
TOMOGRAPHIC APPROACH FOR SAMPLING
MULTIDIMENSIONAL SIGNALS WITH FINITE RATE OF INNOVATION

† ‡ Pancham Shukla and † Pier Luigi Dragotti

† Communications and Signal Processing Group, Electrical and Electronic Engineering,
Imperial College London, Exhibition Road, London SW7 2AZ, England.

‡ G H Patel College of Engineering & Technology, Vallabh Vidyanagar 388120, Gujarat, India.
Email: {P.Shukla, P.Dragotti}@imperial.ac.uk

ABSTRACT

Recently, it was shown that it is possible to sample classes of 1-
D and 2-D signals with finite rate of innovation (FRI) [9, 4, 5, 3,
2, 7]. In particular, in [7], we presented local and global schemes
for sampling sets of Diracs and bilevel polygons using compactly
supported kernels that reproduce polynomials.

In sequel to [7], in this paper, we present a Radon transform
based hybrid scheme for sampling more general FRI signals such
as piecewise polynomials with polygonal boundaries, and higher
dimensional Diracs and bilevel polytopes. The key feature of
the proposed scheme is an annihilating-filter-based-back-projection
(AFBP) algorithm.

Index Terms— Signal sampling, Signal representations, Sig-
nal resolution, Signal reconstruction, Radon transforms, Polyno-
mial approximation, Singular value decomposition, Spectral anal-
ysis, Wavelet transforms, Nonbandlimited signals.

1. INTRODUCTION

Sampling plays an important role in modern signal processing and
communication applications. Shannon’s classical sampling theory
and its extensions are very powerful and have been successfully uti-
lized for bandlimited signals. Moreover, classical sampling is also
extended for classes of non-bandlimited signals that reside in a shift-
invariant subspace [8].

Recently, novel sampling schemes [9, 4, 5] are presented for
larger classes of 1-D and 2-D signals that are neither bandlimited
nor reside in a fixed subspace. Such signals have a finite number of
degrees of freedom (or rate of innovation) and are classified as sig-
nals with Finite Rate of Innovation (FRI) [9]. The sampling schemes
of [9, 4, 5] rely on annihilating filter method and Fourier domain pro-
ceeding. Moreover, these schemes employ infinite support sinc and
Gaussian kernels, and for that reason, are not convenient in practice.

However, in [3, 7, 2], it was shown that many 1-D and 2-D FRI
signals with local rate of innovation can be sampled and perfectly
reconstructed using compactly supported kernels that satisfy Strang-
Fix conditions, and therefore, reproduce polynomials. In this paper,
we extend the results of [7] for sampling more general 2-D FRI sig-
nals such as piecewise polynomials with polygonal boundaries, and
higher dimensional Diracs and polytopes. We employ an annihilat-
ing filter based back projection (AFBP) algorithm that utilizes a link
between Radon transform projections and moments [6].

The research was supported by the Engineering and Physical Sciences
Research Council (EPSRC) of UK under the grant GR/S57631/01.

The paper is organized as follows: In the next section, we de-
velop an AFBP algorithm by integrating the Radon-moment con-
nection [6] in the framework of FRI sampling [5, 3, 2]. In Section 3,
we derive the sampling results for bilevel polygons, 2-D Diracs, and
piecewise polynomials with polygonal boundaries using AFBP al-
gorithm. We then show that the sampling of 2-D Diracs and bilevel
polygons can be extended to higher dimensions (i.e. in 3-D and
above). Finally, we conclude in Section 4.

2. TOMOGRAPHIC APPROACH

2.1. Radon transform

Let g(x, y) be a 2-D square-integrable function within a compact
region Ω over the Euclidean space R2. Then, the conventional
Radon transform projection of g(x, y) is defined as (also see Fig-
ure 1(a)) [1]:

Rg(t, θ) =

Z Z
Ω

g(x, y) δ (t − x cos(θ) − y sin(θ)) dx dy, (1)

where lt,θ = δ (t − x cos(θ) − y sin(θ)) is a straight line of inte-
gration at an angle θ + π

2
with the x-axis and at a radial distance

t away from the origin. From Figure 1(a), note that the projection
gathering line l⊥t,θ that makes an angle θ ∈ [0, π) with the x-axis is
perpendicular to lt,θ . The projections Rg(t, θ) are square integrable
1-D functions with finite support. The original function g(x, y) can
again be reconstructed from its projections Rg(t, θ) using filtered
back-projection (FBP) reconstruction [1].

2.2. AFBP algorithm

For a specific case, when g(x, y) is a bilevel and convex polygon
with N corner points, we observe that

(a) Each projection Rg(t, θ) is a 1-D piecewise polynomial of
maximum degree one and with at most N discontinuities.
Therefore, the 2nd order derivative of such projection leads to
a stream of at most N differentiated Diracs d

(2)
t [Rg(t, θ)] =

d2

dt2
[Rg(t, θ)] =

PN−1
i=0

P1
r=0 ai,rδ

(r)(t− ti), where ti are
locations and ai,r are weights. It means that d

(2)
t [Rg(t, θ)]

represents at most N Diracs with N̂ = 2N weights [3, 2].

(b) Moreover, following the connection between Radon projections
and moments [6], the moments µn of the differentiated Diracs



d
(2)
t [Rg(t, θ)] are obtained by

µn =

Z
d
(2)
t [Rg(t, θ)] tn dt

=

Z Z
Ω

d
(2)
t [g(x, y)] (x cos(θ) + y sin(θ))n dx dy

=

nX
β=0

 
n

β

!
cosα(θ) sinβ(θ) µα,β , (2)

where µα,β are n = (α+β)-order geometric moments of the
differentiated polygon d

(2)
t [g(x, y)] = d2

dt2
[g(x, y)].

(c) Since d
(2)
t [Rg(t, θ)] consists of at most N Diracs with N̂ = 2N

weights, the 2N̂ = 4N moments µn, n = 0, 1, . . . , 4N − 1
are sufficient to retrieve the locations ti and weights ai,r

of the Diracs d
(2)
t [Rg(t, θ)] (and therefore the piecewise

polynomial signal Rg(t, θ) itself) using annihilating filter
method [3, 2].

(d) By iterating the steps (a), (b), and (c) over N +1 distinct projec-
tion angles θl, l = 0, 1, . . . , N , the N + 1 sets of Dirac loca-
tions ti are determined. By back-projecting these locations,
the N corner points of g(x, y) are retrieved. Since the bilevel
polygon g(x, y) is convex, the corner points can uniquely re-
cover g(x, y) [5].

Since the retrieval of corner points is based on annihilating filter, we
denote the proposed reconstruction as: annihilating filter based back-
projection (AFBP) algorithm. Note that the AFBP algorithm can be
extended to retrieve the corner points of the piecewise polynomials
with polygonal boundaries and higher dimensional polytopes.

2.3. Example: AFBP reconstruction of a bilevel polygon

As shown in Figure 1, consider a bilevel and convex polygon g(x, y)
with N = 5 corner points . From Figure 1(b), it is clear that the
projection Rg(t, θ) along θ = 0 is a 1-D piecewise polynomial
of degree one with N discontinuities, and therefore by taking two
successive derivatives, it can be decomposed into a stream of N
1-D Diracs as depicted in Figure 1(d). That is d

(2)
t [Rg(t, θ)] =

d2

dt2
[Rg(t, θ)] =

PN−1
i=0

P1
r=0 ai,rδ

(r)(t − ti), where locations ti

of the Diracs determine the back-projection points cbp
i , and the coef-

ficients ai,r are the weights.
Fortunately, in this case (θ = 0), we have N Diracs with

N̂ = N weights since all ai,1 = 0. Therefore, from step (c) of
the AFBP algorithm, we know that the first 2N̂ = 2N moments
µn are sufficient to determine the exact locations ti of the N Diracs
d
(2)
t [Rg(t, θ)]. To be more precise, using (2), we obtain the 2N mo-

ments µn, n = 0, 1, . . . , 2N − 1 and design an annihilating filter
A[n], n = 0, 1, . . . , N such that the convolution

µn ∗ A[n] = 0. (3)

Consequently, the N roots of the filter A[n] give the exact loca-
tions ti of the stream of N Diracs d

(2)
t [Rg(t, θ)]. Therefore, the

coordinates of the corresponding back-projection points cbp
i , i =

1, 2, . . . , N along the projection gathering line l⊥t,θ are given by
(xbp

i , ybp
i ) = (|ti| cos(θ), |ti| sin(θ)). In this case (θ = 0), the

back-projection points cbp
i are marked with � on the x-axis in Fig-

ure 1(a).
In a similar manner, we obtain N + 1 distinct projections

d
(2)
t [Rg(t, θl)] along θl, l = 0, 1, . . . , N . Then, using (2) and (3),
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Fig. 1. Radon transform projection and AFBP reconstruction: For
a bilevel pentagon g(x, y), its Radon transform projection Rg(t, θ)
along an arbitrary angle θ is shown in part (a). The projection of
g(x, y) along x-axis (θ = 0) is shown in (b). The projection in
part (b) is a 1-D piecewise linear function, and therefore, can be
represented by a stream of Diracs as shown in part (d).

we retrieve N +1 sets of Dirac locations ti, and therefore N +1 sets
of back-projection points cbp

i along respective projection gathering
lines l⊥t,θl

. By projecting back these N + 1 sets of back-projection
points, we retrieve N corner points ci of the polygon g(x, y), and
thus the polygon itself. Note that, in general, 4N moments µn of the
N +1 differentiated Radon projections d

(2)
t [Rg(t, θl)] are sufficient

to reconstruct the convex and bilevel polygon g(x, y) with N corner
points.

Equipped with the Radon-moment connection (2) and AFBP al-
gorithm, we now present a sampling perspective to the tomographic
reconstruction of FRI signals.1 For clarity, we concentrate on bilevel
polygons.

3. SAMPLING OF FRI SIGNALS

3.1. Sampling setup and kernel

Consider a generic sampling setup in 2-D, where a continuous FRI
signal g(x, y) is prefiltered with a smoothing kernel ϕxy(x, y), and

1The signals, we consider, include sets of 2-D Diracs, bilevel polygons,
piecewise polynomials with polygonal boundaries, and higher dimensional
Diracs and polytopes.



the filtered version g(x, y) ∗ ϕxy(−x/Tx,−y/Ty) is sampled uni-
formly to obtain a set of samples Sj,k given by

Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 , (4)

where Tx, Ty ∈ R+ are the sampling intervals along x and y direc-
tions respectively, and for simplicity, assume Tx = Ty = 1.

The sampling kernel ϕxy(x, y) is of compact support, and can
reproduce polynomials up to degree n = α+β. That is, there exists
coefficients Cα,β

j,k such that the kernel ϕxy(x, y) satisfies:

∞X
j=−∞

∞X
k=−∞

Cα,β
j,k ϕxy(x − j, y − k) = xα yβ , (5)

where α, β specify the degrees of polynomials that the sampling ker-
nel ϕxy(x, y) can reproduce along x and y respectively. For exam-
ple, the scaling functions (from wavelet theory) and B-spines are the
kernels that reproduce polynomials.

The polynomial reproduction property of the sampling kernel
allows us to obtain the moments µα,β of the original signal g(x, y)
from its samples Sj,k as given by

µα,β =

Z Z
Ω

g(x, y) xα yβ dxdy =
X

j

X
k

Sj,k Cα,β
j,k . (6)

This result is, in fact, at the heart of our sampling schemes.

3.2. Bilevel polygons

Assume that we have access to a convex and bilevel polygon g(x, y)
with N corner points in form of its samples Sj,k given by (4) using a
kernel ϕxy(x, y) that can reproduce polynomials up to degree 4N −
3. Recall that in order to retrieve the corner points of g(x, y), we
need to compute the moments µn of the differentiated projections
d
(2)
t [Rg(t, θ)] from the moments µα,β of the differentiated polygon

d
(2)
t [g(x, y)] as given in (2).

Nevertheless, from lattice theory, it is possible to show that there
exists a direction vector ~v = [vx, vy] along a chosen projection an-
gle θ = tan−1(

vy

vx
), vx, vy ∈ Z such that the discrete domain di-

rectional differences D
(2)
θ [Sj,k] and continuous domain directional

derivatives d
(2)
t [g(x, y)] follow [7]

Rj,k = D
(2)
θ [Sj,k]

=
�
S(j+2vx),(k+2vy) − S(j+vx),(k+vy)

�
−�

S(j+vx),(k+vy) − Sj,k

�
=

D
d
(2)
t [g(x, y)] , ζθ(x − j, y − k)

E
, (7)

where Rj,k = D
(2)
θ [Sj,k], a new set of samples obtained by the

second order directional difference on the set of samples Sj,k, is
equivalent to the differentiated polygon d

(2)
t [g(x, y)].

The directional kernel ζθ(x, y) is produced by two successive con-
volutions of the original sampling kernel ϕxy(x, y) with the zero-th
order 1-D B-spline β0

θ (x, y) in the direction of ~v. More precisely,
ζθ(x, y) = |v|2

�
ϕxy(x, y) ∗ β0

θ (x, y)
�
∗ β0

θ (x, y).
It is important to note that the directional kernel also satisfies

the polynomial reproduction property of (5). In particular, if the
sampling kernel ϕxy(x, y) can reproduce polynomials up to degree
4N − 3, then the directional kernel ζθ(x, y) can reproduce polyno-
mials up to degree 4N − 1 along θ. The polynomial reproduction
property of the directional kernel ζθ(x, y) allows us to obtain the

moments µα,β of the differentiated polygon d
(2)
t [g(x, y)] from its

samples Rj,k = D
(2)
θ [Sj,k] using

µα,β =

Z Z
Ω

d
(2)
t [g(x, y)] xα yβ dxdy =

X
j

X
k

Rj,k Cα,β
j,k . (8)

Consequently, by importing (8) in equation (2), the moments µn of
the differentiated Diracs d

(2)
t [Rg(t, θ)] are given by

µn =

nX
β=0

 
n

β

!
cosα(θ) sinβ(θ)

 X
j

X
k

Rj,k Cα,β
j,k

!
, (9)

where Cα,β
j,k are the coefficients associated with the kernel ζθ(x, y),

and n = α + β.
In fact, we obtain first 4N moments µn, n = 0, 1, . . . , 4N − 1

of the differentiated projections d
(2)
t [Rg(t, θl)] from the linear com-

binations of samples Rj,k and coefficients Cα,β
j,k along N +1 projec-

tion angles θl, l = 0, 1, . . . , N . Then following the steps (c) and (d)
of the AFBP algorithm, we retrieve N corner points of the polygon
g(x, y) and thus the polygon itself. In summary we have,

Proposition 1. Given a convex and bilevel polygon
g(x, y) with N corner points, a set of samples Sj,k =
〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 is sufficient to determine
the first 4N moments µn of the Radon transform projections
d
(2)
t [Rg(t, θl)] , l = 0, 1, . . . , N along N + 1 distinct angles θl

with tan(θl) ∈ Q and thus the polygon g(x, y) itself, provided that
the sampling kernel ϕxy(x, y) can reproduce polynomials up to
degree 4N − 3.

Algorithm: Given a valid set of samples Sj,k, the AFBP recon-
struction of the polygon g(x, y) with N corner points follows the
following steps:

1. For a chosen angle θ = tan−1(
vy

vx
), vx, vy ∈ Z, compute the

difference Rj,k = D
(2)
θ [Sj,k] given by (7).

2. Using (9), compute the first 4N moments µn, n =

0, 1, . . . , 4N − 1 of the projection d
(2)
t [Rg(t, θ)] from the

new set of samples Rj,k.

3. From moments µn, using (3), obtain the exact locations
ti, i = 1, 2, . . . , N of N Diracs d

(2)
t [Rg(t, θ)] and thus the

back-projection points cbp
i = (|ti| cos(θ), |ti| sin(θ)).

4. Iterate steps 1, 2, and 3 for N + 1 distinct projection angles
θl, l = 0, 1, . . . , N .

5. By back-projecting N + 1 sets of back-projection points cbp
i ,

retrieve N corner points ci of the polygon g(x, y), and thus
the polygon itself.

For simplicity, simulation result for a bilevel triangle g(x, y) is
shown in Figure 2. The original polygon g(x, y) and the recon-
structed corner points (marked with +) are shown in part (a). The
samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 are shown in
part (b), where ϕxy(x, y) is a B-spline sampling kernel that can re-
produce polynomials up to degree 4N − 3 = 9 along both x and y
directions, and therefore, the associated directional kernel ζθ(x, y)
can reproduce polynomials up to degree 4N − 1 = 11 along θ. The
sets of differentiated samples Rj,k = D2

θl
[Sj,k] , l = 0, 1, . . . , N

along four distinct angles θ0 = 0, θ1 = π
4
, θ2 = tan−1(2) and

θ3 = π
2

are shown in parts (c), (d), (e), and (f). The AFBP recon-
struction of the corner points ci, i = 1, 2, . . . , N (marked with ◦)
using N + 1 = 4 sets of back-projections is shown in part (g).
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Fig. 2. Simulation: The original bilevel triangle g(x, y), and the re-
constructed corner points A, B, and C (marked with +) are given in
part (a). The set of samples Sj,k produced by the B-spline sampling
kernel β9

xy is given in part (b). The N + 1 = 4 sets of differentiated
samples Rj,k = D

(2)
θ [Sj,k] along four angles θ = 0, π

4
, tan−1(2),

and π
2

are given in parts (c), (d), (e), and (f). The AFBP reconstruc-
tion of the corner points A, B, and C is illustrated in part (g).

3.3. Diracs and piecewise polynomials

If g(x, y) is a set of N 2-D Diracs then each projection Rg(t, θl), l =

0, 1, . . . , N is a stream of at most N Diracs with N̂ = N weights.
Clearly, in this case, Proposition 1 can be extended using a kernel
that can reproduce polynomials up to degree 2N − 1. Moreover,
there is a freedom in selecting any N + 1 distinct angles θl in the
interval [0, π), since there is no need to differentiate the projections
Rg(t, θl).

Now assume that g(x, y) is a piecewise polynomial of degree
R − 1 inside a convex polygonal closure Ω with N corner points.
In this case: 1) The convex closure Ω is recovered by employing the
AFBP algorithm. 2) Once the closure Ω is known, the polynomial
inside the polygon is determined from a finite number of Radon pro-
jections Rg(t, θl) by solving a system of linear equations. Note that,
for this case Proposition 1 can be extended using a kernel ϕxy(x, y)
that can reproduce polynomials up to degree (2N − 1)(R + 1)− 1.

3.4. Multidimensional extension

The Radon transform Rg(u,~λ) of a square-integrable n-D function
g(~x) with ~x = (x1, x2, . . . , xn) is defined as [1]

Rg(u,~λ) =

Z
Rn

g(~x) δ(~λ~x − u) d~x, (10)

where ‖~λ‖ = 1 and ~λ~x = u is an (n − 1)-dimensional manifold
orthogonal to ~λ. Usually, Radon transform of a higher-dimensional
(n ≥ 3) object is hierarchically decomposed into its 2-D equiva-
lents. The back-projection reconstruction is achieved via bottom-up
approach.

It is possible to show that n-dimensional sets of N Diracs or
n-D bilevel and convex polytopes with N corner points can be re-
constructed exactly from a finite number of 1-D projections. For
instance, it is straightforward to realize that N 3-D Diracs can be
reconstructed by using N + 1 2-D projections, and therefore, by us-
ing (N + 1)2 projections in 1-D. In general, a set of N Diracs (or a
bilevel and convex polytope with N corner points) in n-D can be re-
constructed by using (N +1)n−1 1-D projections. The proof of this
assertion is an n-dimensional extension to its equivalent in 2-D [5].

From a sampling point of view, we can obtain the higher or-
der moments of (N + 1)n−1 1-D projections of the n-D signals
(i.e. N Diracs or bilevel polytopes with N corner points) from their
samples, and then using AFBP algorithm, we can reconstruct these
signals exactly.

4. CONCLUSION

In this paper, we have extended our sampling results [7] for
more general FRI signals using a tomographic approach. We pre-
sented AFBP reconstruction of the original FRI signal g(x, y) from
its samples rather than sampling its Radon transform projections
Rg(t, θ) [5].
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