

Sampling Moments and Reconstructing Signals with Finite Rate of Innovation: Shannon meets Strang-Fix

Pier Luigi Dragotti, Martin Vetterli, Pancham Shukla, and Thierry Blu

Pancham Shukla (PhD Student)

Communications and Signal Processing Group Electrical and Electronic Engineering Department Imperial College London Email: p.shukla@imperial.ac.uk

16 May 2006

Outline

• Introduction

- Problem statement and motivation
- Signals with Finite Rate of Innovation (FRI)
- Sampling kernels
- 1-D case
 - Kernels that reproduce polynomials (i.e. 'moments')
 - Annihilating filter method (Prony's method)
 - Sampling of streams of Diracs and piecewise polynomial signals.

• 2-D case

- Polynomial reproduction in 2-D, and moments from samples.
- Sampling sets of Diracs, bilevel polygons, polygonal lines, and quadrature domains (e.g. circles, ellipses, cardioids).
- Application (image super-resolution)
- Conclusion

Introduction: Problem statement and motivation

We consider uniform sampling!

Acquisition device

$$x(t) \longrightarrow h(t) = \varphi(-t/T) \qquad y(t) \qquad y_n = \langle x(t), \varphi(t/T - n) \rangle$$

Given the samples $y_n = \langle x(t), \varphi(t/T - n) \rangle$, we want to reconstruct x(t).

Natural questions:

- What signals x(t) can be sampled?
- What kernels $\varphi(t)$ can be used?
- What reconstruction algorithm?

Is there any life beyond 'bandlimited-sinc' space?

Introduction: Sampling for sparsity

Why sampling?

- Many natural phenomena are continuous and required to be observed and processed by sampling.
- Important for hybrid analog/digital processing.
- Related to the notion of sparsity of signals; important in data transmission and storage.
- Useful in image resolution enhancement and super-resolution.

Introduction: Classical to FRI

Classical sampling formulation:

- Sampling of x(t) is equivalent to projecting x(t) onto the shift-invariant subspace $V = \operatorname{span} \{ \varphi(t/T n) \}_{n \in \mathbb{Z}}.$
- If $x(t) \in V$, perfect reconstruction is possible.
- Reconstruction process is linear: $\hat{x}(t) = \sum_n y_n \varphi(t/T n)$.
- For bandlimited signals $\varphi(t) = \operatorname{sinc}(t)$.

What is special about x(t)? – bandlimited!

The signal $\hat{x}(t) = \sum_{n} y_n \varphi(t/T - n)$ has a finite number $\rho = 1/T$ of degrees of freedom per unit time.

Intuition: If the number of samples y_n per unit of time is greater than or equal to the degrees of freedom ρ then we can reconstruct x(t) from its samples y_n

Introduction: Signals with Finite Rate of Innovation (FRI)

Definition [VetterliMB02]: The number ρ of degrees of freedom per unit time is called rate of innovation. A signal with a finite ρ is called signal with finite rate of innovation.

Notice: Many signals that do not belong to shift-invariant subspace have finite rate of innovation. That means non-bandlimited but parametric signals!

Examples: Streams of Diracs and piecewise polynomials. (e.g. a stream of K Diracs has 2K degrees of freedom: amplitudes and positions.)

These signals can be sampled using infinite support sinc and Gaussian kernels [VetterliMB02].

Introduction: Sampling kernels

Possible classes of kernels

(Ideally as general as possible and of compact support)

Class 1. Any kernel $\varphi(t)$ that can reproduce polynomials (satisfy Strang-Fix conditions):

$$\sum_{n} c_{m,n} \varphi(t-n) = t^m, \quad m = 0, 1, \dots, N$$

E.g. any scaling function (wavelet theory), B-splines

Class 2. Any kernel $\varphi(t)$ that can reproduce exponentials

E.g. E-splines [UnserB05]. Useful in sampling piecewise sinusoidal signals. [BerentD-ICASSP06]

Class 3. Any kernel with rational Fourier transform

Linear differential acquisition devices: most electrical, mechanical, and acoustic systems. E.g. sampling the step response of an R-C circuit.

We focus on the Class 1 kernels that can reproduce polynomials. The polynomial reproduction property of the kernel allows us to reproduce the moments.

1-D case: Sampling Diracs with kernels that reproduce polynomials

Assume that x(t) is a stream of K Diracs: $x(t) = \sum_{k=0}^{K-1} a_k \,\delta(t - t_k)$ and let T = 1.

Q: Given the samples $y_n = \langle x(t), \varphi(t-n) \rangle$, how can we find the locations t_k and amplitudes a_k of the Diracs?

Assume that the kernel $\varphi(t)$ can reproduce polynomials up to degree $N \ge 2K - 1$:

$$\sum_{n} c_{m,n} \varphi(t-n) = t^m, \quad m = 0, 1, \dots, N.$$

1-D case: Sampling of Diracs

Computing $au_m = \sum_n c_{m,n} \, y_n, \quad m = 0, 1, \dots, N$, we have that

$$\tau_{m} = \sum_{n} c_{m,n} y_{n}$$

$$= \left\langle x(t), \sum_{n} c_{m,n} \varphi(t-n) \right\rangle$$

$$= \int_{-\infty}^{\infty} x(t) t^{m} dt, \quad (\text{moments of } x(t))$$

$$= \sum_{k=0}^{K-1} a_{k} t_{k}^{m}, \quad m = 0, 1, \dots, N$$

We thus obtain the moments τ_m of x(t) from the linear combinations of samples y_n and coefficients $c_{m,n}$.

It is possible to retrieve the locations t_k and amplitudes a_k of K Diracs from the moments $\tau_m = \sum_{k=0}^{K-1} a_k t_k^m$, $m = 0, 1, \dots, N$ using annihilating filter method.

1-D case: Sampling of Diracs

However, for K = 1 Dirac, we only need two moments, and thus, a kernel $\varphi(t)$ that can reproduce polynomials at least up to degree N = 2K - 1 = 1.

$$\sum_{n} y_n = \langle a_0 \delta(t-t_0), \sum_{n} \varphi(t-n) \rangle = \int_{-\infty}^{\infty} a_0 \delta(t-t_0) \sum_{n} \varphi(t-n) dt = a_0 \sum_{n} \varphi(t_0-n) = a_0 \delta(t-t_0) \sum_{n} \varphi(t-n) dt = a_0 \sum_{n} \varphi(t_0-n) = a_0 \delta(t-t_0) \sum_{n} \varphi(t-n) dt = a_0 \sum_{n} \varphi(t-n) (dt) \sum_{n} \varphi(t-n) dt = a_0 \sum_{n} \varphi(t-n) (dt) \sum_{n} \varphi(t-n) dt = a_0 \sum_{n} \varphi(t-n) (dt) \sum_{n} \varphi(t-n) (dt)$$

$$\sum_{n} c_{m,n} y_n = \langle a_0 \delta(t - t_0), c_{1,n} \sum_{n} \varphi(t - n) \rangle = a_0 \sum_{n} c_{1,n} \varphi(t_0 - n) = a_0 t_0$$

1-D case: Sampling of Diracs

1-D case: Annihilating filter method

1. Design a filter h_m such that the convolution $h_m * \tau_m = \sum_{i=0}^m h_i \tau_{m-i} = 0$. The z-transform of the filter h_m is $H(z) = \prod_{k=0}^{K-1} (1 - t_k z^{-1})$. $\begin{bmatrix} \tau_{K-1} & \tau_{K-2} & \cdots & \tau_0 \\ \tau_K & \tau_{K-1} & \cdots & \tau_1 \\ \vdots & \vdots & \ddots & \vdots \\ \tau_{N-1} & \tau_{N-2} & \cdots & \tau_{N-K} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_K \end{bmatrix} = - \begin{bmatrix} \tau_K \\ \tau_{K+1} \\ \vdots \\ \tau_N \end{bmatrix}$.

This is a classic Yule-Walker system with a unique solution for distinct Diracs.

- 2. From h_m , find the roots of H(z). This gives the Dirac locations t_k .
- 3. Solve the first *K* equations in $\tau_m = \sum_{k=0}^{K-1} a_k t_k^m$. This gives us the amplitudes a_k .

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_0 & t_1 & \cdots & t_{K-1} \\ \vdots & \vdots & \ddots & \vdots \\ t_0^{K-1} & t_1^{K-1} & \cdots & t_{K-1}^{N-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{K-1} \end{bmatrix} = \begin{bmatrix} \tau_0 \\ \tau_1 \\ \vdots \\ \tau_{K-1} \end{bmatrix}$$

This is a classic Vandermonde system with unique solution for distinct t_k .

1-D case: Sampling streams of Diracs

Proposition 1

Assume a sampling kernel $\varphi(t)$ that can reproduce polynomials up to degree $N \ge 2K - 1$ and of compact support L. A stream of K Diracs $x(t) = \sum_{k=0}^{K-1} a_k \,\delta(t-t_k)$ is uniquely determined from the samples defined by $y_n = \langle \varphi(t/T-n), x(t) \rangle$ if there are at most K Diracs in an interval of size KLT.

- Since the kernel is of compact support, samples of properly isolated groups of (at most K) Diracs do not influence each other.
- Therefore, Proposition 1 can be extended for an infinite stream of Diracs using a sequential local algorithm by relaxing the interval size of K Diracs from KLT to 2KLT. This helps to isolate the groups of at most K Diracs.
- There is a trade-off between local rate of innovation and complexity in the reconstruction process.

This also applies to a stream of differentiated Diracs:

$$x^{(R)}(t) = \sum_{k=0}^{K-1} \sum_{r=0}^{R-1} a_{k,r} \,\delta^{(r)}(t-t_k)$$

K Diracs with $\hat{K} = KR$ weights can be sampled using a kernel that can reproduce polynomials up to degree $N \ge 2\hat{K} - 1$ or $N \ge 2KR - 1$.

1-D case: Sampling piecewise constant signals

Insight: The derivative of a piecewise constant is a stream of Diracs. Thus by computing the derivative of piecewise constant signal, we can sample it.

Given the samples y_n compute the finite difference $z_n^{(1)} = y_{n+1} - y_n$, we have

$$\begin{aligned} z_n^{(1)} &= y_{n+1} - y_n &= \langle x(t), \varphi(t-n-1) - \varphi(t-n) \rangle \\ &= \frac{1}{2\pi} \left\langle X(w), \hat{\varphi}(w) e^{-jwn} (e^{-jw} - 1) \right\rangle \quad \text{Parseval} \\ &= \frac{1}{2\pi} \left\langle X(w), -jw \, \hat{\varphi}(w) \, e^{-jwn} \left(\frac{1-e^{-jw}}{jw} \right) \right\rangle \\ &= -\left\langle x(t), \frac{d}{dt} \left[\varphi(t-n) * \beta^0(t-n) \right] \right\rangle \\ &= \left\langle \frac{d}{dt} x(t), \varphi(t-n) * \beta^0(t-n) \right\rangle \end{aligned}$$

Thus the samples $z_n^{(1)}$ are related to the derivative of x(t).

1-D case: Sampling piecewise constant signals

1-D case: Sampling piecewise polynomial signals

Similarly,

2-D case: Polynomial reproduction in 2-D

The 2-D sampling kernel is a separable kernel given by the tensor product of two 1-D functions that can reproduce polynomials: $\varphi_{xy}(x, y) = \varphi(x)\varphi(y)$. Therefore, it follows that,

$$\sum_{m} \sum_{n} c_{m,n}^{\alpha,\beta} \varphi_{xy}(x-m,y-n) = x^{\alpha} y^{\beta},$$

where $\gamma = \alpha + \beta$, $\gamma = 0, 1, \dots, N$.

2-D case: Moments from samples

In 2-D, we observe the samples of a signal g(x, y) as given by

$$y_{m,n} = \langle g(x,y), \varphi_{xy}(x/T_x - m, y/T_y - n) \rangle.$$

The polynomial reproduction property of $\varphi_{xy}(x, y)$ allows us to retrieve the (geometric and complex) moments of the signal g(x, y) from its samples $y_{m,n}$:

Geometric moments:

$$\mathcal{M}_{\alpha,\beta} = \int \int_{\Omega} g(x,y) \, x^{\alpha} y^{\beta} \, dx \, dy$$

=
$$\int \int_{\Omega} g(x,y) \sum_{m} \sum_{n} c_{m,n}^{\alpha,\beta} \, \varphi_{xy}(x-m,y-n) \, dx \, dy$$

=
$$\sum_{m} \sum_{n} c_{m,n}^{\alpha,\beta} \, \langle g(x,y), \varphi_{xy}(x-m,y-n) \rangle$$

=
$$\sum_{m} \sum_{n} c_{m,n}^{\alpha,\beta} \, y_{m,n}$$

Complex moments:

$$\tau_{\gamma} = \int \int_{\Omega} g(x, y) \, (x + iy)^{\gamma} \, dx \, dy = \sum_{\beta=0}^{\gamma} {\gamma \choose \beta} \, i^{\beta} \, \mathcal{M}_{\alpha, \beta},$$

where $\gamma = \alpha + \beta, \ i = \sqrt{-1}$ ¹⁸

2-D case: Sets of Diracs

We want to reconstruct a set of K Diracs $g(x,y) = \sum_{k=0}^{K-1} a_k \, \delta_{xy}(x - x_k, y - y_k)$ from the observed samples $y_{m,n} = \langle g(x,y), \varphi_{xy}(x - m, y - n) \rangle.$

• In 1-D we use the ability of $\varphi(t)$ to reproduce polynomials for retrieving moments

$$\tau_m = \int_{-\infty}^{\infty} x(t) t^m = \sum_{k=0}^{K-1} a_k t_k^m, \quad m = 0, 1, \dots N$$

of the signal x(t). Then used the annihilating fitter method.

In 2-D we simply need to obtain the complex-moments

$$au_{\gamma} = \int \int g(x,y) z^{\gamma} dx dy = \int \int g(x,y) (x+iy)^{\gamma} dx dy = \sum_{k=0}^{K-1} a_k z_k^{\gamma}$$

where $z = x + iy$, and $\gamma = 0, 1, \dots, N$.

Then using the annihilating filter method, we retrieve the locations $z_k = (x_k + iy_k)$ and amplitudes a_k . For K Diracs, we need 2K moments, i.e. $N \ge 2K - 1$.

Bilevel polygonal images

The same applies to polygonal images. However, in this case we need to obtain weighted complex-moments [Davis64] [MilanfarVKW95]. For a given polygon g(x, y) with K corner points, it follows that

$$\begin{aligned} \hat{\tau}_{\gamma} &= \gamma(\gamma-1) \int \int_{\Omega} g(x,y)(z)^{\gamma-2} \, dx \, dy \\ &= \gamma(\gamma-1) \tau_{\gamma-2} \\ &= \gamma(\gamma-1) \sum_{\beta=0}^{\gamma-2} i^{\beta} \binom{\gamma-2}{\beta} \sum_{m} \sum_{n} c_{m,n}^{\alpha,\beta} y_{m,n} \\ &= \sum_{k=0}^{K} \rho_{k} \, z_{k}^{\gamma}, \end{aligned}$$

where $\gamma - 2 \in \{0, 1, ..., N\}, \ \gamma - 2 = \alpha + \beta$, and $\hat{\tau}_0 = \hat{\tau}_1 = 0$.

Thus, from the samples $y_{m,n}$ we can estimate complex-moments, and from the complex-moments, using annihilating filter method, the locations $z_k = (x_k + iy_k)$ of the corner points.

To retrieve *K* corner points, we need 2*K* complex-moments, and therefore, a kernel $\varphi_{xy}(x, y)$ that can reproduce polynomials up to degree $N \ge 2K - 3$.²⁰

2-D case: Bilevel polygons and Diracs

2-D case: Bilevel polygonal images

Since the sampling kernel is of compact support, all polygons can be reconstructed independently, given that they are sufficiently apart.

Notice: The polygons must be convex for unique reconstruction.

2-D case: Polygonal lines and quadrature domains

Similarly, by using complex-moments and annihilating filter method we can reconstruct polygonal lines,

and quadrature domains (e.g. circles, ellipses, cardioids) [MilanfarPVGG2000].

 au_0

$$=\pi r^2 \Rightarrow r = \sqrt{\tau_0/\pi}$$
 $z_c = (x_c + iy_c) = \frac{\tau_1}{\tau_0}$

23

Application: Image super-resolution

Image registration using continuous-moments from samples [BaboulazD-ICIP06].

Original (2000×2000) Low

Low res. (65×65)

Super-res. (2000×2000)

- One hundred low resolution and shifted versions of the original image.
- Accurate registration is achieved by retrieving the continuous-moments of the earth from its 100 sets of samples.
- The registered images are then interpolated and restored to achieve superresolution.

Application: Image super-resolution

Video

Conclusion

- We can sample and perfectly reconstruct a large class of non-bandlimited signals (i.e. Signals with Finite Rate of Innovation) in 1-D, and 2-D.
- We can use a rich class of kernels. In particular, the compactly supported kernels that reproduce polynomials allow us to retrieve the continuous-moments of the signals from their samples.
- The retrieval of continuous-moments from samples is useful in many applications, e.g. super-resolution image registration.

Publications

- P L Dragotti, M Vetterli and T Blu, "Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix," IEEE Trans. Sig. Proc. February 2006, submitted.
- P L Dragotti, M Vetterli and T Blu, "Exact sampling results for signals with finite rate of innovation using Strang-Fix conditions and local kernels," Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP05), Philadelphia, USA, March 2005.
- P Shukla and P L Dragotti, "Sampling schemes for 2-D signals with finite rate of innovations using kernels that reproduce polynomials," Proc. of IEEE International Conference on Image Processing (ICIP05), Genova, Italy, September 2005.
- L Baboulaz and P L Dragotti, "Distributed acquisition and image superresolution based on continuous moments from samples," IEEE International Conference on Image Processing (ICIP06), Atlanta, USA, October 2006, to appear.

Questions?