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Introduction: Problem statement and motivation

We consider uniform sampling!

Acquisition device

)

x(t t yn = (2(t), 0(¢/T —n))
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Given the samples v, = (z(t), p(t/T —n)), we want to reconstruct z(t).

Natural questions:
 What signals z(t) can be sampled?
« What kernels ¢(t) can be used?

* What reconstruction algorithm?

Is there any life beyond ‘bandlimited-sinc’ space?



Introduction: Sampling for sparsity

Why sampling?

Many natural phenomena are continuous and required to be observed and
processed by sampling.

Important for hybrid analog/digital processing.

Related to the notion of sparsity of signals; important in data transmission and
storage.

Useful in image resolution enhancement and super-resolution.

1000 x 1000 25 X 25

Perfect Reconstruction?




Introduction: Classical to FRI

Classical sampling formulation:

« Sampling of z(¢) is equivalent to projecting z(¢) onto the shift-invariant
subspace V' = span{p(t/T — n)}necz.

o If z(t) € V, perfect reconstruction is possible.

» Reconstruction process is linear: Z(t) = > yn @(t/T —n).

« For bandlimited signals ¢(t) = sinc(t).

Wt sy o — )

What is special about x(t)? — bandlimited!

The signal Z(t) = Y. yn ©(t/T — n) has a finite number p = 1/T" of degrees of
freedom per unit time.

Intuition: If the number of samples vy, per unit of time is greater than or equal to the

degrees of freedom p then we can reconstruct z(t) from its samples yn :



Introduction: Signals with Finite Rate of Innovation (FRI)

Definition [VetterliIMBO2]: The number p of degrees of freedom per unit time is
called rate of innovation. A signal with a finite p is called signal with finite rate of
iInnovation.

Notice: Many signals that do not belong to shift-invariant subspace have finite rate
of innovation. That means non-bandlimited but parametric signals!

Examples: Streams of Diracs and piecewise polynomials.
(e.g. a stream of K Diracs has 2K degrees of freedom: amplitudes and positions.)

i
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These signals can be sampled using infinite support sinc and Gaussian kernels
[VetterliMBOZ2].



Introduction: Sampling kernels

Possible classes of kernels
(Ideally as general as possible and of compact support)

Class 1. Any kernel ¢(t) that can reproduce polynomials (satisfy Strang-Fix
conditions):

Yo mmp(t—m)=t", m=0,1,...,N

E.g. any scaling function (wavelet theory), B-splines
Class 2. Any kernel ¢ (t) that can reproduce exponentials

E.g. E-splines [UnserB05].
Useful in sampling piecewise sinusoidal signals. [BerentD-ICASSPO06]

Class 3. Any kernel with rational Fourier transform

Linear differential acquisition devices: most electrical, mechanical, and acoustic
systems. E.g. sampling the step response of an R-C circuit.

We focus on the Class 1 kernels that can reproduce polynomials. The polynomial
reproduction property of the kernel allows us to reproduce the moments.



1-D case: Sampling Diracs with kernels that reproduce polynomials

10

Assume that z(t) is a stream of K Diracs:
J | z(t) =S 1 o ap 6(t —tx) and let T = 1.

af | Q: Given the samples ¥ = (z(t), (t — n)),
| how can we find the locations ?x and
‘ amplitudes ag of the Diracs?
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Assume that the kernel ¢ (t) can reproduce polynomials up to degree N > 2K — 1:

Yoo tmunp(t—m)=t", m=0,1,...,N.



1-D case: Sampling of Diracs

Computing T =) .. Cmn¥Yn, m=0,1,..., N, we have that

Tm = E Cm,n Yn

n

— <£I?(t), Zcm,n(;o(t - n)>

n

— / h z(t)t™dt, (moments of z(t))

— 00

K-1
= Zakt}?, m:(),].,...,N
k=0

We thus obtain the moments 7,,, of z(t) from the linear combinations of samples Yn
and coefficients Crmy,n -

It is possible to retrieve the locations tx and amplitudes ax of K Diracs from the
moments 7,, = S 0 tagt, m=0,1,..., N using annihilating filter method.
9



1-D case: Sampling of Diracs

However, for K = 1 Dirac, we only need two moments, and thus, a kernel (%) that
can reproduce polynomials at least up to degree N = 2K — 1 = 1.

ad(t-t,)

/

o
L7
r—l—’
of
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Zyn =< agd(t—tp), Z(p(t—n) >= / agd(t—tp) Z(p(t—n) dt = ag Zcp(to—n) = ag

n n —o0 n

Z Cmn Yn =< a0d(t —10),C1 Z ot —n) >=ag Z ci,n @(to —n) = apto
" " m 10



Sampling of Diracs
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1-D case: Annihilating filter method

1. Design a filter h,,, such that the convolution h,,, x 7, = ZZZO hiTm—; = 0.

The z-transform of the filter h,, is H (z) = H‘rk;_ol (1 - tkz_l) :

[ TK—1 TK-2 o | [ h1 [ Tk
TK TK—1 1 ho TK+1

| TN-1 TN-2 TN-K | | hx _ | TN

This is a classic Yule-Walker system with a unique solution for distinct Diracs.

. From h,,, find the roots of H(z). This gives the Dirac locations .

This is a classic Vandermonde system with unique solution for distinct .

. Solve the first K equations in T = Y g ax t".
This gives us the amplitudes ag.
1 1 1 [ ao | 10 |
to t1 tr—1 al 1
tK Rz th 1 | L axk—1 | | Tx-1 |




1-D case: Sampling streams of Diracs

Proposition 1

Assume a sampling kernel o(t) that can reproduce polynomials up to de-
g'ree N > 2K — 1 and of compact support L. A stream of K Diracs z(t) =

Zk o ar 0(t — tx) is uniquely determined from the samples defined by y, =<
o(t/T —n),x(t) > if there are at most K Diracs in an interval of size KLT.

» Since the kernel is of compact support, samples of properly isolated groups of (at most K)
Diracs do not influence each other.

» Therefore, Proposition 1 can be extended for an infinite stream of Diracs using a sequential
local algorithm by relaxing the interval size of K Diracs from KLT to 2KLT. This helps to
isolate the groups of at most K Diracs.

» There is a trade-off between local rate of innovation and complexity in the reconstruction
process.

This also applies to a stream of differentiated Diracs:

zB(t) = Y52y Tro arr 07 (¢ — )

K Diracs with K = KR weights can be sampled using a kernel that can reproduce
polynomials upto degree N > 2K —1 or N > 2KR — 1. 13



1-D case: Sampling piecewise constant signals

Insight: The derivative of a piecewise constant is a stream of Diracs. Thus by
computing the derivative of piecewise constant signal, we can sample it.

Given the samples y,, compute the finite difference z( ) — Yn+1 — Yn, We have

Z'r(zl) = Yn+1 — Yn

(z(t), p(t =n —1) = p(t —n))

w), P(w)e” an(e Jw _1)> Parseval

— (X(
<X<w> —wgw)eton (L22)

= —(z(t), a p(t —n) Bt = n)]
( )

_ %az(t), ot — ) * Bt — n)
( )

(1)

Thus the samples 25, ’ are related to the derivative of z(t).

14



1-D case: Sampling piecewise constant signals

x () (1) In Z7(L1) = Ynt+l — Yn

* N
_ — / p D[

15



1-D case: Sampling piecewise polynomial signals

Similarly,

Higher order derivative
Piecewise polynomial > Differentiated Diracs

x(t) 2B (1) = Y5 S ane 6 (E — ty)

16



2-D case: Polynomial reproduction in 2-D
The 2-D sampling kernel is a separable kernel given by the tensor product of two 1-
,y) = @(x)p(y). Therefore, it

Pary\L — MM, Y —N) =X yﬁ

D functions that can reproduce polynomials: ©zy (Z, y
wherey=a+ 3, y=0,1
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2-D case: Moments from samples

In 2-D, we observe the samples of a signal g(z,y) as given by
Ymon = (9(Z,Y), Pay(@/Tz —m,y/Ty —n)).

The polynomial reproduction property of ¢4, (x,y) allows us to retrieve the

(geometric and complex) moments of the signal g(z,y) from its samples y, n:

Geometric moments;

Mayp = / / g(z,y) %y dz dy

= // 9(z,y) ZZ B gy —m,y —n)dr dy
— ZZ CC y Spwy(x may_n»
ZZ mnymn

Complex moments:

= [ [o9(z,y) (x +iy)  dedy = 375_ (3) i Ma,g,
wherey =a + 8, i = V-1

18



2-D case: Sets of Diracs

We want to reconstruct a set of K Diracs
9(z,y) = X pro ks Ouy (T — Thy Y — Yi)
from the observed samples

Ymn = (9(,9), paylz — m,y — n)).

* In 1-D we use the ability of ¢ (¢) to reproduce polynomials for retrieving moments
T = [T z(t)t™ =Yy apty, m=0,1,...N

of the signal z(¢). Then used the annihilating fitter method.

* In 2-D we simply need to obtain the complex-moments
: K-1
= [ [9(z,y)2" dzedy = [ [ g(x,y)(z +iy)” dedy = 3,5 ax 2,
where z = x + iy, and vy =0,1,...,N.

Then using the annihilating filter method, we retrieve the locations z; = (a:k + zyk)

and amplitudes ay. For K Diracs, we need 2K moments, i.e. N > 2K — 1. 19



Bilevel polygonal images

The same applies to polygonal images. However, in this case we need to obtain
weighted complex-moments [Davis64] [MilanfarVKW95]. For a given polygong(z,y)
with K corner points, it follows that

7y v(y—1) / /Q g(z,y) ()"~ dzdy

= (v - 1)7'7—2

Y—2 B
= y(y-1)) (7 5 2) DY B ymm
B=0 m n
K
— Z Pk ZZ)
k=0

wherey —2€ {0,1,...,N}, y—2=a+ (3, and 7g= 71 = 0.

Thus, from the samples ¥, » we can estimate complex-moments, and from the
complex-moments, using annihilating filter method, the locations zx = (xx =+ @yx) of
the corner points.

To retrieve K corner points, we need 2K complex-moments, and therefore, a

kernel p4y(z,y) that can reproduce polynomials up to degree N > 2K — 3. 20



2-D case: Bilevel polygons and Diracs

Polygon with K=3 corner points A set of K=3 Diracs

0% ¥)* Py (%) , 90X, ) * Prg (-X-)

Ym,n

11100 11500 21




2-D case: Bilevel polygonal images

Since the sampling kernel is of compact support, all polygons can be reconstructed
independently, given that they are sufficiently apart.

S

Notice: The polygons must be convex for unigue reconstruction.

22



2-D case: Polygonal lines and quadrature domains

Similarly, by using complex-moments and annihilating filter method we can
reconstruct polygonal lines,

4 /

and quadrature domains (e.g. circles, ellipses, cardioids) [MilanfarPVVGG2000].

7'0=7T'r2=>’l“=\/7'0/77 ZC:(wC+iyc)::_<l) 23




Application: Image super-resolution

Image registration using continuous-moments from samples [BaboulazD-ICIPO6].

Original (2000 x 2000) Low res. (65 x 65) Super-res. (2000 x 2000)

* One hundred low resolution and shifted versions of the original image.

» Accurate registration is achieved by retrieving the continuous-moments of the
earth from its 100 sets of samples.

» The registered images are then interpolated and restored to achieve super-
resolution.

24



Application: Image super-resolution

Video

25



Conclusion

* We can sample and perfectly reconstruct a large class of non-bandlimited signals
(i.e. Signals with Finite Rate of Innovation) in 1-D, and 2-D.

» We can use a rich class of kernels. In particular, the compactly supported kernels
that reproduce polynomials allow us to retrieve the continuous-moments of the
signals from their samples.

» The retrieval of continuous-moments from samples is useful in many applications,
e.g. super-resolution image registration.

26
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Questions?
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