rate of 
innovation.

Notice: Many signals that do not belong to shift-invariant subspace have finite rate 
of innovation. That means non-bandlimited but parametric signals!

Examples: Streams of Diracs and piecewise polynomials.                   
(e.g. a stream of K Diracs has 2K degrees of freedom: amplitudes and positions.)

ρ
ρ

These signals can be sampled using  infinite support sinc and Gaussian kernels 
[VetterliMB02]. 
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Introduction: Sampling kernels

Possible classes of kernels
(Ideally as general as possible and of compact support) 

Class 1. Any kernel         that can reproduce polynomials (satisfy Strang-Fix 
conditions):

E.g. any scaling function (wavelet theory), B-splines
Class 2. Any kernel         that can reproduce exponentials

E.g. E-splines [UnserB05].                                             
Useful in sampling piecewise sinusoidal signals. [BerentD-ICASSP06]

Class 3. Any kernel with rational Fourier transform

Linear differential acquisition devices: most electrical, mechanical, and acoustic 
systems. E.g. sampling the step response of an R-C circuit.

We focus on the Class 1 kernels that can reproduce polynomials. The polynomial 
reproduction property of the kernel allows us to reproduce the moments.

'(t)

' (t)

P
n cm,n '(t− n) = tm; m = 0; 1; : : : ;N
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1-D case: Sampling Diracs with kernels that reproduce polynomials
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P
n cm,n '(t− n) = tm; m = 0; 1; : : : ; N .

Assume that the kernel          can reproduce polynomials up to degree                      '(t) N ≥ 2K − 1:

Assume that is a stream of      Diracs:

and let 

Q: Given the samples                                     ,    
how can we find the locations      and 
amplitudes      of the Diracs?

x(t)

T = 1.

yn = hx(t); '(t− n)i
tk

ak

x(t) =
PK−1

k=0 ak δ(t− tk)
K
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1-D case: Sampling of Diracs

Computing                                                       ,  we have thatτm =
P

n cm,n yn; m = 0; 1; : : : ; N

We thus obtain the moments of         from the linear combinations of samples
and coefficients                  

τm x(t) yn
cm,n.

It is possible to retrieve the locations       and amplitudes   of K Diracs from the 
moments                                                         using annihilating filter method.τm =

PK−1
k=0 ak t

m
k ; m = 0; 1; : : : ; N

tk ak

τm =
X
n

cm,n yn

=

*
x(t);

X
n

cm,n'(t− n)
+

=

Z ∞
−∞

x(t) tmdt; (moments of x(t))

=
K−1X
k=0

akt
m
k ; m = 0; 1; : : : ; N



10

1-D case: Sampling of Diracs

However, for             Dirac, we only need two moments, and thus, a kernel         that 
can reproduce polynomials at least up to degree

'(t)K = 1
N = 2K − 1 = 1.

X
n

yn =< a0δ(t−t0);
X
n

'(t−n) >=
Z ∞
−∞

a0δ(t−t0)
X
n

'(t−n) dt = a0
X
n

'(t0−n) = a0

X
n

cm,n yn =< a0δ(t − t0); c1,n
X
n

'(t − n) >= a0
X
n

c1,n '(t0 − n) = a0t0
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1-D case: Sampling of Diracs

τ0 =
P

n yn = a0 + a1 τ1 =
P

n c1,nyn = a0t0 + a1t1

τ2 =
P

n c2,nyn = a0t
2
0 + a1t

2
1 τ3 =

P
n c3,nyn = a0t

3
0 + a1t

3
1
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1-D case: Annihilating filter method

1. Design a filter        such that the convolution               

The z-transform of the filter       is    H (z) =
QK−1
k=0

¡
1 − tkz−1

¢
:

hm

hm26664
τK−1 τK−2 · · · τ0
τK τK−1 · · · τ1
...

...
. . .

...
τN−1 τN−2 · · · τN−K

37775
26664
h1
h2
...
hK

37775 = −
26664

τK
τK+1
...
τN

37775 :

2.  From       , find the roots of            This gives the Dirac locationshm H (z). tk.

26664
1 1 · · · 1
t0 t1 · · · tK−1
...

...
. . .

...

tK−10 tK−11 · · · tN−1K−1

37775
26664

a0
a1
...

aK−1

37775 =
26664

τ0
τ1
...

τK−1

37775 :

This is a classic Yule-Walker system with a unique solution for distinct Diracs.

3. Solve the first     equations in                                
This gives us the amplitudes ak.

K τm =
PK−1

k=0 ak t
m
k .

This is a classic Vandermonde system with unique solution for distinct tk.

hm ∗ τm =
Pm

i=0 hiτm−i = 0.
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1-D case: Sampling streams of Diracs

• Since the kernel is of compact support, samples of properly isolated groups of (at most K) 
Diracs do not influence each other. 

• Therefore, Proposition 1 can be extended for an infinite stream of Diracs using a sequential 
local algorithm by relaxing the interval size of K Diracs from KLT to 2KLT. This helps to 
isolate the groups of at most K Diracs.

• There is a trade-off between local rate of innovation and complexity in the reconstruction 
process.

Proposition 1

This also applies to a stream of differentiated Diracs:

Diracs with                  weights can be sampled using a kernel that can reproduce 
polynomials up to degree                        or   
K

N ≥ 2K̂ − 1
K̂ = KR

N ≥ 2KR − 1.

Assume a sampling kernel '(t) that can reproduce polynomials up to de-
gree N ≥ 2K − 1 and of compact support L. A stream of K Diracs x(t) =PK−1

k=0 ak δ(t − tk) is uniquely determined from the samples defined by yn =<
'(t=T − n); x(t) > if there are at most K Diracs in an interval of size KLT:

x(R)(t) =
PK−1

k=0

PR−1
r=0 ak,r δ

(r)(t− tk)
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1-D case: Sampling piecewise constant signals

Insight: The derivative of a piecewise constant is a stream of Diracs. Thus by 
computing the derivative of piecewise constant signal, we can sample it.

Given the samples      compute the finite difference            ,  we haveyn z
(1)
n = yn+1 − yn

Thus the samples        are related to the derivative ofz
(1)
n x(t).

z(1)n = yn+1 − yn = hx(t); '(t− n− 1)− '(t− n)i

=
1

2π


X(w); '̂(w)e−jwn(e−jw − 1)

®
=

1

2π

¿
X(w);−jw '̂(w) e−jwn

µ
1− e−jw
jw

¶À
= −

¿
x(t);

d

dt

£
'(t− n) ∗ β0(t− n)

¤À
=

¿
d

dt
x(t); '(t− n) ∗ β0(t− n)

À

Parseval
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1-D case: Sampling piecewise constant signals

∗

∗

D(1)[·]

x(t) '(t)

'(t) ∗ β0(t)

yn

z
(1)
n

d
dtx ( t )

z
(1)
n = yn+1− yn
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1-D case: Sampling piecewise polynomial signals

Similarly,

Piecewise polynomial Differentiated Diracs
Higher order derivative

x(t) x(R)(t) =
PK−1

k=0

PR−1
r=0 ak,r δ

(r)(t− tk)

yn z
(R)
n

tk

ak,r

x(t)

'(t)

x(R)(t) x(t)

D(R)[·] τm
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2-D case: Polynomial reproduction in 2-D

The 2-D sampling kernel is a separable kernel given by the tensor product of two 1-
D functions that can reproduce polynomials:                     Therefore, it 
follows that,

'xy(x; y) = '(x)'(y).

c0,0m,n

c1,0m,n c0,1m,n

P
m

P
n c

α,β
m,n 'xy(x−m; y − n) = xαyβ ,

where γ = α + β ; γ = 0; 1; : : : ; N .

'xy(x; y)
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2-D case: Moments from samples

The polynomial reproduction property of                  allows us to retrieve the 
(geometric and complex) moments of the signal              from its samples         :g(x; y)

'xy(x; y)
ym,n

In 2-D, we observe the samples of a signal              as given byg(x; y)

Geometric moments:

Complex moments:

ym,n = hg(x; y); 'xy(x=Tx −m; y=Ty − n)i.

where γ = α + β ; i =
p
−1

Mα,β =

Z Z
Ω

g(x; y)xαyβ dx dy

=

Z Z
Ω

g(x; y)
X
m

X
n

cα,βm,n 'xy(x−m; y − n) dx dy

=
X
m

X
n

cα,βm,n hg(x; y); 'xy(x−m; y − n)i

=
X
m

X
n

cα,βm,n ym,n

τγ =
R R

Ω
g(x; y) (x+ iy)γ dx dy =

Pγ
β=0

¡
γ
β

¢
iβMα,β ;
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2-D case: Sets of Diracs

We want to reconstruct  a set of K Diracs 

from the observed samples

• In 1-D we use the ability of          to reproduce polynomials for retrieving moments

of the signal           Then used the annihilating fitter method.x(t).

'(t)

τm =
R∞
−∞ x(t) t

m =
PK−1

k=0 ak t
m
k ; m = 0; 1; : : : N

ym,n= hg(x; y); 'xy(x − m; y − n)i.

Then using the annihilating filter method, we retrieve the locations                        
and amplitudes        For     Diracs, we need        moments, i.e.    

zk = (xk + iyk)
K 2K N ≥ 2K − 1.ak.

g(x; y) =
PK−1
k=0 ak δxy(x − xk; y − yk)

• In 2-D we simply need to obtain the complex-moments

τγ =
R R

g(x; y)zγ dxdy =
R R

g(x; y)(x+ iy)γ dxdy =
PK−1

k=0 ak z
γ
k

where z = x + iy; and γ = 0; 1; : : : ; N :
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Bilevel polygonal images

The same applies to polygonal images. However, in this case we need to obtain 
weighted complex-moments [Davis64] [MilanfarVKW95]. For a given polygon      
with     corner points, it follows thatK

g(x; y)

Thus, from the samples we can estimate complex-moments, and from the 
complex-moments, using annihilating filter method, the locations                            of  
the corner points.

ym,n
zk = (xk + iyk)

To retrieve      corner points, we need        complex-moments,  and therefore, a 
kernel                  that can reproduce polynomials up to degree 'xy(x; y)

K 2K
N ≥ 2K − 3.

τ̂γ = γ(γ − 1)
Z Z

Ω

g(x; y)(z)γ−2 dxdy

= γ(γ − 1)τγ−2

= γ(γ − 1)
γ−2X
β=0

iβ
µ
γ − 2
β

¶X
m

X
n

cα,βm,nym,n

=
KX
k=0

ρk z
γ
k ;

where γ − 2 2 f0; 1; : : : ; N g; γ − 2 = α + β ; and τ̂0= τ̂1 = 0.
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Polygon with K=3 corner points A set of K=3 Diracs

),(*),( yxyxg xy −−ϕ ),(*),( yxyxg xy −−ϕ),( yxg),( yxg

),(5 yxxyβ

nmy , nmy ,

)(zA→γτ

2-D case: Bilevel polygons and Diracs

)(ˆ zA→γτ

),(3 yxxyβ
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2-D case: Bilevel polygonal images

Since the sampling kernel is of compact support, all polygons can be reconstructed 
independently, given that they are sufficiently apart.

Notice: The polygons must be convex for unique reconstruction.
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2-D case: Polygonal lines and quadrature domains

Similarly, by using complex-moments and annihilating filter method we can 
reconstruct polygonal lines,

and quadrature domains (e.g. circles, ellipses, cardioids) [MilanfarPVGG2000].

zc = (xc + iyc) =
τ1
τ0τ0 = πr2 ) r =

p
τ0=π
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Application: Image super-resolution

• One hundred low resolution and shifted versions of the original image.

• Accurate registration is achieved by retrieving the continuous-moments of the  
earth from its 100 sets of samples.

• The registered images are then interpolated and restored to achieve super-
resolution.

Image registration using continuous-moments from samples [BaboulazD-ICIP06].

Original (2000 × 2000) Low res. (65 × 65) Super-res. (2000 × 2000)
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Application: Image super-resolution

Video
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Conclusion

• We can sample and perfectly reconstruct a large class of non-bandlimited signals 
(i.e. Signals with Finite Rate of Innovation) in 1-D, and 2-D.

• We can use a rich class of kernels. In particular, the compactly supported kernels 
that reproduce polynomials allow us to retrieve the continuous-moments of the 
signals from their samples. 

• The retrieval of continuous-moments from samples is useful in many applications,   
e.g. super-resolution image registration. 
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Questions?


