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ABSTRACT

In this paper, we extend the results on sampling the signals with
finite rate of innovation (FRI) [1] in higher dimensions using
kernels that reproduce polynomials [2]. In particular, we show
that convex-bilevel polygons, 2-D Diracs, and quadrature domains
(e.g. ellipses and cardioids) can be perfectly reconstructed from
their samples using complex-moments based approach [3], while
more general shapes (signals) such as piecewise polynomials with
polygonal boundaries, and n-dimensional Diracs and bilevel poly-
topes can be reconstructed from their samples by integrating the
Radon-moment connection [3] with the annihilating-filter-based-
back-projection (AFBP) reconstruction [4].

1. INTRODUCTION
Shannon’s sampling theory allows perfect reconstruction of ban-
dlimited signals. However, the recent developments in sampling of
signals with finite rate of innovation (FRI) suggest that many non-
bandlimited signals such as Diracs and piecewise polynomials are
perfectly reconstructed from their samples using a range of sampling
kernels [1, 2].

In particular, a compactly supported kernel that satisfies the
Strang-Fix conditions can reproduce polynomials, and therefore, the
samples obtained with such kernel are sufficient to retrieve the mo-
ments of the original signal. Using a finite number of these moments
in the annihilating filter method, one can perfectly reconstruct the
original FRI signal [2]. In this paper, we extend the sampling results
of [2] in 2-D and above. In the first part of the following section,
we show how to obtain the (geometric and complex) moments of a
signal from its samples. Then, in the following parts, using complex-
moments and Radon transform, we present a method to recover FRI
signals from their samples.

2. MATERIALS AND METHODS
Consider a 2-D generic sampling setup, where the original signal
is first prefiltered with a lowpass sampling kernel and then sampled
uniformly to obtain a set of 2-D samples. Note that this setup is
valid in n-D as well. Since we assume that the sampling kernel sat-
isfies the Strang-Fix conditions, it can reproduce polynomials (e.g.
B-splines, scaling functions). The polynomial reproduction property
of the kernel allows us to obtain higher order moments of the orig-
inal signal from the linear combinations of its samples. To be more
precise, a kernel that reproduces polynomials up to degree N allows
us to reproduce the (geometric) moments up to order N . Moreover,
it is straightforward to obtain various types of complex-moments,
e.g. weighted complex-moments up to order N + 2 using binomial
combinations of the geometric moments up to order N .
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The results of [3] state that the convex-bilevel polygons and
quadrature domains (e.g. ellipses and cardioids) are uniquely de-
termined from a finite number of complex-moments. Therefore, we
show that these signals are also uniquely reconstructed from their
samples. For example, we show that a bilevel and convex polygon
with N corner points (i.e. with a rate of innovation equal to 2N )
can be reconstructed from its samples using a kernel that can repro-
duce polynomials up to degree 2N−3 (or in other worlds, using 2N
complex-moments). In a similar manner, we show that 2-D Diracs
and quadrature domains can be reconstructed from their samples us-
ing kernels that reproduce higher order moments.

From the Radon-moment connection of [3], we know that the
higher order moments of certain signals (e.g. 2-D Diracs and bilevel
polygons) are sufficient to retrieve their Radon projections at various
angles. Moreover, from [4], we know that by back-projecting a fi-
nite number of such projections, it is possible to uniquely determine
the original signals. By integrating these results with the fundamen-
tals of lattice theory and bivariate polynomial interpolation, we show
that a more general signal such as piecewise polynomial of degree
R− 1 within an N sided convex polygonal closure can be uniquely
reconstructed from its samples using only N +1 Radon-projections,
given that the sampling kernel can reproduce polynomials up to de-
gree (2N−1)(R+1)−1 and that the condition 2R−1 ≤ N +1 is
satisfied. Finally, by exploiting the multidimensional property of the
Radon transform, we show that an n-dimensional bilevel polytope
with N corner points (or a set of N n-D Diracs) can be reconstructed
from its samples using (N + 1)n−1 Radon projections in 1-D.

3. CONCLUSION
In this paper, we have presented multidimensional sampling of FRI
signals using kernels that reproduce polynomials. Implicitly, we
have also provided a sampling perspective to the complex-moments
based approach of [3], and an n-D extension to the AFBP recon-
struction of [4].
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