Sampling Moments and Reconstructing Signals with Finite Rate of Innovation: Shannon meets Strang-Fix

Pier Luigi Dragotti, Martin Vetterli, Pancham Shukla, and Thierry Blu

Pancham Shukla (PhD Student)
Communications and Signal Processing Group
Electrical and Electronic Engineering Department
Imperial College London
Email: p.shukla@imperial.ac.uk

Outline

- Introduction
- Problem statement and motivation
- Signals with Finite Rate of Innovation (FRI)
- Sampling kernels
- 1-D case
- Kernels that reproduce polynomials (i.e. 'moments')
- Annihilating filter method (Prony's method)
- Sampling of streams of Diracs and piecewise polynomial signals.
- 2-D case
- Polynomial reproduction in 2-D, and moments from samples.
- Sampling sets of Diracs, bilevel polygons, polygonal lines, and quadrature domains (e.g. circles, ellipses, cardioids).
- Application (image super-resolution)
- Conclusion

Introduction: Problem statement and motivation

We consider uniform sampling!

Given the samples $y_{n}=\langle x(t), \varphi(t / T-n)\rangle$, we want to reconstruct $x(t)$.
Natural questions:

- What signals $x(t)$ can be sampled?
-What kernels $\varphi(t)$ can be used?
-What reconstruction algorithm?

Is there any life beyond 'bandlimited-sinc' space?

Introduction: Sampling for sparsity

Why sampling?

- Many natural phenomena are continuous and required to be observed and processed by sampling.
- Important for hybrid analog/digital processing.
- Related to the notion of sparsity of signals; important in data transmission and storage.
- Useful in image resolution enhancement and super-resolution.

Introduction: Classical to FRI

Classical sampling formulation:

- Sampling of $x(t)$ is equivalent to projecting $x(t)$ onto the shift-invariant subspace $V=\operatorname{span}\{\varphi(t / T-n)\}_{n \in \mathbb{Z}}$.
- If $x(t) \in V$, perfect reconstruction is possible.
- Reconstruction process is linear: $\hat{x}(t)=\sum_{n} y_{n} \varphi(t / T-n)$.
- For bandlimited signals $\varphi(t)=\operatorname{sinc}(t)$.

What is special about $x(t)$? - bandlimited!
The signal $\hat{x}(t)=\sum_{n} y_{n} \varphi(t / T-n)$ has a finite number $\rho=1 / T$ of degrees of freedom per unit time.

Intuition: If the number of samples y_{n} per unit of time is greater than or equal to the degrees of freedom ρ then we can reconstruct $x(t)$ from its samples y_{n}

Introduction: Signals with Finite Rate of Innovation (FRI)

Definition [VetterliMB02]: The number ρ of degrees of freedom per unit time is called rate of innovation. A signal with a finite ρ is called signal with finite rate of innovation.

Notice: Many signals that do not belong to shift-invariant subspace have finite rate of innovation. That means non-bandlimited but parametric signals!

Examples: Streams of Diracs and piecewise polynomials.
(e.g. a stream of K Diracs has $2 K$ degrees of freedom: amplitudes and positions.)

These signals can be sampled using infinite support sinc and Gaussian kernels [VetterliMB02].

Introduction: Sampling kernels

Possible classes of kernels
(Ideally as general as possible and of compact support)
Class 1. Any kernel $\varphi(t)$ that can reproduce polynomials (satisfy Strang-Fix conditions):

$$
\sum_{n} c_{m, n} \varphi(t-n)=t^{m}, \quad m=0,1, \ldots, N
$$

E.g. any scaling function (wavelet theory), B-splines

Class 2. Any kernel $\varphi(t)$ that can reproduce exponentials
E.g. E-splines [UnserB05].

Useful in sampling piecewise sinusoidal signals. [BerentD-ICASSP06]
Class 3. Any kernel with rational Fourier transform
Linear differential acquisition devices: most electrical, mechanical, and acoustic systems. E.g. sampling the step response of an R-C circuit.

We focus on the Class 1 kernels that can reproduce polynomials. The polynomial reproduction property of the kernel allows us to reproduce the moments.

1-D case: Sampling Diracs with kernels that reproduce polynomials

Assume that $x(t)$ is a stream of K Diracs: $x(t)=\sum_{k=0}^{K-1} a_{k} \delta\left(t-t_{k}\right)$ and let $T=1$.

Q: Given the samples $y_{n}=\langle x(t), \varphi(t-n)\rangle$, how can we find the locations t_{k} and amplitudes a_{k} of the Diracs?

Assume that the kernel $\varphi(t)$ can reproduce polynomials up to degree $N \geq 2 K-1$:

$$
\sum_{n} c_{m, n} \varphi(t-n)=t^{m}, \quad m=0,1, \ldots, N
$$

1-D case: Sampling of Diracs

Computing $\tau_{m}=\sum_{n} c_{m, n} y_{n}, \quad m=0,1, \ldots, N$, we have that

$$
\begin{aligned}
\tau_{m} & =\sum_{n} c_{m, n} y_{n} \\
& =\left\langle x(t), \sum_{n} c_{m, n} \varphi(t-n)\right\rangle \\
& =\int_{-\infty}^{\infty} x(t) t^{m} d t, \quad(\text { moments of } x(t)) \\
& =\sum_{k=0}^{K-1} a_{k} t_{k}^{m}, \quad m=0,1, \ldots, N
\end{aligned}
$$

We thus obtain the moments τ_{m} of $x(t)$ from the linear combinations of samples y_{n} and coefficients $c_{m, n}$.

It is possible to retrieve the locations t_{k} and amplitudes a_{k} of K Diracs from the moments $\tau_{m}=\sum_{k=0}^{K-1} a_{k} t_{k}^{m}, \quad m=0,1, \ldots, N$ using annihilating filter method.

1-D case: Sampling of Diracs

However, for $K=1$ Dirac, we only need two moments, and thus, a kernel $\varphi(t)$ that can reproduce polynomials at least up to degree $N=2 K-1=1$.

$$
\sum_{n} y_{n}=<a_{0} \delta\left(t-t_{0}\right), \sum_{n} \varphi(t-n)>=\int_{-\infty}^{\infty} a_{0} \delta\left(t-t_{0}\right) \sum_{n} \varphi(t-n) d t=a_{0} \sum_{n} \varphi\left(t_{0}-n\right)=a_{0}
$$

$$
\sum_{n} c_{m, n} y_{n}=<a_{0} \delta\left(t-t_{0}\right), c_{1, n} \sum_{n} \varphi(t-n)>=a_{0} \sum_{n} c_{1, n} \varphi\left(t_{0}-n\right)=a_{0} t_{0}
$$

1-D case: Sampling of Diracs

$\tau_{0}=\sum_{n} y_{n}=a_{0}+a_{1}$

$\tau_{2}=\sum_{n} c_{2, n} y_{n}=a_{0} t_{0}^{2}+a_{1} t_{1}^{2}$

$\tau_{1}=\sum_{n} c_{1, n} y_{n}=a_{0} t_{0}+a_{1} t_{1}$

$\tau_{3}=\sum_{n} c_{3, n} y_{n}=a_{0} t_{0}^{3}+a_{1} t_{1}^{3} \quad 11$

1-D case: Annihilating filter method

1. Design a filter h_{m} such that the convolution $h_{m} * \tau_{m}=\sum_{i=0}^{m} h_{i} \tau_{m-i}=0$.

The z-transform of the filter h_{m} is $H(z)=\prod_{k=0}^{K-1}\left(1-t_{k} z^{-1}\right)$.

$$
\left[\begin{array}{cccc}
\tau_{K-1} & \tau_{K-2} & \cdots & \tau_{0} \\
\tau_{K} & \tau_{K-1} & \cdots & \tau_{1} \\
\vdots & \vdots & \ddots & \vdots \\
\tau_{N-1} & \tau_{N-2} & \cdots & \tau_{N-K}
\end{array}\right]\left[\begin{array}{c}
h_{1} \\
h_{2} \\
\vdots \\
h_{K}
\end{array}\right]=-\left[\begin{array}{c}
\tau_{K} \\
\tau_{K+1} \\
\vdots \\
\tau_{N}
\end{array}\right]
$$

This is a classic Yule-Walker system with a unique solution for distinct Diracs.
2. From h_{m}, find the roots of $H(z)$. This gives the Dirac locations t_{k}.
3. Solve the first K equations in $\tau_{m}=\sum_{k=0}^{K-1} a_{k} t_{k}^{m}$. This gives us the amplitudes a_{k}.

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
t_{0} & t_{1} & \cdots & t_{K-1} \\
\vdots & \vdots & \ddots & \vdots \\
t_{0}^{K-1} & t_{1}^{K-1} & \cdots & t_{K-1}^{N-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{K-1}
\end{array}\right]=\left[\begin{array}{c}
\tau_{0} \\
\tau_{1} \\
\vdots \\
\tau_{K-1}
\end{array}\right] .
$$

This is a classic Vandermonde system with unique solution for distinct t_{k}.

1-D case: Sampling streams of Diracs

Proposition 1

Assume a sampling kernel $\varphi(t)$ that can reproduce polynomials up to degree $N \geq 2 K-1$ and of compact support L. A stream of K Diracs $x(t)=$ $\sum_{k=0}^{K-1} a_{k} \delta\left(t-t_{k}\right)$ is uniquely determined from the samples defined by $y_{n}=<$ $\varphi(t / T-n), x(t)>$ if there are at most K Diracs in an interval of size $K L T$.

- Since the kernel is of compact support, samples of properly isolated groups of (at most K) Diracs do not influence each other.
- Therefore, Proposition 1 can be extended for an infinite stream of Diracs using a sequential local algorithm by relaxing the interval size of K Diracs from KLT to 2KLT. This helps to isolate the groups of at most K Diracs.
- There is a trade-off between local rate of innovation and complexity in the reconstruction process.

This also applies to a stream of differentiated Diracs:

$$
x^{(R)}(t)=\sum_{k=0}^{K-1} \sum_{r=0}^{R-1} a_{k, r} \delta^{(r)}\left(t-t_{k}\right)
$$

K Diracs with $\hat{K}=K R$ weights can be sampled using a kernel that can reproduce polynomials up to degree $N \geq 2 \hat{K}-1$ or $N \geq 2 K R-1$.

1-D case: Sampling piecewise constant signals

Insight: The derivative of a piecewise constant is a stream of Diracs. Thus by computing the derivative of piecewise constant signal, we can sample it.

Given the samples y_{n} compute the finite difference $z_{n}^{(1)}=y_{n+1}-y_{n}$, we have

$$
\begin{aligned}
z_{n}^{(1)}=y_{n+1}-y_{n} & =\langle x(t), \varphi(t-n-1)-\varphi(t-n)\rangle \\
& =\frac{1}{2 \pi}\left\langle X(w), \hat{\varphi}(w) e^{-j w n}\left(e^{-j w}-1\right)\right\rangle \quad \text { Parseval } \\
& =\frac{1}{2 \pi}\left\langle X(w),-j w \hat{\varphi}(w) e^{-j w n}\left(\frac{1-e^{-j w}}{j w}\right)\right\rangle \\
& =-\left\langle x(t), \frac{d}{d t}\left[\varphi(t-n) * \beta^{0}(t-n)\right]\right\rangle \\
& =\left\langle\frac{d}{d t} x(t), \varphi(t-n) * \beta^{0}(t-n)\right\rangle
\end{aligned}
$$

Thus the samples $z_{n}^{(1)}$ are related to the derivative of $x(t)$.

1-D case: Sampling piecewise constant signals

1-D case: Sampling piecewise polynomial signals

Similarly,

2-D case: Polynomial reproduction in 2-D

The 2-D sampling kernel is a separable kernel given by the tensor product of two 1D functions that can reproduce polynomials: $\varphi_{x y}(x, y)=\varphi(x) \varphi(y)$. Therefore, it follows that,

$$
\sum_{m} \sum_{n} c_{m, n}^{\alpha, \beta} \varphi_{x y}(x-m, y-n)=x^{\alpha} y^{\beta}
$$

$$
\text { where } \gamma=\alpha+\beta, \gamma=0,1, \ldots, N \text {. }
$$

2-D case: Moments from samples

In 2-D, we observe the samples of a signal $g(x, y)$ as given by

$$
y_{m, n}=\left\langle g(x, y), \varphi_{x y}\left(x / T_{x}-m, y / T_{y}-n\right)\right\rangle .
$$

The polynomial reproduction property of $\varphi_{x y}(x, y)$ allows us to retrieve the (geometric and complex) moments of the signal $g(x, y)$ from its samples $\mathrm{y}_{m, n}$:

Geometric moments:

$$
\begin{aligned}
\mathcal{M}_{\alpha, \beta} & =\iint_{\Omega} g(x, y) x^{\alpha} y^{\beta} d x d y \\
& =\iint_{\Omega} g(x, y) \sum_{m} \sum_{n} c_{m, n}^{\alpha, \beta} \varphi_{x y}(x-m, y-n) d x d y \\
& =\sum_{m} \sum_{n} c_{m, n}^{\alpha, \beta}\left\langle g(x, y), \varphi_{x y}(x-m, y-n)\right\rangle \\
& =\sum_{m} \sum_{n} c_{m, n}^{\alpha, \beta} y_{m, n}
\end{aligned}
$$

Complex moments:

$$
\begin{aligned}
\tau_{\gamma}=\iint_{\Omega} g(x, y)(x+i y)^{\gamma} d x d y= & \sum_{\beta=0}^{\gamma}\binom{\gamma}{\beta} i^{\beta} \mathcal{M}_{\alpha, \beta}, \\
& \text { where } \gamma=\alpha+\beta, i=\sqrt{-1} \quad 18
\end{aligned}
$$

2-D case: Sets of Diracs

We want to reconstruct a set of K Diracs
$g(x, y)=\sum_{k=0}^{K-1} a_{k} \delta_{x y}\left(x-x_{k}, y-y_{k}\right)$
from the observed samples
$y_{m, n}=\left\langle g(x, y), \varphi_{x y}(x-m, y-n)\right\rangle$.

- In 1-D we use the ability of $\varphi(t)$ to reproduce polynomials for retrieving moments

$$
\tau_{m}=\int_{-\infty}^{\infty} x(t) t^{m}=\sum_{k=0}^{K-1} a_{k} t_{k}^{m}, \quad m=0,1, \ldots N
$$

of the signal $x(t)$. Then used the annihilating fitter method.

- In 2-D we simply need to obtain the complex-moments

$$
\begin{array}{r}
\tau_{\gamma}=\iint g(x, y) z^{\gamma} d x d y=\iint g(x, y)(x+i y)^{\gamma} d x d y=\sum_{k=0}^{K-1} a_{k} z_{k}^{\gamma} \\
\text { where } z=x+i y, \text { and } \gamma=0,1, \ldots, N .
\end{array}
$$

Then using the annihilating filter method, we retrieve the locations $z_{k}=\left(x_{k}+i y_{k}\right)$ and amplitudes a_{k}. For K Diracs, we need $2 K$ moments, i.e. $N \geq 2 K-1$.

Bilevel polygonal images

The same applies to polygonal images. However, in this case we need to obtain weighted complex-moments [Davis64] [MilanfarVKW95]. For a given polygon $g(x, y)$ with K corner points, it follows that

$$
\begin{aligned}
\hat{\tau}_{\gamma} & =\gamma(\gamma-1) \iint_{\Omega} g(x, y)(z)^{\gamma-2} d x d y \\
& =\gamma(\gamma-1) \tau_{\gamma-2} \\
& =\gamma(\gamma-1) \sum_{\beta=0}^{\gamma-2} i^{\beta}\binom{\gamma-2}{\beta} \sum_{m} \sum_{n} c_{m, n}^{\alpha, \beta} y_{m, n} \\
& =\sum_{k=0}^{K} \rho_{k} z_{k}^{\gamma}
\end{aligned}
$$

where $\gamma-2 \in\{0,1, \ldots, N\}, \gamma-2=\alpha+\beta$, and $\hat{\tau}_{0}=\hat{\tau}_{1}=0$.
Thus, from the samples $y_{m, n}$ we can estimate complex-moments, and from the complex-moments, using annihilating filter method, the locations $z_{k}=\left(x_{k}+i y_{k}\right)$ of the corner points.

To retrieve K corner points, we need $2 K$ complex-moments, and therefore, a kernel $\varphi_{x y}(x, y)$ that can reproduce polynomials up to degree $N \geq 2 K-3$.

2-D case: Bilevel polygons and Diracs

2-D case: Bilevel polygonal images

Since the sampling kernel is of compact support, all polygons can be reconstructed independently, given that they are sufficiently apart.

Notice: The polygons must be convex for unique reconstruction.

2-D case: Polygonal lines and quadrature domains

Similarly, by using complex-moments and annihilating filter method we can reconstruct polygonal lines,

and quadrature domains (e.g. circles, ellipses, cardioids) [MilanfarPVGG2000].

$$
\tau_{0}=\pi r^{2} \Rightarrow r=\sqrt{\tau_{0} / \pi}
$$

$$
z_{c}=\left(x_{c}+i y_{c}\right)=\frac{\tau_{1}}{\tau_{0}}
$$

Application: Image super-resolution

Image registration using continuous-moments from samples [BaboulazD-ICIP06].

Original (2000 $\times 2000$)

Low res. (65×65)

Super-res. (2000×2000)

- One hundred low resolution and shifted versions of the original image.
- Accurate registration is achieved by retrieving the continuous-moments of the earth from its 100 sets of samples.
- The registered images are then interpolated and restored to achieve superresolution.

Application: Image super-resolution

Video

Conclusion

- We can sample and perfectly reconstruct a large class of non-bandlimited signals (i.e. Signals with Finite Rate of Innovation) in 1-D, and 2-D.
- We can use a rich class of kernels. In particular, the compactly supported kernels that reproduce polynomials allow us to retrieve the continuous-moments of the signals from their samples.
- The retrieval of continuous-moments from samples is useful in many applications, e.g. super-resolution image registration.

Publications

1. P L Dragotti, M Vetterli and T Blu, "Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix," IEEE Trans. Sig. Proc. February 2006, submitted.
2. P L Dragotti, M Vetterli and T Blu, "Exact sampling results for signals with finite rate of innovation using Strang-Fix conditions and local kernels," Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP05), Philadelphia, USA, March 2005.
3. P Shukla and P L Dragotti, "Sampling schemes for 2-D signals with finite rate of innovations using kernels that reproduce polynomials," Proc. of IEEE International Conference on Image Processing (ICIP05), Genova, Italy, September 2005.
4. L Baboulaz and P L Dragotti, "Distributed acquisition and image superresolution based on continuous moments from samples," IEEE International Conference on Image Processing (ICIP06), Atlanta, USA, October 2006, to appear.

Questions?

