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Scientific theories deal with concepts- not reality. Formula
and theories are so formulated as to correspond in some
‘useful’ way to the real world. The quest for precision is
analogous to the quest for certainty and both- precision
and certainty are impossible to attain.

-Karl Popper
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ABSTRACT

In this report, we propose new sampling schemes for classes of 2-D signals with

finite rate of innovation (FRI). In particular, we consider sets of 2-D Diracs and bilevel

(and planar) polygons. As opposed to using only sinc or Gaussian kernels [23], we allow

the sampling kernel to be any function that reproduces polynomials.

In the proposed sampling schemes, we exploit the polynomial approximation proper-

ties of the sampling kernels in association with other relevant techniques such as complex-

moments [25], annihilating filter method [37], and directional derivatives.

Specifically, for sets of Diracs, we propose two sampling schemes: first uses local

kernels and suits well to sparsely distributed Diracs, whereas the second relies on global

reconstruction based on annihilating filter method, it utilizes complex-moments and is

suitable for densely packed Diracs. Similarly for polygons, we propose two different recon-

struction methods: the first uses a global reconstruction algorithm and complex moments,

while the second is based on directional derivatives and local reconstruction algorithms.

The trade-offs among all reconstruction modalities are also summarized.
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CHAPTER 1

INTRODUCTION AND CONTRIBUTION

1.1 Problem, background, and scope

We know that most natural-world phenomena are observed and analyzed through

sampling, thus sampling is one of the core elements in many applications of modern

science and technology. Although Shannon’s sampling theory and its extensions are very

powerful and have been successfully utilized for bandlimited signals, in many situations

this ‘bandlimited-sinc’ constraint is too restrictive to abide for the available acquisition

devices and processing algorithms [33].

The conventional ‘bandlimited’ scenario has been extended to classes of nonban-

dlimited signals such as uniform splines that reside in a subspace spanned by a generating

function and its shifted versions [33, 3]. For a comprehensive account on the modern

sampling developments, we refer to [33, 19].

Very recently, novel sampling schemes have been presented for larger classes of 1-D

signals that are neither bandlimited nor reside in a subspace [37]. Such signals belong

to a class of signals with a finite number of degrees of freedom (or rate of innovation)

and are classified as signals with Finite Rate of Innovation (FRI). Streams of Diracs,

nonuniform splines, and piecewise polynomials are examples of such signals. These novel

sampling schemes feature: sinc and Gaussian sampling kernel, annihilating filter method,

and perfect reconstruction using only a finite number of samples (lowpass estimates).

Nevertheless, both sinc and Gaussian kernels pose difficulties in practice due to their slow

decay and infinite support.

Extensions of the schemes in [37] to the 2-D case are examined in [23] and [22].
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These 2-D extensions, however, protract with the sinc and Gaussian kernels.

In [11, 12, 13] it was shown that 1-D FRI signals can be sampled using a very rich

class of kernels such as functions that reproduce polynomials, exponential Splines [34],

and functions with rational Fourier transforms. In this report we furnish extensions of

these results in 2-D; we focus on the case of 2-D kernels that can reproduce polynomials

and show that sets of 2-D Diracs and polygonal images can be sampled and perfectly

reconstructed using these kernels. For the polygonal case, we present two alternative

schemes: one is based on complex-moments and annihilating filter method, the other on

the link between finite differences and directional derivatives.

1.2 Organization of the report

In the next chapter we review the concept of FRI signals and extend it to 2-D.

We focus on a 2-D generic sampling setup and to the important properties of the kernels

employed in the proposed sampling schemes. In Chapter 3, a local sampling scheme for

sets of 2-D Diracs is presented. In Chapter 4, we address a global scheme for sampling

the bilevel polygons, inspired by the complex-moments based approach of [16, 25]. We

then extend this global sampling scheme (of bilevel polygons) to sets of Diracs as an

alternative to the local one presented in Chapter 3. In Chapter 5, we propose a novel

directional-derivatives based sampling scheme for planar polygons. The scheme is local

(involve only a corner point at a time) and holds only local complexities irrespective of

the number of corner points. Finally, we conclude in Chapter 6 and outline the future

work on the envisaged roadmap.
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1.3 Original contribution

Chapters 3, 4, and 5 of this report present the original and individual research work.

The contribution includes development of novel sampling schemes for 2-D FRI signals

using a rich class of kernels that reproduce polynomials. More precisely, the contribution

is enumerated as follows

1. Sampling scheme for sets of 2-D Diracs using local kernels (Proposition 1)

2. Sampling scheme for bilevel polygons and Diracs by solving a global system using

complex-moments and annihilating filter method (Proposition 2 and Proposition 3)

3. Sampling scheme for planar polygons using local kernels by discovering a link be-

tween continuous directional derivatives and discrete differences over the integer

lattices
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CHAPTER 2

SAMPLING SIGNALS WITH
FINITE RATE OF INNOVATION (FRI)

2.1 Introduction

In this chapter, first we review the concept of signals with finite rate of innovation

(FRI) and then focus on its extension in 2-D. We describe two core aspects related to the

sampling of 2-D FRI signals, namely, a 2-D sampling setup and classes of 2-D sampling

kernels with desired properties.

2.2 Review of FRI signals

The intuitive way to introduce signals with finite rate of innovation is to think them

as finite complexity signals having a parametric representation with a finite number of

parameters (degrees of freedom).

More precisely, consider a signal of the form [37]

g(t) =
∑
n∈Z

K∑
k=0

λn,k fk (t− tn) (2.1)

where the set of functions {fk}, k = 0, 1, . . . ,K is known. It is clear that the only free

parameters (degrees of freedom) in g(t) are the time instants tn and the coefficients λn,k.

It is therefore natural to introduce a counting function Cg(ta, tb) that counts the

number of free parameters in g(t) over an interval τ = [ta, tb]. The rate of innovation of

g(t) is then defined as [37]
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ρ = lim
τ→∞

1
τ
Cg

(
−τ

2
,
τ

2

)
(2.2)

Definition 1. (Vetterli, Marziliano, Blu [37]) A signal with a finite rate of innovation

is a signal whose parametric representation is given in ( 2.1) and with a finite ρ as defined

in ( 2.2).

Notice that shift-invariant signals, including bandlimited real signals are included

in Definition 1. For instance, if we call fm > 0 the maximum frequency in a bandlimited

real signal, then ρ = 2fm. Therefore, one possible interpretation is that it is possible to

sample bandlimited signals because they have finite rate of innovation. In general for FRI

signals, the number of degrees of freedom can be related directly to the minimum sampling

density ρ or to the minimum number of samples that allow perfect reconstruction.

In some cases it is more convenient to consider a local rate of innovation with respect

to a moving window of size τ . The local rate of innovation at time t is thus given by [37]

ρτ (t) =
1
τ
Cg

(
t− τ

2
, t +

τ

2

)
. (2.3)

Clearly ρτ (t) tends to ρ as τ →∞.

2.3 FRI signals in 2-D

The notion of FRI can be easily extended in 2-D for a signal

g(x, y) =
∑
j∈Z

∑
k∈Z

N∑
n=0

λj,k,n fn (x− xj , y − yk) (2.4)

with ρxy = ρxρy = limτx,τy→∞
1

τxτy
Cg

(
− τx

2 , τx
2

)
Cg

(
− τy

2 ,
τy

2

)
, where xj and yk are arbi-

trary shifts in x and y directions respectively. For example [23], when fn(x, y) = δxy(x, y)
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and both xj−xj−1 and yk−yk−1 are i.i.d. random variables with exponential density, then

g(x, y) describes a separable 2-D Poisson process. A set of 2-D Diracs is one particular

realization of a 2-D Poisson process. Other examples of 2-F FRI signals include simple

lines, polygonal images, and planar parametric curves.

),(),( yxxyyxh −−= φ),( yxg

),( ykTyxjTx
j k

xy −−∑ ∑ δ

),(, ykTxjTsgkjS =
),( yxsg

DC/

ngPrefilteri
Sampling tionDiscretiza

Figure 2.1: A generic 2-D sampling setup

2.4 Sampling setup in 2-D

It is customary to filter a given signal before being (uniformly) sampled. We consider

a 2-D generic sampling setup, where a continuous 2-D FRI signal g(x, y) is prefiltered

with a smoothing (sampling) kernel ϕxy(x, y). The filtered version g(x, y) ∗ ϕ(−x,−y) is

sampled uniformly to obtain a set of samples Sj,k given by

Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 (2.5)

where x, y ∈ R, j, k ∈ Z, and Tx, Ty ∈ R+ are the sampling intervals along x and y

directions respectively. Notice that Figure 2.1 depicts a model typical of many commonly

used acquisition devices and processing algorithms [23].



2.5 Sampling kernels and their properties 7

2.5 Sampling kernels and their properties

It is always desirable to have a freedom in selecting or designing a sampling kernel

ϕxy(x, y) of choice. However, in practice, the kernel results from the physical properties

of the acquisition device or processing algorithms and cannot be modified. Obviously,

the classical ‘bandlimited-sinc’ sampling strategy of Shannon is too restrictive in many

real-life situations, as it relies on infinite support and a slow decaying kernel (i.e. ideal

low-pass filter). Therefore it is more valuable to develop sampling schemes that support

a wide range of kernels which are more attainable.

It was shown in [13] that the general requirement of kernel is to be of compact

support and satisfy Strang and Fix conditions [30]. Also the kernels that reproduce

exponentials (e.g. E-Splines [34]), or have rational transfer functions are included in the

classes of kernels suitable for sampling FRI signals.

Although, all these kernels are equally valid, in the present context we consider

only a class of kernels that reproduce polynomials. To be more precise, our sampling

kernel ϕxy(x, y) is given by the tensor product of two 1-D functions ϕ(t), t ∈ R that can

reproduce polynomials. We further assume that ϕxy(x, y) is of compact support Lx×Ly.

The sampling kernel ϕxy(x, y) then follows the property of partition of unity as given by

(see Figure 2.2 (a))

∞∑
j=−∞

∞∑
k=−∞

ϕxy(x− j, y − k) = 1, (2.6)

and the polynomial approximation as given by (see also Figure 2.2 (b) and (c))

∞∑
j=−∞

∞∑
k=−∞

Cx
γ,j ϕxy(x− j, y − k) = xγ

∞∑
j=−∞

∞∑
k=−∞

Cy
γ,k ϕxy(x− j, y − k) = yγ , (2.7)
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where γ = {0, 1, . . . ,Γ− 1} specify numbers of degrees of polynomials that the sampling

kernel ϕxy(x, y) can reproduce. The coefficients Cx
γ,j and Cy

γ,k are kernel dependent weights

along x and y directions respectively.

For example, by using a B-Spline of order one, the partition of unity is illustrated

in Figure 2.2 (a). The reproduction of polynomial of degree one along x axis is shown

in part (b), while the reproduction of polynomial of degree one along y axis is shown in

part (c).

(a)

yx

(b)

yx

(c)

Figure 2.2: For example, by using a B-Spline of order 1, we have (a) Partition of unity, (b)
Reproduction of polynomial of degree 1 along x axis, and (c) Reproduction of polynomial
of degree 1 along y axis.

With reference to sampling and reconstructing kernels and their subspaces, it is
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important to note that if the sampling kernel ϕxy(x, y) is orthogonal basis then the coef-

ficients Cx
γ,j , and Cy

γ,k are given by

Cx
γ,j = 〈xγ , ϕxy(x/Tx − j, y/Ty − k)〉

Cy
γ,k = 〈yγ , ϕxy(x/Tx − j, y/Ty − k)〉 (2.8)

while for biorthogonal basis the coefficients are given by

Cx
γ,j = 〈xγ , ϕ̃xy(x/Tx − j, y/Ty − k)〉

Cy
γ,k = 〈yγ , ϕ̃xy(x/Tx − j, y/Ty − k)〉 (2.9)

where ϕ̃xy(x, y) is the dual of original kernel ϕxy(x, y).

For biorthogonal bases, dual kernel plays a pivotal role in perfect reconstruction.

For more details we refer to [36, 31, 6].

Notice that orthogonal Daubechies scaling functions [6] and biorthogonal B-Splines [32],

among many other scaling functions, satisfy the above properties and therefore, are valid

sampling kernels. Simple forms of these kernels in 2-D are shown in Figure 2.3.

(a) (b)

Figure 2.3: (a) B-Spline of order one, (b) Daubechies scaling function using a 4-tap filter.
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CHAPTER 3

SETS OF 2-D DIRACS

3.1 Introducton

In this chapter, we consider sets of 2-D Diracs as FRI signals. We will show that

it is possible to sample and reconstruct sets of Diracs using local kernels that reproduce

polynomials. Explicit reconstruction equations are derived and a sampling theorem is

presented.

3.2 Signal model

We begin with a simple class of FRI signals, that is, a set of 2-D Diracs g(x, y) =∑
j∈Z

∑
k∈Z aj,k δxy (x− xj , y − yk), where a, x, y ∈ R. Signal g(x, y) is illustrated in Fig-

ure 3.1. Each Dirac can be parameterized by an amplitude and a position (in terms of

two Cartesian coordinates x and y), and thus has a finite number of degrees of freedom

(or rate of innovation) which equals three.

Figure 3.1: A set of 2-D Diracs
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3.3 Sampling and reconstruction scheme

Assume that there is at most one Dirac in an area of size LxTx×LyTy, and that the

sampling kernel ϕxy(x, y) can reproduce polynomials of degrees zeros and one. With the

backdrop from [11], we are sure that only Lx×Ly inner products (samples) overlap in any

given region of size LxTx×LyTy that encloses a unique Dirac ap,qδxy(x−xp, y−yq), p, q ∈ Z.

Literally, for any arbitrary region enclosing a unique Dirac, equation (2.6) demon-

strates the fact that an algebraic sum of shifted and overlapping kernels is constant and

equals to unity (see Figure 2.2 (a)). Whereas, equation (2.7) reveals that the weighted

sums of the same kernels produce 2-D unit-slope linear functions passing through the

origin and in the directions governed by the weighting coefficients Cx
1,j and Cy

1,k (see Fig-

ures 2.2 (b) and (c)). In support of above argument, we have an analytical formulation

as:

Lx∑
j=1

Ly∑
k=1

Sj,k =

〈
ap,qδxy(x− xp, y − yq),

Lx∑
j=1

Ly∑
k=1

φxy(x− j, y − k)

〉

=

∞∫
−∞

ap,qδxy(x− xp, y − yq)

 Lx∑
j=1

Ly∑
k=1

φxy(x− j, y − k)

 dxdy

= ap,q

Lx∑
j=1

Ly∑
k=1

φxy(xp − j, yq − k)

= ap,q (following equation (2.6)) (3.1)

and

Lx∑
j=1

Ly∑
k=1

Cx
1,jSj,k =

〈
ap,qδxy(x− xp, y − yq),

Lx∑
j=1

Ly∑
k=1

Cx
1,jφxy(x− j, y − k)

〉
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=

∞∫
−∞

ap,qδxy(x− xp, y − yq)

 Lx∑
j=1

Ly∑
k=1

Cx
1,jφxy(x− j, y − k)

 dxdy

= ap,q

Lx∑
j=1

Ly∑
k=1

Cx
1,jφxy(xp − j, yq − k)

= ap,qxp (following equation (2.7)) (3.2)

Similarly, it is apparent to arrive at
Lx∑
j=1

Ly∑
k=1

Cy
1,kSj,k = ap,qyq based on above derivation.

a
p,q

(x−x
p
,y−y

q
)

(a)

x−axisy−axis

a
p,q

(x−x
p
,y−y

q
)

(b)

x−axisy−axis

a
p,q

(x−x
p
,y−y

q
)

(c)

Figure 3.2: Sampling of a 2-D Dirac: (a) Partition of unity responsible for the determi-
nation of amplitude ap,q, (b) Reproduction of polynomial of degree 1 along x direction
responsible for the determination of coordinate xp, and (c) Reproduction of polynomial
of degree 1 along y direction responsible for the determination of coordinate yq.
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Therefore, the amplitude ap,q of a given Dirac (Figure 3.2) is reconstructed using

ap,q =
Lx∑
j=1

Ly∑
k=1

Sj,k (3.3)

and the position (xp, yq) is reconstructed using

xp =

 Lx∑
j=1

Ly∑
k=1

Cx
1,jSj,k

 /
ap,q

yq =

 Lx∑
j=1

Ly∑
k=1

Cy
1,kSj,k

 /
ap,q (3.4)

where the coefficients Cx
1,j and Cy

1,k are identified from equation (2.7).

Hence, a sampling scheme for 2-D Diracs follows

Proposition 1. Given a sampling kernel ϕxy(x, y) that can reproduce polynomials of

degree zero and one along both Cartesian axis x and y and of compact support Lx×Ly, a

set of finite amplitude 2-D Diracs g(x, y) =
∑

j∈Z
∑

k∈Z aj,k δxy (x− xj , y − yk) is uniquely

determined from its samples defined by Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 if and

only if there is at most one Dirac in any distinct rectangular area of size LxTx × LyTy.
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CHAPTER 4

BILEVEL POLYGONS AND DIRACS:
USING COMPLEX MOMENTS

4.1 Introduction

In this chapter, we consider sampling of bilevel polygons and sets of Diracs. In

deriving novel sampling schemes for these signals, we use techniques such as complex-

moments [16, 25] and annihilating filter [37]. We open the chapter reviewing these im-

portant techniques, and then using these techniques, we present a sampling perspective

to the reconstruction of bilevel polygons and sets of Diracs.

4.2 Background

Since years, mathematicians and applied scientists have been studying the relation-

ship between shape and moments [27, 16]. The moments of a region are the integrals of

the powers of the independent variables over that region. The close relationship between

shape and moments finds its application in many diverse fields such as computed tomog-

raphy, geophysical inversion, and thermal imaging [16]. For example, in tomography, the

X-rays compute the moments of the available object in form of line integrals (or Radon

transform projections) and from these moments (or projections) the available object is

characterized. Similarly, in other applications, the moment measurements avail better

information to characterize an object otherwise unspecified.

Among other variants, complex (or harmonic) moments potentially provide enough

information to allow complete or partial reconstruction of unknown polygonal shapes

viewed as the closed regions in the complex Cartesian plane [7, 8, 29, 25, 16].
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4.3 Complex-moments for polygonal shapes

Definition 2. The nth simple complex moment of a given function g(x, y) over a complex

Cartesian plane z = x + iy in the closure O is given by [15]:

msc
n =

∫ ∫
O

g(x, y)zn dx dy. (4.1)

4.3.1 Early contributions

Earlier, Davis [8] showed that any triangular region in the complex plane is uniquely

determined by its complex moments up to order 3. This results was presented based on

an alternate Motzkin-Schoenberg (MS) formula which is described as follows.

Let g(x, y) denote a polygon with three corner points (vertices) z1, z2, and z3 in the

complex plane. If A is the area of g(x, y) and h(z) is any analytic function in the closure

O of g(x, y), then the Motzkin-Schoenberg (MS) formula [7, 8] states that

∫ ∫
O

g(x, y)h
′′
(z) dx dy = 2A det(U1)/det(U2) (4.2)

where

U1 =


1 1 1

z1 z2 z3

h(z1) h(z2) h(z3)

 and
U2 =


1 1 1

z1 z2 z3

z2
1 z2

2 z2
3



Davis [7] also generalized the MS formula for polygons with N > 3 corner points. It

was shown that the value of the integral of the second derivative of any analytic function

h(z) in the closure O of a polygonal region g(x, y) in the complex plane depends only on

the values of h(z) at the corner points zi of the polygonal region. The original result is

highlighted as follows [7, 25].
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Theorem 1. [Davis 1964] Let z1, z2, . . . , zN designate the corner points of a poly-

gon g(x, y) in the closure O. Then, we can find constants ρ1, ρ2, . . . , ρN depending on

z1, z2, . . . , zN (and the way they are connected) but independent of h, such that for all h

analytic in O

∫ ∫
O

g(x, y) h
′′
(z) dx dy =

N∑
i=1

ρih(zi). (4.3)

If r ≥ N and zN+1, . . . , zr are additional points distinct from z1, z2, . . . , zN , and if there

are constants b1, b2, . . . , br that depend only on z1, z2, . . . , zr such that

∫ ∫
O

h
′′
(z) dx dy =

r∑
i=1

bih(zi) (4.4)

for all h analytic in the closure O, then

bi = ρi, 1 ≤ i ≤ N

bi = 0, N + 1 ≤ i ≤ r.

4.3.2 Modern applications and key connection

Recently, the problem of accurate determination of the N corner points (of polyg-

onal shapes) form a finite number of its moments is extended with better numerical

stability [17, 18]. In [16], the corner point recovery is further extended by assuming per-

turbed (noisy) complex moments. The estimation theory based formulation of [16] , in

principle, resembles many diverse application models such as i) identifying autoregressive

system using its output; ii) decomposing a signal built as a linear mixture of complex

exponentials; and iii) estimating the direction of arrival (DOA) in array processing.

In fact, the modern revival of Davis’s theorem and its applications can be traced

back to the results of Milanfar et al. in [25]. They extended the Davis’s theorem by
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carefully analyzing following observations.

1. The coefficients {ρi} in equation (4.3) are determined from the corner points {zi}

of the given polygon using

ρi =
√
−1
2

(z∗i−1 − z∗i
zi−1 − zi

−
z∗i − z∗i+1

zi − zi+1

)

=
2Ai

(zi − zi+1)(zi − zi−1)
, i = 0, 1, . . . , N. (4.5)

where z∗ is the complex conjugate of z. Ai is the signed area of the triangle formed

by the vertices zi−1, zi, and zi+1 such that

Ai =
√
−1
4

det


zi−1 z∗i−1 1

zi z∗i 1

zi+1 z∗i+1 1

 .

2. No {ρi} is zero unless the corresponding Ai is zero. However, the polygon is assumed

to be simply connected and nondegenerate, all Ai are nonzero.

3. It is important to note that the equation (4.5) depends explicitly only on the cor-

ner points and their simple and cyclical order of connection such that the modulo

operation zi = zi+N holds. Therefore, the corresponding {ρi} are essentially unique

for a given polygon if it is assumed to be convex.

4. Equation (4.3) is a minimal representation of h
′′
(z) in the closure O in terms of

discrete values of h(z). The continuous integral depends only on the values of h(z)

at the corner points {zi} and their order, the values of h at other points over the

complex plane have no significance. Additionally, since each {ρi} is nonzero, the
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expression (4.3) for any arbitrary analytic h(z) cannot be reduced to an alternative

form with fewer {ρi}.

Assume a closed region of a simply connected, convex, and nondegenerate polygon

in the closure O over the complex plane z = x +
√
−1 y. Let g(x, y) be a bilevel indicator

function representing the polygon in such a way that it takes the value ‘1’ inside the

polygon and the value ‘0’ outside. Furthermore, as a special case, consider an analytic

function h(z) = zn over the complex plane, by applying Davis’s theorem, it is possible to

show that [25]

N∑
i=1

ρi zn
i =

∫ ∫
O

g(x, y) h
′′
(z) dx dy

=
∫ ∫

O
g(x, y)(zn)

′′
dx dy

= n(n− 1)
∫ ∫

O
g(x, y)zn−2 dx dy

= n(n− 1) msc
n−2

= τn, ∀n ≥ 2 (4.6)

where msc
n−2 represents simple complex moments of the polygon g(x, y) from (4.1), while

τn = n(n − 1) msc
n−2, n ≥ 2 denotes weighted complex moments, and by definition τ0 =

τ1 = 0. Note that the coefficients {ρi} are determined from equation (4.5).

Above expression holds a direct relationship between the corner points zi and a

finite number of complex moments τn. As such for every value of n, τn can be uniquely

determined by evaluating the function h(z) at N discrete points zi. Whereas, in practice,

the positions zis are derived from a finite number (≥ N) of moments τns using Prony’s

method [25]. (However, this becomes an estimation problem if the moments are per-

turbed [16]). The positions zis are sufficient to uniquely determine the original bilevel

polygon g(x, y) following the assumption of its being nondegenerate, simply connected,
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and convex [25].

Note that the annihilating filter method [37] is a potential algorithmic variant of

the Prony’s method to determine the corner points zis from τns, and is discussed in the

next section.

In summary of above discussion, a key connection that is relevant to our sampling

perspective is described as follows:

Theorem 2. [Milanfar et al.] For a given nondegenerate, simply connected, convex

polygon in the complex Cartesian plane, all of its N corner points are uniquely determined

by its weighted complex moments τn up to order 2N − 1.

4.4 Annihilating filter method

The annihilating filter method is well known in error-correction coding and spectral

analysis [37]. In particular, in second application, often the weights ρi and locations ui

of the spectral components are required to be accurately determined from the observed

signal τ [n] which is composed of linear combinations of exponentials such that τ [n] =∑N−1
i=0 ρi un

i , where ρi ∈ R, ui ∈ C, n ∈ N. Very recently, this method has been successfully

utilized for sampling FRI signals, more accurately, in determining weights ρi and locations

ui for the streams of Diracs [37].

The annihilating filter method consists of two steps:

1. Designing a filter A[l] that annihilates signal τ [n] such that A[n]∗ τ [n] = 0, ∀n ∈ N.

2. Determining the locations ui and weights ρi using the coefficients of filter A[n] and

the available signal τ [n].

Given the important role played by this method for reconstruction of FRI signals [37], and

its immediate relevance in the following section, we briefly discuss its core formulation.

For in-depth treatment, we recommend [37, 28].
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4.4.1 Designing filter A[n]

Consider a signal

τ [n] =
N−1∑
i=0

ρi un
i , ρi ∈ R, ui ∈ C, n ∈ N, (4.7)

and a filter A[l], l = 0, 1, . . . , N with z-transform

A(z) =
N∑

l=0

A[l] z−1 =
N−1∏
i=0

(1− ui z−1). (4.8)

It then follows that

A[n] ∗ τ [n] =
N∑

l=0

A[l] τ [n− l] (4.9)

=
N∑

l=0

N−1∑
i=0

ρi A[l] un−l
i

=
N−1∑
i=0

ρi

( N∑
l=0

A[l] u−l
i

)
︸ ︷︷ ︸

is 0 for z=ui from (4.8)

un
i

= 0. (4.10)

Thus, A[n] annihilates τ [n]. In practice, the coefficients A[l] are obtained by solving

a linear system of equations characterized by A[n] ∗ τ [n] =
∑N

l=0 A[l] τ [n − l] = 0. Fol-

lowing the fact that A[0] = 1, the same system in Yule-Walker form using N independent

equations with 2N − 1 observations of τ [n] follows



τ [N − 1] τ [N − 2] · · · τ [0]

τ [N ] τ [N − 1] · · · τ [1]
...

...
. . .

...

τ [2N − 2] τ [2N − 3] · · · τ [N − 1]





A[1]

A[2]
...

A[N ]


= −



τ [N ]

τ [N + 1]
...

τ [2N − 1]


. (4.11)

4.4.2 Determining locations ui and weights ρi

The coefficients A[n] of annihilating filter are determined using Yule-Walker system

of (4.11), and from equation (4.8) it is straightforward to see that the N roots of filter
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A(z) are exactly the locations ui.

Once the locations ui are known, the weights ρi are determined by solving equa-

tions (4.7) as follows



1 1 · · · 1

u0 u1 · · · uN−1

...
...

. . .
...

uN−1
0 uN−1

1 · · · uN−1
N−1





ρ0

ρ1

...

ρN−1


=



τ [0]

τ [1]
...

τ [N − 1]


. (4.12)

This Vandermonde system yields unique solution for the weights ρi, given that all locations

ui are distinct.

4.5 A sampling perspective using complex moments

With a clear background and sufficient knowledge of the techniques such as com-

plex moments and annihilating filter method, we are now ready to propose our sampling

schemes for bilevel polygons and sets of Diracs.

Let us recall our sampling setup as outlined in Section 2.4: We consider any 2-D

sampling kernel ϕxy(x, y) that satisfies partition of unity (2.6) and polynomial approx-

imation (2.7) along both Cartesian axis x and y. Furthermore, for a given 2-D signal

g(x, y), the output samples Sj,k are given by

Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉. (4.13)

4.5.1 Bilevel polygons

Consider a simply connected, nondegenerate, and convex bilevel polygon g(x, y)

with N corner points and such that inside the polygons is ‘1’ and outside is ‘0’. Also

we have a sampling kernel ϕxy(x, y) that reproduces polynomials at least up to degree
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γ = 2N − 1 along both x and y directions.

Let us consider 2-D Cartesian plane xy as a complex plane z such that all N corner

points zi = xi +
√
−1 yi, i = 1, 2, . . . , N of g(x, y) are enclosed within the closure O.

Furthermore, consistent with the definition of simple complex moments msc
n , select an

analytic function h(z) = zn, n ∈ N. Therefore, using the formulation (4.6) of Milanfar et

al., we have

τn =
N∑

i=1

ρi zn
i =

∫
O

g(x, y)(zn)
′′

dz = n(n− 1)
∫ ∫

O
zn−2 dx dy (4.14)

since g(x, y) is ‘1’ within the closure O and ‘0’ outside.

Complex moments from samples Sj,k:

It is obvious to notice that with the sampling, we cease to have direct access to

the original polygon g(x, y), instead we have access to the samples Sj,k. However, it is

remarkable to note that the polynomial approximation property of sampling kernel allows

us to link the complex moments τn with the complex sums of the products of samples Sj,k

and the coefficients Cx
γ,j and Cy

γ,k.

For instance, we have

τ3 =
N∑

i=1

ρi z3
i

= 6
∫

O
z dz

= 6
∫ ∫

O
(x +

√
−1 y) dx dy

= 6
∑

j

∑
k

(Cx
1,j +

√
−1 Cy

1,k) Sj,k. (4.15)

Similarly, we can obtain any other moment τn for n ∈ N. In particular, we require at

least 2N − 1 moments with n = γ + 2, γ = 0, 1, . . . , 2N − 1, consistent with the theorem

of Milanfar et al. as mentioned before on Page 19.
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Determining corner points by designing A(z) using τn:

It is straightforward to see that all the derived moments τn based on (4.15) consists

linear combinations of exponentials zn
i . Therefore, it is possible to retrieve the corner

points zi using annihilating filter method as discussed in Section 4.4. Notice that in

this polygonal case, the weights ρi are complex and dependent on the corner points zi.

However, bilevel polygon is completely characterized by its corner points zi.

Once we have at least 2N − 1 moments τn, we design an annihilating filter A[l], l =

0, 1, . . . , N from τn using the Yule-Walker system of (4.11). The N complex roots of the

filter A(z) give the positions zi = xi +
√
−1 yi of all the N corner points on a complex

Cartesian plane. Assumption of nondegenerate, simply connected, and convex polygon

guarantees a unique reconstruction.

Thus a sampling perspective to the reconstruction of bilevel polygon follows

Proposition 2. Given a sampling kernel ϕxy(x, y), a simply connected and convex bilevel

polygon g(x, y) with at most N corner points is uniquely determined by its samples Sj,k =

〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, provided that ϕxy(x, y) can reproduce polynomial up to

degree 2N − 1 along both the Cartesian axis x and y.

4.5.2 Sets of Diracs

Now imagine a case where, instead of a bilevel polygon, signal g(x, y) consists of a

set of N 2-D Diracs such that

g(x, y) =
N∑

i=1

aiδxy(x− xi, y − yi), a, x, y ∈ R. (4.16)

Where we assume that the set of N Diracs may be arbitrarily enclosed in a small region

in the closure O over the complex Cartesian plane xy such that the positions of all N
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Diracs are uniquely identified by zi = xi +
√
−1 yi, i = 1, 2, . . . , N .

Notice that here we relax the earlier assumption of only one Dirac in the area of

LxTx×LyTy (Recall the local reconstruction scheme for Diracs given in Chapter 3), where

Lx×Ly denotes the support of 2-D sampling kernel ϕxy(x, y), and Tx, Ty are the uniform

sampling intervals along x and y directions.

However, consistent with the polygonal case, we consider the kernel ϕxy(x, y) that

can at least reproduce polynomials of degrees γ = 0, 1, . . . , 2N − 1 along both x and

y directions. Also assume that there are at most N Diracs in any distinct area of size

NLxTx ×NLyTy. Justification of this assumption is in the line with its 1-D formulation

and is rigorously discussed in [13]. Since we have assumed that there are up to N Diracs

in an arbitrary small region, we need to consider the global reconstruction of at most N

Diracs at the same time rather than a local one that considers only one Dirac at a time

(Chapter 3).

In the following discussion, we show that it is straight forward to extend the

complex-moments based sampling scheme of bilevel polygon to the set of N Diracs. Again

we employ annihilating filter method in solving a system of 2N polynomial equations.

Agreeing with the polynomial reproduction property of the sampling kernel, consider

the analytic function h(z) = zn = (x +
√
−1 y)n, n ∈ N in the closure O that encloses a

set of N Diracs g(z) = g(x, y). Then from the formulation (4.6) of Milanfar et al., we can

find the complex-moments τn as given by
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τn =
∫ ∫

O
g(z) h(z) dz

=
∫ ∫

O
g(x, y) zn dx dy

=
∫ ∫

O

N∑
i=1

aiδxy(x− xi, y − yi) (x +
√
−1 y)n dx dy

=
N∑

i=1

ai z
n
i , n = γ (4.17)

where ai identifies amplitudes and zi identifies positions of all N Diracs over the 2-D

complex plane, and γ = 0, 1, . . . , 2N − 1.

From a sampling perspective, owing to the polynomial reproduction property of the

sampling kernel, complex sums of linear combinations of samples Sj,k = 〈g(x, y), ϕxy(x/Tx−

j, y/Ty−k)〉 and the corresponding weights Cx
γ,j and Cy

γ,j produce at least 2N−1 complex-

moments τn.

For example, when ϕxy(x, y) belongs to the classes of either orthogonal Daubechies

scaling functions or biorthogonal B-Splines then it follows that

τn =
N∑

j=1

N∑
k=1

(
Cx

1,j +
√
−1 Cy

1,k

)n
Sj,k (4.18)

where n = γ for γ = 0, 1, . . . , 2N − 1, and Cx
γ,j = (Cx

1,j)
n and Cy

γ,k = (Cy
1,k)

n.

Now equating the righthand sides of equations (4.17) and (4.18), we have

N∑
i=1

ai z
n
i =

∑
j∈Z

∑
k∈Z

(
Cx

1,j +
√
−1 Cy

1,k

)n
Sj,k (4.19)

where the righthand side gives 2N − 1 simple complex moments of the signal g(x, y) from

its samples Sj,k for n = γ.
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Clearly in analogy with the case of bilevel polygon, it is easy to follow that equa-

tion (4.19) is solved for the weights ai and positions zi using the annihilating filter method.

The N roots of the annihilating filter A(z) derived from the Yule-Walker system of

(4.11) give exact positions. Once the positions are known, the amplitudes are obtained

from the Vandermonde system of (4.12). Distinctiveness of all Diracs guarantees a unique

solution.

Thus a sampling perspective to the reconstruction of Diracs follows

Proposition 3. Given is a sampling kernel ϕxy(x, y) with compact support Lx × Ly. A

set of finite amplitude Diracs g(x, y) =
∑

i∈Z aiδxy(x− xi, y − yi) is uniquely determined

from its samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 if and only if there are at most

N Diracs in an area of size NLxTx × NLyTy and the kernel ϕxy(x, y) can reproduce

polynomials up to degree 2N − 1 along both the Cartesian axis x and y.

4.5.3 Simulation results

Now we present simulation results for two simple cases; i) a bilevel polygon with

three corner points, and ii) a set of three Diracs.

Simulation result for the bilevel is illustrated in Figure 4.1. Figure 4.1 (a) shows

the original bilevel polygonal image with corner points N = 3. We get a low resolu-

tion version of the image g(x, y) by convolving it with the smoothing (sampling) kernel

ϕxy(x, y). This low resolution version is depicted in Figure 4.1 (b). A sampled version

of g(x, y) ∗ ϕxy(−x,−y), with uniform sampling interval in both x and y direction, is

shown in part (c). From these samples, using complex-moments, we can retrieve the ex-

act locations of the corner points. The reconstructed corner points are indicated with +

in Figure 4.1 (a). In part (d), we show a B-Spline sampling kernel ϕxy(x, y) = β5
xy(x, y)

that we have used for the simulation. The kernel reproduces polynomial up to degrees
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2N − 1 = 5 in both x and y directions.

In the second case, out of three Diracs, the second Dirac has one of its positional

coordinates xp and yq shared with the first Dirac and the remaining coordinate is shared

with the third one. Note that, in this type of situation one cannot retrieve the cor-

rect positions of all Diracs using separable moments [23], however it is possible with the

complex-moments.

Simulation result for the set of N = 3 Diracs is illustrated in Figure 4.2. Figure 4.2

(a) shows the input image g(x, y) that consists of three Diracs. We get a low resolu-

tion version of the image g(x, y) by convolving it with the smoothing (sampling) kernel

ϕxy(x, y). The low resolution version is depicted in Figure 4.2 (b). A sampled version

of g(x, y) ∗ ϕxy(−x,−y), with uniform sampling interval in both x and y direction, is

shown in part (c), notice that the only inner products (samples) that overlap Diracs are

nonzero. From the set of 40 × 40 samples, using complex-moments, we can retrieve the

exact locations of the Diracs. The reconstructed Diracs are superimposed over the set of

samples Sj,k and are shown in Figure 4.2 (c). In part (d), we show a B-Spline sampling

kernel ϕxy(x, y) = β5
xy(x, y) that we have used for the simulation. The kernel reproduces

polynomial up to degrees 2N − 1 = 5 in both x and y directions.

4.6 Summary

The complex-moments based approach provides a global solution for the recon-

struction of bilevel polygons and sets of Diracs. The complexity of the solution, however,

increases with the complexity of the signal g(x, y) (i.e. with the number of corner points

or Diracs). Moreover, polygons with very close corner points and very closely placed

Diracs pose a reconstruction challenge due to numerical instabilities in the algorithmic

implementations.
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(a) (b)

(c) (d)

Figure 4.1: (a) An original bilevel polygon and N = 3 reconstructed corner points (with
+). The input image g(x, y) is of size 2971 × 2971 pixels. (b) The lower resolution
version g(x, y) ∗ ϕxy(−x,−y) of g(x, y) available due to convolution with a smoothing
kernel ϕxy(x, y). (c) The set of 22× 22 samples obtained by uniform sampling of g(x, y) ∗
ϕxy(−x,−y). (d) The B-Spline sampling kernel ϕxy(x, y) = β5

xy(x, y) with support 661×
661 pixels that can reproduce polynomials up to degree five along both x and y.
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Figure 4.2: (a) An input image g(x, y) with N = 3 Diracs. The input image g(x, y)
is of size 3031 × 3031 pixels. (b) The lower resolution version g(x, y) ∗ ϕxy(−x,−y) of
g(x, y) is available due to convolution with a smoothing kernel ϕxy(x, y). (c) The set of
40× 40 samples obtained by uniform sampling of g(x, y) ∗ϕxy(−x,−y), however the only
inner products (samples) that overlap Diracs are nonzero. The reconstructed Diracs are
superimposed over the samples. (d) The B-Spline sampling kernel ϕxy(x, y) = β5

xy(x, y)
with support 379×379 pixels that can reproduce polynomials up to degree five along both
x and y.
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CHAPTER 5

PLANAR POLYGONS:
DIRECTIONAL DERIVATIVES BASED APPROACH

5.1 Introduction

In this chapter, we consider sampling of planar polygons. We discover the link

between continuous directional derivatives and discrete directional differences based on

the fundamentals of lattice theory. In particular, we exploit subsampling over integer

lattices. We integrate the resultant ‘directional’ kernels in the local sampling scheme for

2-D Diracs and derive accurate reconstruction equations for the polygonal corner points.

5.2 Problem formulation

5.2.1 Continuous model

)(
1

⋅θD )(
2

⋅θD1θ

2θ

),( yxg

A
A

Figure 5.1: A proper combination of two successive directional derivatives Dθ1 and Dθ2

decomposes a corner point A into a 2-D Dirac for a given planar polygon g(x, y).
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Intuitively, we agree upon the fact that for an arbitrary planar polygon, two suc-

cessive directional derivatives along two adjacent polygonal sides will result into a 2-D

Dirac at the corner point formed by the respective sides. In supplementing this assertion,

we have a simple illustration as given in Figure 5.1. In the illustration, we show a pla-

nar polygon g(x, y) with N = 3 corner points. A proper combination of two successive

directional derivatives Dθ1 and Dθ2 along the orientations θ1 and θ2 decomposes a corner

point A into a 2-D Dirac.

Let us review the formal model of directional derivatives in 2-D by considering a

continuous planar polygon g(x, y) with N corner points. All N sides (boundaries) of the

polygon are identified by the 2-D lines as given by

yi = tan(θi) xi + bi, i = 1, 2, . . . , N, x, y, θ, b ∈ R (5.1)

where bi are shifts (offsets) and θi are the orientations in Cartesian x y plane.

Now focus onto an arbitrary corner point (e.g. point A in Figure 5.1) of the given

polygon g(x, y) formed by the two adjacent polygonal sides with orientations θ1 and θ2.

A set of two successive directional derivatives Dθ1 and Dθ2 on g(x, y) follows that [1]

Dθ2 [Dθ1 [g(x, y)]] = Dθ2

[
cos(θ1)

∂

∂x

(
g(x, y)

)
+ sin(θ1)

∂

∂y

(
g(x, y)

)]
= cos(θ2)

∂

∂x

(
cos(θ1)

∂

∂x

(
g(x, y)

)
+ sin(θ1)

∂

∂y

(
g(x, y)

))
+

sin(θ2)
∂

∂y

(
cos(θ1)

∂

∂x

(
g(x, y)

)
+ sin(θ1)

∂

∂y

(
g(x, y)

))
= cos(θ1) cos(θ2)

∂2

∂x2

(
g(x, y)

)
+ sin(θ1 + θ2)

∂

∂y

( ∂

∂x

(
g(x, y)

))
+

sin(θ1) sin(θ2)
∂2

∂y2

(
g(x, y)

)
. (5.2)

Notice that the formulation (5.2) offers a generalized solution for decomposing a
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planar polygon into a set of N 2-D Diracs using N independent iterations. These N Diracs

are precisely located at the corresponding N corner points of a given g(x, y). Notice that

this formulation requires suitable combinations of 2N directional derivatives along the

desired orientations θi, i = 1, 2, . . . , N . It is worth to register that we will employ this

formulation later in the proposed sampling scheme.

Furthermore, a thoughtful analysis of (5.2) reveals a potential link of reconstructing

planar polygons in the framework of 2-D Diracs (Chapter 3).

5.2.2 Discrete challenge

In practice, we do not have direct access to the polygon g(x, y) but only to the

samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, where ϕxy(x, y) is the sampling kernel.

For simplicity, Figure 5.2 illustrates the discretization of g(x, y) with N = 3 corner points

using the Haar scaling function (or B-Spline β0
xy(x, y) of order zero) as a sampling kernel.

kjS ,

j

k

A

B

C

1θ

2θ

Figure 5.2: Representation of g(x, y) with a finite number of samples Sj,k. For simplicity,
the sampling kernel φxy(x, y) is a 2-D Haar scaling function (or a B-spline β0

xy(x, y) of
order zero).

However, a discrete equivalent to the directional derivatives over g(x, y) is the eval-

uation of directional differences over the set of samples Sj,k. The connection between the
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two dwells in the lattice theory, and in particular, involves subsampling over rectangular

lattices of Z2 (2-D integer lattices).

In the next section, we review important properties of integer lattices. Then in the

subsequent section, by exploiting these properties we establish a link between directional

derivatives and directional differences. Incidentally, this link is governed by the local

‘directional’ kernels that reproduce polynomials. Eventually employing these kernels in

the framework of 2-D Dirac sampling we reconstruct the corner points from a finite number

of samples Sj,k.

5.3 Lattice Theory

As we are dealing with a finite number of samples Sj,k, j, k ∈ Z over a uniform rect-

angular grid, we focus onto the 2-D integer lattices. A quick overview on the fundamentals

of the lattice theory can be found in [2, 14, 21, 24, 26, 35]. For a detailed treatment we

refer to [4, 5].

5.3.1 Base lattice

A full rank integer lattice Λ is a subset of points of Z2, which can be represented

by two linear combinations of the basis vectors {~v1, ~v2} with integer coefficients as given

by [9, 35]

Λ = {λ : λ = n1~v1 + n2~v2}, ni, ~vi ∈ Z, i = 1, 2 (5.3)

where a row vector ~vi = {vi,1, vi,2 | i = 1, 2}.
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5.3.2 Sampling matrix

The resultant lattice Λ satisfying Λ ⊂ Z2 is the outcome of subsampling over integer

lattice Z2. The subsampling scheme is characterized by a non-unique sampling matrix

(generator matrix) VΛ [9, 35]:

VΛ =

 ~v1

~v2

 =

 v1,1 v1,2

v2,1 v2,2

 (5.4)

For example, the matrix VΛ =

 1 2

2 −1

 can be identified with the basis vectors {~v1, ~v2}

as shown in Figure 5.3. The determinant of VΛ is denoted by det(VΛ), and for the men-

tioned case det(VΛ) = −1 − 4 = −5. If VΛ is the sampling matrix for Λ, then all the

possible sampling matrices of Λ (representing same sampling process) are given by UVΛ

where U is a unimodular matrix satisfying |det(U)| = 1.

j

k (1,2)

1)(2,−

0

1v
�

2v
�










−
=∧ 12

21
V

∧tobelongs

Figure 5.3: Basis vectors {~v1, ~v2} that determines the sampling matrix VΛ for the base
lattice Λ.
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5.3.3 Cosets

For a given base lattice Λ, characterized by the sampling matrix VΛ and its deter-

minant det(VΛ), it is possible to partition the integer lattice Z2 into |det(VΛ)| cosets

Λσ,i = Λ + Λ
′
i, i = 0, 1, ..., |det(VΛ)| − 1 (5.5)

where Λσ,i are the shifted versions of the base lattice Λ [9]. For example, an interleaving

pattern of |det(VΛ)| cosets (Λσ,i) of the base lattice Λ is highlighted in Figure 5.4, where

the base lattice has a sampling matrix VΛ as depicted in Figure 5.3.

Figure 5.4: Interleaving pattern of five cosets (as marked with
√

,©,×,�,4). The orig-
inal base lattice Λ is same as shown in Figure 5.3.

5.3.4 Unit cell

PΛ(j, k) is a unit cell of the integer lattice Λ ∈ Z2 if it satisfies [20]:

1. PΛ(j, k) ⊂ Z2, j, k ∈ Z,

2.
⋃

(m,n)∈Λ (PΛ(j, k) + (m,n)) = Z2, and

3. (PΛ(j, k) + (m1, n1))
⋂

(PΛ(j, k) + (m2, n2)) = 0

for m1 6= m2, n1 6= n2, and m1,n1,m2,n2 ∈ Λ.
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In other words, unit cell is a set of points of integer lattice Λ such that disjoint union

of its copies shifted to all of the lattice points of Λ yield the input integer lattice Z2. The

examples of important unit cells include parallelogram and Voronoi cell. Parallelogram is

formed by two basis vectors {~v1, ~v2} of the lattice Λ. Voronoi cell is a set of points closer

to the origin than to any other lattice point. In frequency domain, the unit cell P
f
Λ of the

reciprocal lattice Λf is an example of Voronoi cell [21].

Determinant det(VΛ) represent the area of the unit cell of the lattice Λ as well as

an inverse of the sampling density.

5.3.5 Reciprocal lattice

The reciprocal lattice Λf is the Fourier transform of the original lattice Λ, and its

points represent replicated spectra in the frequency domain. This periodicity allows the

shifted copies of the unit cell P
f
Λ (frequency domain) to cover the entire spectra of Λf [20].

5.3.6 Subsampling effect in frequency domain

Consider I as an original integer lattice Z2. If the subsampled lattice Λ with the

sampling matrix VΛ follows Λ(j, k) = I(VΛj, VΛk), j, k ∈ Z then the following relation

holds in the frequency domain [21]:

Λf (ωx, ωy) =
1

|det(VΛ)|
∑
j∈Z

∑
k∈Z

If
(
{VΛ

T }−1 · (ωx − jrx, ωy − kry)
)

(5.6)

where V T
Λ is the transpose of the sampling matrix VΛ, rx, ry are the basis vectors of the

reciprocal lattice Λf , i.e. rx, ry ∈ Λf , and the vectors ωx, ωy ∈ R.

Equation (5.6) suggests that a 2-D continuous signal sampled over the lattice Λ has

a spectral content scaled by 1
|det(VΛ)| and is periodic over the reciprocal lattice Λf with

the period determined by the basis vectors rx, ry. For a bandlimited signal, the spectral
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content is confined within the unit cell (Voronoi cell) P
f
Λ formed by the reciprocal sampling

matrix (VΛ
T )−1 characterized by the basis vectors rx, ry [20].

5.4 Proposed sampling scheme

Consider a planar polygon g(x, y), x, y ∈ R with N corner points. The N sides of

the polygon are described by yi = tan(θi) xi+ bi, i = 1, 2, . . . , N , where θi ∈ Q represents

the orientations and bi represents offsets. Assume that the corner points are sufficiently

apart (precise quantification is exposed later). Furthermore, we have access to the samples

Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, where the kernel ϕxy(x, y) satisfies partition of

unity (2.6).

Let us focus onto a set of samples Sj,k around an arbitrary corner point of polygon

g(x, y) (e.g. point A in Figure 5.2) formed by the two adjacent sides, oriented along θ1

and θ2 respectively.

Consider the base lattice Λ = {λ : λ = n1~v1 + n2~v2} with ni, ~vi ∈ Z, and ~vi =

{vi,1, vi,2|i = 1, 2}. The base lattice is characterized by a (non-unique) sampling matrix

VΛ =

 v1,1 v1,2

v2,1 v2,2

 with its determinant defined as det(VΛ). The row vectors ~v1 and ~v2

are chosen such that θ1 = tan−1
(

v1,2

v1,1

)
, and θ2 = tan−1

(
v2,2

v2,1

)
.

5.4.1 Connecting directional differences to derivatives

Following the modus operandi as depicted in Figure 5.5, apply a pair of directional

differences Dθ1 and Dθ2 along θ1 and θ2 over the two pairs of samples Sj,k (identified by

Λ). It then follows that
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Figure 5.5: Two successive directional differences Dθ1 and Dθ2 evaluated along θ1 and
θ2 over the two pairs of samples Sj,k around an arbitrary corner point A of the planar
polygon g(x, y).

Dθ2 [Dθ1 [Sj,k]] =
{
S(v2,1+v1,1),(v2,2+v1,2) − S(v2,1),(v2,2)

}
−

{
S(v1,1),(v1,2) − S0,0

}
=

〈
g(x, y),{
ϕxy(x− (v2,1 + v1,1), y − (v2,2 + v1,2))− ϕxy(x− v2,1, y − v2,2)

}
−{

ϕxy(x− v1,1, y − v1,2)− ϕxy(x− 0, y − 0)
}〉

.

Using Parseval’s identity, it follows that

Dθ2 [Dθ1 [Sj,k]] =
1
2π

〈
ĝ(ωx, ωy), ϕ̂xy(ωx, ωy) ·

(
{

e−j((v2,1+v1,1)ωx+(v2,2+v1,2)ωy) − e−j(v2,1ωx+v2,2ωy)
}
−{

e−j(v1,1ωx+v1,2ωy) − 1
})〉

=
1
2π

〈
ĝ(ωx, ωy), ϕ̂xy(ωx, ωy) ·(

e−j(v1,1ωx+v1,2ωy) − 1
)
·
(
e−j(v2,1ωx+v2,2ωy) − 1

)〉
.

After multiplying and dividing by the same factors, it becomes
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Dθ2 [Dθ1 [Sj,k]] =
1
2π

〈
ĝ(ωx, ωy), ϕ̂xy(ωx, ωy) ·(

j(v1,1ωx + v1,2ωy)
)
·
(
j(v2,1ωx + v2,2ωy)

)
·(

e−j(v1,1ωx+v1,2ωy) − 1
)(

e−j(v2,1ωx+v2,2ωy) − 1
)

(
j(v1,1ωx + v1,2ωy)

)(
j(v2,1ωx + v2,2ωy)

) 〉
. (5.7)

Now recall that β̂0
t (ω) = 1−e−jω t

jω is the frequency domain representation of B-Spline of

order zero. This representation can be extended in 2-D as given by

β̂0
θ1

(ωx, ωy) =
(1− e−j(v1,1ωx+v1,2ωy))

j(v1,1ωx + v1,2ωy)

∣∣∣∣∣
θ1=tan−1 ( v1,2

v1,1
)

β̂0
θ2

(ωx, ωy) =
(1− e−j(v2,1ωx+v2,2ωy))

j(v2,1ωx + v2,2ωy)

∣∣∣∣∣
θ2=tan−1 ( v2,2

v2,1
)

β̂0
θ1,θ2

(ωx, ωy) = β̂0
θ1

(ωx, ωy) · β̂0
θ2

(ωx, ωy). (5.8)

where β̂0
θ1

and β̂0
θ2

are the B-Splines of order zero along orientations θ1 and θ2 respectively.

The directional (or skewed) B-Spline β̂0
θ1,θ2

is depicted in Figure 5.6.

For simplicity, let

ξ̂θ1,θ2(ωx, ωy) = β̂0
θ1,θ2

(ωx, ωy)ϕ̂xy(ωx, ωy). (5.9)

Substituting the identities of (5.8) and (5.9) in the formulation of (5.7), we have that

Dθ2 [Dθ1 [Sj,k]] =
1
2π

〈
ĝ(ωx, ωy), ξ̂θ1,θ2(ωx, ωy) ·

(j(v1,1ωx + v1,2ωy)) · (j(v2,1ωx + v2,2ωy))

〉

=
1
2π

〈
ĝ(ωx, ωy), ξ̂θ1,θ2(ωx, ωy) ·{

(jωx)2v1,1 v2,1 + (jωx)(jωy)(v1,1 v2,2 + v1,2 v2,1) +

(jωy)2v1,2 v2,2

}〉
.
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Figure 5.6: The directional 2-D B-Spline: (a) β0
θ1,θ2

in frequency domain (low resolution to
highlight the sinc shape). The skewness of the sinc depends on the basis vectors {~v1, ~v2}
that are related to the orientations θ1 and θ2. (b) β0

θ1,θ2
in spatial domain. (In this

example tan(θ1) = 2 and tan(θ2) = −1/2.)

Multiplying and dividing by the factor |v1||v2|, we have

Dθ2 [Dθ1 [Sj,k]] =
|v1||v2|

2π

〈
ĝ(ωx, ωy), ξ̂θ1,θ2(ωx, ωy) ·{

(jωx)2
v1,1 v2,1

|v1||v2|
+ (jωx)(jωy)

(v1,1 v2,2 + v1,2 v2,1)
|v1||v2|

+

(jωy)2
v1,2 v2,2

|v1||v2|

}〉
.

Again using the following identities in the righthand side of above equation,

v1,1 = |v1| cos(θ1), v1,2 = |v1| sin(θ1)

v2,1 = |v2| cos(θ2), v2,2 = |v2| sin(θ2)

|det(VΛ)| = |v1,1 v2,2 − v1,2 v2,1|, |v1||v2| =
|det(VΛ)|

| sin(θ2 − θ1)|
we have,
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Dθ2 [Dθ1 [Sj,k]] =
|det(VΛ)|

2π| sin(θ2 − θ1)|

〈
ĝ(ωx, ωy), ξ̂θ1,θ2(ωx, ωy) ·{

(jωx)2 cos(θ1) cos(θ2) + (jωx)(jωy) sin(θ1 + θ2) +

(jωy)2 sin(θ1) sin(θ2)
}〉

.

Again using Parseval’s identity, we have

Dθ2 [Dθ1 [Sj,k]] =
|det(VΛ)|

| sin(θ2 − θ1)|

〈
g(x, y),

{
cos(θ1) cos(θ2)

∂2

∂x2

(
ξθ1,θ2(x, y)

)
+

sin(θ1 + θ2)
∂

∂y

( ∂

∂x

(
ξθ1,θ2(x, y)

))
+

sin(θ1) sin(θ2)
∂2

∂y2

(
ξθ1,θ2(x, y)

)}〉
.

Comparing the righthanded of above equation with the continuous directional derivative

model of equation (5.2), it follows that

Dθ2 [Dθ1 [Sj,k]] =
|det(VΛ)|

| sin(θ2 − θ1)|

〈
g(x, y),

∂

∂θ2

( ∂

∂θ1

(
ξθ1,θ2(x, y)

))〉

=
|det(VΛ)|

| sin(θ2 − θ1)|

〈
∂

∂θ2

( ∂

∂θ1

(
g(x, y)

))
, ξθ1,θ2(x, y)

〉
.

Above equation can be presented in an equivalent form as,

Dθ2 [Dθ1 [Sj,k]]
|det(VΛ)|

=

〈
∂

∂θ2

( ∂

∂θ1

(
g(x, y)

))
,

1
| sin(θ2 − θ1)|

ξθ1,θ2(x, y)

〉

=

〈
∂

∂θ2

( ∂

∂θ1

(
g(x, y)

))
, ζθ1,θ2(x, y)

〉
(5.10)

where ζθ1,θ2(x, y) = ξθ1,θ2
(x,y)

| sin(θ2−θ1)| =
β0

θ1,θ2
(x,y)∗ϕxy(x,y)

| sin(θ2−θ1)| is a modified sampling kernel.
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5.4.2 Directional kernels

The resultant kernel ζθ1,θ2(x, y), a modified form of the original sampling kernel

ϕxy(x, y), is the result of the directional differences over the set of samples Sj,k ⊂ Z2. In

other words, it is an outcome related to the discrete processing (subsampling) over the

cosets of the base lattice Λ.

Because the structural properties of this modified kernel depend on the orientations

θ1 and θ2, we denote this modified kernel as a ‘directional’ kernel. The kernel ζθ1,θ2(x, y) is

local and with compact support (|v1,1|+ |v1,2|+Lx)× (|v2,1|+ |v2,2|+Ly). The presence of

amplitude scaling factors 1
|det(VΛ)| and 1

| sin(θ2−θ1)| in equation (5.10) is due to subsampling

over lattices and to structural properties of the directional kernel. For example, given a

corner point bounded by θ1 and θ2, and the original sampling kernel ϕxy(x, y) is a Haar

scaling function, the directional kernel ζθ1,θ2(x, y) is shown in Figure 5.7. It is important

to note that for each distinct corner point, there exists an independent directional kernel

ζθ1,θ2(x, y).

(a) (b)

Figure 5.7: For example, (a) ϕxy(x, y) is a Haar scaling function with support 1× 1, (b)
Modified kernel ζθ1,θ2(x, y) with support 4×4 for an arbitrary corner point of the polygon
formed by the two sides with orientations tan(θ1) = 2/1 and tan(θ2) = −1/2.
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5.4.3 Local reconstruction

Note that in equation (5.10), the term ∂
∂θ2

(
∂

∂θ1

(
g(x, y)

))
represents a Dirac at a

given corner point, and the support of the directional kernel is (|v1,1| + |v1,2| + Lx) ×

(|v2,1|+ |v2,2|+ Ly).

Therefore, if all N corner points of a given polygon g(x, y) are arranged in such

a manner that there exists a unique corner point in the area of overlapping inner prod-

ucts of its associated directional kernel ζθ1,θ2(x, y), then it is possible to mimic the local

reconstruction scheme of 2-D Diracs as given in Chapter 3.

Given a valid sampling kernel ϕxy(x, y), the directional kernel ζθ1,θ2(x, y) always

satisfies partition of unity (2.6) and reproduces polynomials of degree one along both x

and y directions (2.7). These properties of the modified kernel ζθ1,θ2(x, y) enable us to

determine the amplitude ap,q and coordinate positions xp, yq of the resultant 2-D Dirac

at a given corner point from the set of samples Sj,k. We need only a finite number of

samples, i.e. (|v1,1|+ |v2,1|+ Lx)× (|v1,2|+ |v2,2|+ Ly) in the vicinity of the corner point.

Hence the local reconstruction scheme of (3.3) and (3.4) generalizes as follows

ap,q =

∑
j

∑
k Dθ2 [Dθ1 [Sj,k]]
|det(VΛ)|

(5.11)

xp =

∑
j

∑
k Cγ,j Dθ2 [Dθ1 [Sj,k]]
ap,q |det(VΛ)|

yq =

∑
j

∑
k Cγ,k Dθ2 [Dθ1 [Sj,k]]
ap,q |det(VΛ)|

(5.12)

where for γ = 0, 1, the sets of weighting coefficients Cx
γ,j and Cy

γ,k associated with the

kernel ζθ1,θ2(x, y) satisfy equation (2.7).

Clearly, ap,q gives an amplitude of g(x, y), whereas the coordinate pair (xp, yq) gives

a position of the given corner point.
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5.4.4 Functional algorithm

In practice, the input image g(x, y) is an arbitrary planar polygon with N cor-

ner points, such that the orientations of its sides are not known in advance. However,

the polygonal reconstruction scheme based on directional derivatives is realized by the

following 4-step algorithm.

1. For an input polygonal image g(x, y) with N corner points, obtain a set of samples

Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 using a kernel ϕxy(x, y).

2. By a finite number of iterations along the valid orientations (where tan(θ) ∈ Q) and

over the set of Sj,k, identify N correct pairs of directional differences.

3. Applying these pairs on Sj,k, decompose the polygonal region into N 2-D Diracs

such that they are precisely located at the positions of their corresponding corner

points.

4. Now for each Dirac, using the local reconstruction scheme of (5.11) and (5.12),

determine the amplitude ap,q and the position (xp, yq).

5.5 Summary

The directional derivatives based sampling scheme is suitable for resolving planar

polygons with varying amplitudes and with a large range of orientations (tan(θ) ∈ Q)

of their sides using only a finite number of samples. Yet, there must be at most one

corner point in the area that equals the support of its associated kernel ζθ1,θ2(x, y). The

advantage is that this scheme has a local reconstruction complexity irrespective of the

number of corner points in a given polygon.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this report we have proposed several sampling schemes for the classes of 2-D

nonbandlimited signals. In particular, we showed that sets of Diracs and (bilevel or planar)

polygons can be reconstructed from their samples by employing sampling kernels that

reproduce polynomials. Combining the tools like annihilating filters, complex-moments

and directional derivatives, we provide local and global sampling choices with varying

degrees of complexity.

This research has resulted into a submission of the paper:

• P. Shukla and P. L. Dragotti, “Sampling scheme for 2-D signals with finite rate of in-

novation using kernels that reproduce polynomials,” IEEE International Conference

on Image Processing (ICIP), September 2005, Genova, Italy, Submitted.
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6.2 Future work

We plan to extend our work on generalizing the sampling schemes and explore their

cross-fertilization with the potential extensions of wavelet footprints in 2-D [10]. In order

to achieve these objectives, we have chartered the following roadmap.

From March 2005 - October 2005

• Improving algorithmic implementations for polygons considering more number of

corner points and more orientations.

• Exploring a different class of kernels, namely, exponential splines (E-Splines).

• Extending the sampling schemes in higher dimensions. For instance, by using the

notion of complex numbers in 4-D (quaternion).

• Considering more intricate cases. For example, piecewise polynomials inside the

polygons, and planar shapes with piecewise polynomial boundaries.

We plan to submit a paper for the IEEE Transactions on Image Processing by the end of

summer 2005 based on the results of above proposed work in conjunction with the results

of submitted conference paper.

From November 2005 - June 2006

• Studying the notion of wavelet footprints and then extending them in 2-D.

• Integrating the proposed sampling schemes with the footprints in 2-D.

• Investigating the sampling situations when the signals are perturbed with the noise.

• Developing resolution enhancement algorithms for satellite images.
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APPENDIX 1

CAMERA READY PAPER FOR ICIP2005
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[23] I. Maravić and M. Vetterli. Exact smapling results for some classes of parametric
nonbandlimited 2-D signals. IEEE Transactions on Signal Processing, 52(1):175–189,
January 2004.

[24] R. Marks II. Multidimensional-signal sample dependency at Nyquist densities. Jour-
nal of Optical Society of America, 3(2):268–273, February 1986.

[25] P. Milanfar, G. Verghese, W. Karl, and A. Willsky. Reconstructing polygons from
moments with connections to array processing. IEEE Transactions on Signal Pro-
cessing, 43:432–443, February 1995.

[26] D. Petersen and D. Middleton. Sampling and reconstruction of wave-number-limited
functions in n-dimensional euclidean space. Inf. Control, 5:279–323, 1962.

[27] J. Shohat and J. Tamarkin. The problem of moments. Mathematical Surveys, volume
1, Waverly Press, Baltimore, 1943.

[28] P. Stoica and R. Moses. Introduction to Sprectal Analysis. Prentice-Hall, Englewood
Cliffs,NJ, 2000.



REFERENCES 50

[29] V. Strakhov and M. Brodsky. On the uniqueness of the inverse log-arithmic potential
problem. SIAM Journal of Applied Mathematics, 46:324–344, 1986.

[30] G. Strang and Fix. G. Fourier analysis of the finite element variational method.
Constructive Aspects of Functional Analysis, Rome, Italy, pages 796–830, 1971.

[31] G. Strang and T. Nguyen. Wavelets and Filterbanks. Wellesley-Cambridge Press,
Boston, 1996.

[32] M. Unser. Splines - a perfect fit for signal and image processing. IEEE Signal
Processing Magazine, 16:22–38, November 1999.

[33] M. Unser. Sampling—50 Years after Shannon. Proceedings of the IEEE, 88(4):569–
587, April 2000.

[34] M. Unser and T. Blu. Cardinal exponential splines: Part I- theory and filtering
algorithms. IEEE Transactions on Signal Processing, in press.

[35] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P. Dragotti. Discrete multi-
directional wavelet bases. In Proceedings of ICASSP-2003, Barcelona, Spain, Septem-
ber 2003. IEEE.

[36] M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Prentice-Hall, Engle-
wood Cliffs, NJ, 1995.

[37] M. Vetterli, P. Marziliano, and T. Blu. Sampling signals with finite rate of innovation.
IEEE Transactions on Signal Processing, 50(6):1417–1428, June 2002.


