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Abstract 
 
 

Standard DWT (Discrete Wavelet Transform), being non-redundant, is a very 

powerful tool for many non-stationary Signal Processing applications, but it suffers 

from three major limitations; 1) shift sensitivity, 2) poor directionality, and 3) 

absence of phase information. To reduce these limitations, many researchers 

developed real-valued extensions to the standard DWT such as WP (Wavelet Packet 

Transform), and SWT (Stationary Wavelet Transform). These extensions are highly 

redundant and computationally intensive. Complex Wavelet Transform (CWT) is 

also an alternate, complex-valued extension to the standard DWT. The initial 

motivation behind the development of CWT was to avail explicitly both magnitude 

and phase information. This thesis presents a detailed review of Wavelet Transforms 

(WT) including standard DWT and its extensions. Important forms of CWTs; their 

theory, properties, implementation, and potential applications are investigated in this 

thesis. 

Recent developments in CWTs are classified into two important classes first 

is, Redundant CWT (RCWT), and second is Non-Redundant CWT (NRCWT). The 

important forms of RCWT include Kingsbury’s and Selesnick’s Dual-Tree DWT 

(DT-DWT), whereas the important forms of NRCWT include Fernandes’s and 

Spaendonck’s Projection based CWT (PCWT), and Orthogonal Hilbert transform 

filterbank based CWT (OHCWT) respectively. All recent forms of CWTs try to 

reduce two or more limitations of standard DWT with limited (or controllable) 

redundancy, or without any redundancy. Potential applications such as Motion 

estimation, Image fusion/registration, Denoising, Edge detection, and Texture 

analysis are suggested for further investigation with RCWT. Directional and phase 

based Compression is suggested for investigation with NRCWT. 

 Denoising and Edge detection applications are investigated with DT-DWTs. 

Promising results are compared with other DWT extensions, and with the classical 

approaches. After thorough investigations, it is proposed that by employing DT-

DWT for Motion estimation and NRCWT for Compression might significantly 

improve the performance of the next generation video codecs. 
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Chapter 1: Introduction 

 

 

 

Chapter 1: 

Introduction 
 

 

 

1.1 Introduction 
 

Fourier Transform (FT) with its fast algorithms (FFT) is an important tool for 

analysis and processing of many natural signals. FT has certain limitations to 

characterise many natural signals, which are non-stationary (e.g. speech). Though a 

time varying, overlapping window based FT namely STFT (Short Time FT) is well 

known for speech processing applications, a new time-scale based Wavelet 

Transform (WT) is a powerful mathematical tool for non-stationary signals.  

 

WT uses a set of damped oscillating functions known as wavelet basis. WT in 

its continuous (analog) form is represented as CoWT. CoWT with various 

deterministic or non-deterministic basis is a more effective representation of signals 

for analysis as well as characterisation. Continuous wavelet transform (CoWT) is 

powerful in singularity detection. A discrete and fast implementation of CoWT 

(generally with real valued basis) is known as the standard DWT (Discrete Wavelet 

Transform).  

 

With standard DWT, signal has a same data size in transform domain and 

therefore it is a non-redundant transform. Standard DWT can be implemented 

through a simple filterbank structure of recursive FIR filters. A very important 

property; Multiresolution Analysis (MRA) allows DWT to view and process 
 1



Chapter 1: Introduction 
different signals at various resolution levels. The advantages such as non-

redundancy, fast and simple implementation with digital filters using micro-

computers, and MRA capability popularised the DWT in many signal processing 

applications since last decade. Many researches have successfully applied and proved 

the advantages of DWT for signal denoising and compression in a number of diverse 

fields. 

 

1.2 Motivation and Scope of Research 
 

Though standard DWT is a powerful tool for analysis and processing of many real-

world signals and images, it suffers from three major disadvantages, (1) Shift- 

sensitivity, (2) Poor directionality, and (3) Lack of phase information. These 

disadvantages severely restrict its scope for certain signal and image processing 

applications (e.g. edge detection, image registration/segmentation, motion 

estimation).  

 

Other extensions of standard DWT such as Wavelet Packet Transform (WP) 

and Stationary Wavelet Transform (SWT) reduce only the first disadvantage of shift- 

sensitivity but with the cost of very high redundancy and involved computation. 

Recent research suggests the possibility of reducing two or more above-mentioned 

disadvantages using different forms of Complex Wavelet Transforms (CWT) 

[93,98,101,103] with only limited (and controllable) redundancy and moderate 

computational complexity.  

 

The objectives of research in this thesis include: 

 

1. Review of Wavelet Transforms: History, Theory, Various forms of WTs and 

their properties, and Applications. 

 

2. Thorough study of Complex Wavelet Transforms (CWT): History, Theory, 

Various forms, Properties, and Investigations for potential applications.  

 

 2



Chapter 1: Introduction 
3. Comprehensive and collective analysis of recently proposed CWTs, and a 

comparison with existing forms of WTs. 

 

4. Implementation: Practical realisation of various CWTs and WTs through 

individual Matlab simulations. Review of selected applications like denoising 

and edge detection. Individual implementation of selected application with 

suitable WTs and CWTs. Incorporating novel ideas culminating in the 

original and novel outcomes. Statistical validation of original results. 

 

5. Comparative study: Critical evaluation of the original results obtained from 

individual implementations of existing and novel algorithms for selected 

applications using various forms of WTs and CWTs. 

 

1.3 Organisation of Thesis 
 

The thesis is organised in to six chapters as follows: 

 

Chapter 1 is an introduction with the comprehensive description of the central 

theme of this research. A systematic organisation of thesis is also presented. 

 

Chapter 2 is a detailed review of Wavelet Transforms (WT). A brief history, 

evolution and fundaments of wavelet transforms are presented. The structure of fast 

and reversible implementation of standard DWT (Discrete wavelet Transform) 

through filterbank is explained. Concept of separable and multidimensional DWT as 

an extension of 1-D DWT is described. Other important variants of WTs like SWT 

(Stationary wavelet Transforms) and WP (Wavelet Packet Transforms) with their 

properties are reviewed. Finally, the applications and limitations of the popular 

standard DWT are enlisted. 

 

Chapter 3 is the heart of this thesis. It presents a thorough study of CWT 

(Complex wavelet Transforms). The history, evolution and recent advances in the 

field of CWTs are comprehensively analysed. Recent developments and newer 

 3
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extensions of CWTs with their theories, structures and properties are critically 

explored. Advantages and limitations of various CWTs are analysed through 

individual implementations and simulations. Potential applications of various forms 

of CWTs are suggested after thorough investigations. 

 

Chapter 4 and chapter 5 are about practical implementations and simulations 

carried out with various WTs (reviewed in chapter 2) and CWTs (investigated in 

chapter 3). Key signal and image processing applications such as Denoising and 

Edge-detection are thoroughly reviewed. In chapter 4, Denoising application is 

explored in both 1-D and 2-D cases with WTs, and redundant CWTs (i.e. DT-DWT).  

 

In chapter 5, Edge-detection application is explored in similar manner. 

Individual simulations with WTs and CWTs algorithms are carried out for the 

mentioned applications and performances are compared with other conventional 

algorithms. Some novel ideas are incorporated in existing algorithms and available 

results are presented after statistical validation. 

 

Chapter 6 is the summary of investigation on ‘complex wavelet transforms 

and their applications’. The advantages and limitations of CWTs over other WTs for 

the selected applications (namely denoising and edge-detection) are concluded. 

Future directions are given for further investigations using CWTs in other relevant 

applications (such as Motion estimation and Compression for video coding). 
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Chapter 2: 

Wavelet Transforms (WT) 

 

 

 
2.1 Introduction 
 

2.1.1 Wavelet Definition 

 

A ‘wavelet’ is a small wave which has its energy concentrated in time. It has an 

oscillating wavelike characteristic but also has the ability to allow simultaneous time 

and frequency analysis and it is a suitable tool for transient, non-stationary or time-

varying phenomena [1,2].  

 

 
Figure 2.1: Representation of a wave (a), and a wavelet (b) 
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2.1.2 Wavelet Characteristics 

 

The difference between wave (sinusoids) and wavelet is shown in figure (2.1). 

Waves are smooth, predictable and everlasting, whereas wavelets are of limited 

duration, irregular and may be asymmetric. Waves are used as deterministic basis 

functions in Fourier analysis for the expansion of functions (signals), which are time-

invariant, or stationary. The important characteristic of wavelets is that they can 

serve as deterministic or non-deterministic basis for generation and analysis of the 

most natural signals to provide better time-frequency representation, which is not 

possible with waves using conventional Fourier analysis.  

 

2.1.3 Wavelet Analysis 

 

The wavelet analysis procedure is to adopt a wavelet prototype function, called an 

‘analysing wavelet’ or ‘mother wavelet’. Temporal analysis is performed with a 

contracted, high frequency version of the prototype wavelet, while frequency 

analysis is performed with a dilated, low frequency version of the same wavelet [12]. 

Mathematical formulation of signal expansion using wavelets gives Wavelet 

Transform (WT) pair, which is analogous to the Fourier Transform (FT) pair. 

Discrete-time and discrete-parameter version of WT is termed as Discrete Wavelet 

Transform (DWT). DWT can be viewed in a similar framework of Discrete Fourier 

Transform (DFT) with its efficient implementation through fast filterbank algorithms 

similar to Fast Fourier Transform (FFT) algorithms [1]. 

 

2.1.4 Wavelet History 

 

Wavelet theory has been developed as a unifying framework only recently, although 

similar ideas and constructions took place as early as the beginning of the century 

[3,4]. The idea of looking at a signal at various scales and analyzing it with various 

resolutions has in fact emerged independently in many different fields of 

mathematics, physics and engineering. In mid-eighties, researchers of the ‘French 

school’ [5-7] built strong mathematical foundation around the subject and named 
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their work ‘ondeletts’ (wavelets). Brief history of early research on wavelets can be 

found in [8]. A very good overview of the philosophy of wavelet analysis and history 

of its development is given in [9]. Introductory tutorial articles on wavelets are [10-

13]. Readable books on wavelet theory and applications are [1,2,14-25]. 

 

2.1.5 Wavelet Terminology 

 

The applications of wavelets to signal processing can be attributed to [26-27]. 

Wavelet theory is closely related to filter bank theory [15,28]. In [28] the concept of 

Multiresolution Analysis (MRA) was introduced leading to an implementation of 

DWT with octave-band filterbank, while [26] showed that under certain condition 

filter bank converges to orthonormal wavelet bases. Generation of various wavelet 

families (Daubecheis, Coiflets, Symlets etc.) through modifications in 

parameterization of wavelets availed some useful properties such as compact-

support, symmetry, regularity, and smoothness [24].  

 

The wavelet systems with biorthogonalily gives flexibility [29,30], 

overcompleteness removes certain disadvantages of DWT [24,31], and Perfect 

Reconstruction (PR) filterbank implementation is utmost essential for retrieval of 

original signal [15,32-33]. Wavelet Packet Transform (WP) is an efficient 

decomposition of filterbank [65-68]. All these newer techniques have broaden the 

scope of wavelets in various signal and image processing applications [11,20,34-36]. 

 

 

 Section 2.2 leads towards the evolution of wavelet transform through various 

time-frequency representations. Section 2.3 describes the theoretical aspects of the 

WT in continuous and discrete domains, whereas section 2.4 deals with the 

implementation aspects of the WT. Section 2.5 introduces the useful extensions of 

generic WT in discrete domain. Sections 2.6 and 2.7 are about the applications and 

limitations of various WTs. Section 2.8 is a summary highlighting the need for an 

alternate form of WT namely Complex Wavelet Transform (CWT). 
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2.2 Evolution of Wavelet Transform 
 

The need of simultaneous representation and localisation of both time and frequency 

for non-stationary signals (e.g. music, speech, images) led toward the evolution of 

wavelet transform from the popular Fourier transform. Different ‘time-frequency 

representations’ (TFR) are very informative in understanding and modelling of WT 

[37-39].  

 

2.2.1 Fourier Transform (FT) 

 

Fourier transform is a well-known mathematical tool to transform time-domain 

signal to frequency-domain for efficient extraction of information and it is reversible 

also. For a signal x(t), the FT is given by: 

 

dtetxfX tfj π2)()( −
∞

∞−
∫=  (2.1) 

 

Though FT has a great ability to capture signal’s frequency content as long as x(t) is 

composed of few stationary components (e.g. sine waves). However, any abrupt 

change in time for non-stationary signal x(t) is spread out over the whole frequency 

axis in X(f). Hence the time-domain signal sampled with Dirac-delta function is 

highly localised in time but spills over entire frequency band and vice versa. The 

limitation of FT is that it cannot offer both time and frequency localisation of a signal 

at the same time. 

 

2.2.2 Short Time Fourier Transform (STFT) 

 

To overcome the limitations of the standard FT, Gabor [39] introduced the initial 

concept of Short Time Fourier Transform (STFT). The advantage of STFT is that it 

uses an arbitrary but fixed-length window g(t) for analysis, over which the actual 

nonstationary signal is assumed to be approximately stationary. The STFT 

decomposes such a pseudo-stationary signal x(t) into a two dimensional time- 
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frequency representation S(τ , f) using that sliding window g(t) at different times τ . 

Thus the FT of windowed signal x(t) g*(t-τ) yields STFT as: 

 

STFTx (τ , f ) = x(t) g∫
∞

∞−

*(t-τ) e-j2π f t dt (2.2) 

 

Filterbank interpretation is an alternative way of seeing ‘windowing of the 

signal’ viewpoint of STFT [41,42]. With the modulated filterbank, a signal can be 

seen as passing through a bandpass filter centred at frequency f with an impulse 

response of the window function modulated to that frequency. The division of 

frequency is uniform as shown in figure (2.2 a). 

 

From this dual interpretation, a possible drawback related to time-frequency 

resolution of STFT can be shown through ‘Heisenberg’s uncertainty principle’ 

[2,43,44]. For a window g(t) and its Fourier transform G(f), both centred around the 

origin in time as well as in frequency, that is satisfying ∫ t g(t)2dt =0 and ∫  f 

G(f)2df =0. Then the spreads in time and frequency are defined as: 

 

 ∆t
2 = 

∫

∫
∞

∞−

∞

∞−

dttg

dttgt

2

22

)(

)(
 

 ∆f
2 = 

∫

∫
∞

∞−

∞

∞−

dffG

dffGf

2

22

)(

)(
 (2.3) 

 

Thus, the time-frequency resolution for STFT is lower bounded by their product as: 

Time-Bandwidth product = ∆t ∆f  ≥  
π4
1  (2.4) 
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Once a window has been chosen for STFT, the time-frequency resolution is fixed 

over the entire time-frequency plane because the same window is used at all 

frequencies. There is always a trade off between time resolution and frequency 

resolution in STFT. 

 

Gain  G 

Gain  G 

Frequency   f 

f0 2f0 3f0 4f0 

f0 2f0 4f0 8f0 

Frequency   f 

 

(a) 

 

 

 

 

 

 

 

 

      (b) 
 

 

 

 

 

Figure 2.2: (a) Uniform division of frequency with constant bandwidth in STFT, (b) 
logarithmic division of frequency with constant-Q in WT 

 

 

2.2.3 Wavelet Transform (WT) 

 

Fixed resolution limitation of STFT can be resolved by letting the resolution ∆t and 

∆f vary in time-frequency plane in order to obtain Multiresolution analysis. The 

Wavelet Transform (WT) in its continuous (CoWT) form provides a flexible time-

frequency window, which narrows when observing high frequency phenomena and 

widens when analyzing low frequency behaviour. Thus time resolution becomes 

arbitrarily good at high frequencies, while the frequency resolution becomes 

arbitrarily good at low frequencies. This kind of analysis is suitable for signals 
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composed of high frequency components with short duration and low frequency 

components with long duration, which is often the case in practical situations [11].  

  

 When analysis is viewed as a filterbank, the WT, generally termed as 

standard Discrete Wavelet Transform (DWT), is seen as a composition of bandpass 

filters with constant relative bandwidth (constant–Q) such that ∆f /f is always 

constant. As ∆f changes with frequencies, corresponding time resolution ∆t also 

changes so as to satisfy the uncertainty condition. The frequency responses of 

bandpass filters are logarithmically spread over frequency as shown in figure (2.2 b). 

A generalisation of the concept of changing resolution at different frequencies is 

obtained with so-called Wavelet Packet Transform (WP) [67], where arbitrary time-

frequency resolutions are chosen depending on the signal. More detailed description 

about the WT is given in subsequent sections of this chapter.  

 

2.2.4 Comparative Visualisation  

 

A comprehensive visualization of various time-frequency representations, shown in 

figure (2.3), demonstrates the time-frequency resolution for a given signal in various 

transform domains with their corresponding basis functions [1]. 

 

 The time-frequency representation problem is illustrated with Matlab 

simulations in figure (2.4) and figure (2.5) using two signals x1(t) and x2(t). The 

signals are analysed through their corresponding FTs with FFTs, through STFTs with 

spectrograms, and through their CoWTs with scalograms [25]. Signal x1(t) = 

sin(2π10t)+ sin(2π35t)+ sin(2π50t) is a stationary signal composed of three 

sinusoids of 10Hz, 35Hz, and 50Hz. Signal x2(t) is non-stationary, which contains the 

same three distinct frequency components but over three adjoining time slots such 

that only one frequency component is present in a particular time interval. In both 

cases, the FFT picks up frequency contents very well but it fails to demonstrate the 

time varying nature of signal x2(t).   
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δ (t) 

t 

δ (f) 

f 

t 

t 
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Time domain basis with 
good localisation in time 
but poor localisation in 
frequency 

Frequency domain basis 
with good localisation in 
frequency but poor 
localisation in time 

Trade-off between fixed time- 
frequency localisation: fixed time 
resolution over all frequencies, 
and fixed frequency resolution at 
all times. 

uniform tiling 
 
scale adaptive 
logarithmic tiling

with FT 

time-domain: 
no transform

with WT with STFT 

f 

f 

Scale adaptive time-frequency 
localisation: good frequency 
resolution at higher scale, and good 
time resolution at lower scale 

Figure 2.3: Comparative visualisation of time-frequency representation of an 

arbitrary non-stationary signal in various transform domains 
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Figure 2.4: Two signals x1(t) and x2(t) and their FFTs 
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Figure 2.5: Spectrograms and scalograms of signals x1(t) and x2(t) 
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Spectrograms (modulus of STFT) and scalograms (modulus of CoWT) for both 

signals x1(t) and x2(t) are shown in figure (2.5), which show the stationarity of x1(t) 

and the time-varying nature of signal x2(t). Spectrogram has fixed resolution for x2(t), 

where as scalogram gives good frequency- resolution at lower frequency (high scale) 

and limited frequency-resolution at high frequency (low scale) for the same signal 

x2(t).  But the time localization is good at higher frequency (low scale) compared to 

low frequency (high scale). 

 

2.3 Theoretical Aspects of Wavelet Transform 
Wavelet transform can represented in continuous as well as in discrete domain as 

follows. 

 

2.3.1 Continuous Wavelet Transform (CoWT) 

 

For a prototype function ψ (t) ∈ L2(ℜ) called the mother wavelet, the family of 

functions can be obtained by shifting and scaling this ψ (t) as: 

 

 ψ a,b(t) =  
a

1 ψ (
a

bt −  ) , where a , b ∈ ℜ ( a > 0) (2.5) 

 

Parameter a is a scaling factor and b is shifting factor. Normalization ensures that ||ψ 

a,b(t)|| = ||ψ (t)||. The mother wavelet has to satisfy the following admissibility 

condition 

Cψ = ∫
∞

∞−

Ψ
ω
ω 2|)(|  dω  < ∞ , where )(ωΨ is the Fourier transform of ψ (t). 

In practice )(ωΨ  will have sufficient decay, so that the admissibility condition 

reduces to  

 

∫
∞

∞−

)(tψ dt = (0) = 0. (2.6) Ψ

Thus, the wavelet will have bandpass behaviour. 
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 The ‘continuous wavelet transform’ (CoWT) of a function f (t) ∈ ℜ is then 

defined as: 

 

 CoWTf  (a,b) = ψ*∫
∞

∞−

a,b(t) f (t) dt  =  〈ψ a,b(t),  f (t) 〉 (2.7) 

 

A basis function ψa,b(t), can also be seen as filterbank impulse response. With the 

increase in scale (a >1), the function ψ a,b(t) is dilated in time to focus on long-time 

behaviour of associated signal  f (t) with it. In general, very large scale means global 

view of the signal while very small-scale means a detailed view of the signal. A 

related notion with scale is resolution. The resolution of a signal is limited to its 

frequency content. The scale change of continuous time signals in CoWT does not 

alter their resolution, since the scale change can be reversed [11]. 

 

 Through continuous wavelet transform analysis, a set of wavelet coefficients 

{CoWTf (a,b)} are obtained. These coefficients indicate how close the signal is to a 

particular basis function. Since, the CoWT behaves like orthonormal basis 

decomposition, it can be shown that it is isometric [6], i.e. it preserves energy. Hence 

the function f(t) can be recovered from its transform by the following reconstruction 

formula: 

 

f (t) = 
ψC
1

2, )(),(
a

dbdatbaCWT baf∫ ∫
∞

∞−

∞

∞−

ψ  (2.8) 

 

2.3.2 Discrete Wavelet Transform (DWT)  

 

The CoWT has the drawbacks of redundancy and impracticability with digital 

computers. As parameters (a, b) take continuous values, the resulting CoWT is a 

very redundant representation, and impracticability is the result of redundancy. 

Therefore, the scale and shift parameters are evaluated on a discrete grid of time-

scale plane leading to a discrete set of continuous basis functions [38]. The 

discretization is performed by setting 
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a = a  and  b = k    for    j, k ∈ Ζ. (2.9) j

0
ja0 0b

where, >1 is a dilated step and b ≠ 0 is a translation step. The family of wavelets 

then becomes 

0a 0

 

ψ j,k (t) = ψ ( ) (2.10) 2/
0

ja −
00 bkta j −−

 

and the wavelet decomposition of a function  f (t) is 

 

 f (t) = ( ) )(, , tkjD kj
j k

f ψ∑ ∑  (2.11) 

where 2-dimensional set of coefficients  D f  ( j, k) is called DWT of a given function  

f (t).  

 

The most widely used form of such discretization with a = 2, and = 1 on a dyadic 

time-scale grid is shown in figure (2.6). Such a wavelet transform is described as the 

standard DWT. 

0 0b

 

scale j 

time k

j =3, k =1

j = 0, k = 0 

∆j 

∆k 
 

 

 

 

 

 

 
Figure 2.6: Standard DWT on dyadic time-scale grid 

 

The selection of ψ (t) is made in such a way that basis function set {ψ j,k} 

constitute an orthonormal basis of L2 (ℜ) so that  
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D f (j, k) =  = 〈∫
∞

∞−

dttftkj )()(*
,ψ )()(, tftkjψ 〉 (2.12) 

 

Several such wavelet bases have been reported in literature [45-48] to evaluate f (t) 

using the summation of finite basis over index j and k with finite DWT coefficients 

with almost no error. All these wavelets can be derived with an arbitrary resolution 

and with finite DWT coefficients.  
 

2.4 Implementation of DWT 
The practical usefulness of DWT comes from its Multi-Resolution Analysis (MRA) 

ability [48-50], and efficient Perfect Reconstruction (PR) filterbank structures. 

 

2.4.1 Multiresolution Analysis (MRA) 

 

Multiresolution analysis (or Multiscale analysis) consists of a sequence of embedded 

subspaces …V2 ⊂  V1 ⊂ V0 ⊂ V-1 ⊂ V-2 …..of L2 (ℜ) as shown in figure (2.7). 

 

 

 

 

 

 

 

W2
 W1

 W0
V0 V1 

V2 

V3 
Vj: Subspaces 

corresponding to scaling 

basis (approximations) 

Wj: Subspaces 
corresponding to 

wavelet basis (details)

V0 ⊥ W0 ⊥ W1 ⊥ W2 

Figure 2.7:  Nested vector spaces spanned by scaling and wavelet basis 

 

The MRA follows the following conditions: 

 

 1. Vj ⊂ V j+1 , j ∈ Ζ 

 2. V-∝ = {0} and V∝ = L2 

 3. f (t) ∈ Vj  ⇔  f (2t) ∈ Vj+1 
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 4. V2  = V0 +W0 +W1 

 5. L2 =  …+ W-2 + W-1 + W0 + W1 + W2 +…. =  V0 + W1 + W2 +…… 

 6. W-∝ + ….+ W-2  + W-1 = V0   

 (2.13) 

A scaling function ϕ (t)  (Father wavelet) is introduced such that for each fixed j, the 

family 

 

 , (j, k ∈ Ζ )  and  )2(2 2/2/
, ktjj
kj −= −− ϕϕ ∫ =1)( dttϕ  (2.14) 

is an orthonormal basis of the subspace Vj.  

 

If Wj is orthonormal component of Vj (Wj ⊥ Vj) in subspace Vj+1, then there exist a 

function ψ (t) (Mother wavelet) such that for each fixed j the family 

 

)2(2 2/2/
, ktjj
kj −= −− ψψ , (  j, k ∈ Ζ ) (2.15) 

is an orthonormal basis of the subspace Wj. 

 

Because of the nested subspaces and MRA condition (3), the scaling function 

satisfies the following 2-scale (dilation or refinement) equation, 

 

( ntnht
n

−= ∑
∞

∞−=

2][2)( 0 ϕϕ ) , n ∈ Ζ  (2.16) 

where it satisfies the admissibility condition 2][ =∑ nh
n

o . 

 

The wavelet function satisfies similar equation, 

 

( ntnht
n

−= ∑
∞

∞−=

2][2)( 1 ϕ )ψ , n ∈Ζ  (2.17) 

with the conditions          and      .  0][1 =∑ nh
n

]1[)1(][ 01 +−−= nhnh n
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where, [n] and [n] can be viewed as the coefficients of lowpass and highpass 

filters. For a function f(t), the wavelet coefficients 〈ψ

0h 1h

j,k(t), f(t)〉 describes the 

information loss when going from projection of f(t) onto the space Vj+1, to the 

projection onto the lower resolution space Vj. With MRA, any function f (t) ∈ L2 

described by equation (2.11) can be modified by using both scaling function and 

wavelet function as: 

 

( )tkjDtkjCftf kj

J

Jj k
f

J

Jj k
kJ ,, ),()(),()(

1

0

1

0

1
ψϕ ∑ ∑∑ ∑

=

∞

∞−==

∞

∞−=

+=  (2.18) 

where, ( ) ( )〉〈= tftkjC kjf ,),( ,ϕ are the scaling function coefficients, J0 is an arbitrary 

starting scale for coarsest resolution, and J1 is an arbitrary finite upper limit for 

highest resolution with J1 > J0.  

 

In practice, the selection of J0 and J1 depends on the characteristics of the signal f (t), 

range of resolution required and the sampling rate of the signal as per Ch:9 [1]. 

 

2.4.2 Filterbank Implementation 

 

AssumingC and are the scaling coefficients (approximations) and 

wavelet coefficients (details) of the projection of a signal f onto V

),( kjf fD ),( kj

j and Wj 

respectively, the successive lower resolution coefficients are then recursively derived 

based on equations (2.16) and (2.17) with MRA concept as: 

 

),(]2[),1( 0 njCknhkjC f
n

f −=+ ∑  

),(]2[),1( 1 njDknhkjD f
n

f −=+ ∑  (2.19) 

 
 These equations can be implemented as a tree-structured filterbank shown in 

figure (2.8) [27]. Because of the orthonormal wavelet basis, this 3-level analysis 

filterbank also satisfies the synthesis of high resolution scaling coefficients from the 

next immediate level lower resolution scaling and wavelet coefficients as: 
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),1(]2[),1(]2[),( 10 njDnkhnjCnkhkjC f

n
f

n
f +−++−= ∑∑  (2.20) 
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Figure 2.8: Two-channel, three-level analysis filterbank with 1-D DWT 
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Figure 2.9: Two-channel, three-level synthesis filterbank with 1-D DWT 

 

For a sampled signal, the filterbank tree is also viewed as an implementation 

of 1-D DWT with initial maximum resolution component and its 

decomposition into number of details at successive lower resolution scales. 

),0( kjC f =

),( kjD f
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For the standard DWT, the size of approximate (scaling) coefficients and detail 

(wavelet) coefficients decreases by a factor of 2 at each successive decomposition 

level. Thus the standard DWT is perfectly non-redundant of O(n) representation of a 

given signal in multi-resolution, multi-scale environment. The sparse representation 

with energy compaction makes the standard DWT widely accepted for signal 

compression. 

 

The reconstruction filterbank structure shown in figure (2.9) follows the 

recursive synthesis similar to equation (2.20) with reconstruction filters 0
~h  and 1

~h , 

which are identical to their corresponding decomposition filters and  but with 

time reversal. 

0h 1h

 

 The most important criterion with filterbank implementation (subband 

decomposition) of DWT is the proper retrieval of signal, which is commonly termed 

as perfect reconstruction in literature [14-15, 28, 51-52]. The perfect reconstruction 

imposes certain constraints on analysis and synthesis filters. The nature of constraints 

relates these filters to either the orthogonal wavelet bases or to the biorthogonal 

wavelet basis as discussed in section 2.4.3.  

 

2.4.3 Perfect Reconstruction (PR) 

 

As shown in figure (2.10), when reconstructed signal )(~ tf is identical to the original 

signal for a simple 2-channel filterbank structure, the associated analysis and 

synthesis filters satisfy certain conditions.  

)(tf

 

 

h~ 0 

h 1 

)(~ tff(t) 

2

2

2 

2 h 0 

h~ 1

 

 

 

 

 

Figure 2.10: A simple 2-channel filterbank model 
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These perfect reconstruction (PR) conditions finally boils down as: 

 

 
0)(~)()(~)(

2)(~)()(~)(

1100

1100

=−+−

=+

zHzHzHzH

zHzHzHzH
 (2.21) 

where, and are the Z-transforms of  h)(0 zH )(1 zH 0 [n] and h1 [n] respectively. 

 

 Most of the orthonormal wavelet basis associated with PR filterbank of figure 

(2.10) has prototype wavelet ψ with infinite support (length). Hence all the filters 

require infinite taps. A design method introduced by [26] generates a finite support 

orthonormal wavelet ψ , and the associated filterbank can be realized through finite 

tap FIR filters.  

 

 If the FIR filterbank shown in figure (2.8) is iterated on the lowpass channel, 

the overall impulse response of the iterated filter-tree takes the form of continuous 

time function with compact support. With infinite iterations over filter-tree, the 

impulse response converges to a smooth function (mother wavelet). Filter having this 

property are called ‘regular’ [51,53-55]. A necessary condition for regularity is for 

lowpass filter to have at least one zero at the aliasing frequency ω = π. The number 

of zeros at ω = π determines the degree of smoothness or differentiability of the 

resulting wavelet. Regularity (smoothness) is an important feature of wavelet for its 

application in detection of discontinuities [56].  

 

 For an orthogonal wavelet system, the conditions for analysis and synthesis 

filters are given as: 

 

 

)(]2[~][

][][~
][][~

00

11

00

kknhnh

nhnh

nhnh

n

δ=+−

−=

−=

∑
 (2.22) 

 

 In signal processing applications, it is often desirable to use FIR filters with 

linear phase [33]. It has been shown that there are no nontrivial orthonormal linear 
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phase FIR filters [53]. By allowing non-orthogonal and dual basis, a biorthogonal 

wavelet system is formed. Biorthogonal wavelet basis have the advantages of linear 

phase, and more degrees of freedom in filter design [29,30,32]. If the scaling 

function set )}(~),( ., tt kjkj{ ϕϕ , and the wavelet function set )}(~),( ,, tt kjkj{ ψψ represent 

the dual basis for analysis and synthesis for biorthogonal system then the 2-scale 

equations similar to equation (2.16) and (2.17) are given as: 

 

 ∑ −=
n

ntnht )2(][2)( 0 ϕϕ , ∑ −=
n

ntnht )2(][~2)(~
0 ϕϕ

 ( )∑ −=
n

ntnht 2][2)( 1 ψψ , ( )∑ −=
n

ntnht 2][~2)(~
1 ψψ  (2.23) 

 

Biorthogonal wavelet basis also satisfy the relation: 

 ][][)(~),( ,, nkmjtt nmkj −−=〉〈 δδψψ  

and reconstruction formula becomes: 

 

 ( )∑ ∑ 〉〈=
j k

kjkj ttfttf ,,
~)(),()( ψψ  (2.24) 

 

For the biorthogonal wavelet system, the constraints for analysis and synthesis filters 

are given as: 

 

 ( ) ]1[1][~
01 +−−= nhnh n  

 ]1[~)1(][ 01 +−−= nhnh n  

 )(]2[~][ 00 kknhnh
n

δ=+−∑  (2.25) 

 

2.5   Extensions of DWT 
 

The DWT is extensively used in its non-redundant form known as standard DWT. 

The filterbank implementation of standard DWT for images is viewed as 2-D DWT. 

There are certain applications for which the optimal representation can be achieved 
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through more redundant extensions of standard DWT such as WP (Wavelet Packet 

Transform) and SWT (Stationary Wavelet Transform).  

 

2.5.1 Two Dimensional Discrete Wavelet Transform (2-D DWT) 
 

Filterbank structure discussed in section 2.4.2 is the simple implementation of 1-D 

DWT, whereas image-processing applications requires two-dimensional 

implementation of wavelet transform. Implementation of 2-D DWT is also referred 

to as ‘multidimensional’ wavelet transform in literature [11,27,57]. The state of the 

art image coding algorithms such as e.g. the recent JPEG2000 standard [58] make 

use of the separable dyadic 2-D DWT, which is only an extension of 1-D DWT 

applied separately on rows and columns of an image.  

 

 The implementation of an analysis filterbank for a single level 2-D DWT is 

shown in figure (2.11). This structure produces three detailed sub-images (HL, HL, 

HH) corresponding to three different directional-orientations (Horizontal, Vertical 

and Diagonal) and a lower resolution sub-image LL. The filterbank structure can be 

iterated in a similar manner on the LL channel to provide multilevel decomposition. 

Multilevel decomposition hierarchy of an image is illustrated in figure (2.12).  
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Figure 2.11: Single level analysis filterbank for 2-D DWT 
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Figure 2.12: Multilevel decomposition hierarchy of an image with 2-D DWT 

 

 Each decomposition breaks the parent image into four child images. Each of 

such sub-images is of one fourth of the size of a parent image. The sub-images are 

placed according to the position of each subband in the two-dimensional partition of 

frequency plane as shown in figure (2.13). The structure of synthesis filterbank 

follows the reverse implementation of analysis filterbank but with the synthesis 

filters 0
~h and 1

~h . 

 

 The separable wavelets are also viewed as tensor products of one-

dimensional wavelets and scaling functions. If )(xψ is the one-dimensional wavelet 

associated with one-dimensional scaling function )(xϕ , then three 2-D wavelets 

associated with three sub-images are given as: 

 

 )()(),( yxyxV ψϕψ = → LH 

 )()(),( yxyxH ϕψψ = → HL 

 )()(),( yxyxD ψψψ = → HH  (2.26) 
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Figure 2.13: Frequency plane partitioning with 2-D DWT 

 

The test image ‘Pattern’ and its 2-D DWT decomposition is shown in figure (2.14).  

This decomposition is done with the help of  ‘wavelet toolbox’ of Matlab [25]. 

 

 There are also various extensions available for 2-D wavelet transform in non-

separable form. Non-separable multidimensional filterbanks and wavelets bases with 

their applications to image coding can be found from [59-62]. Non-separable 

methods offer true multidimensional processing, freedom in filter design, non-

rectangular sub-sampling (e.g quincunx [63] and hexagonal [64]), and even linear 

phase. Though the non-separable methods have several advantages, separable 

filtering is a common choice because of the simplicity of its implementation. 
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Figure 2.14: (a) Test image ‘Pattern’, (b) single level 2-D DWT decomposition of the 

same 
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2.5.2 Wavelet Packet Transform (WP) 

 

Octave band filtering with iteration over lowpass channel implements 1-D DWT as 

discussed in section 2.4.2. The octave band filtering does not provide uniform 

frequency resolution for all subbands as shown in figure (2.2 b). If the highpass 

channel of figure (2.8) is also decomposed in similar manner and iterated, then a 

complete ‘binary-tree’ is achieved. Families of orthonormal basis associated with this 

binary-tree (WP-tree) are known as ‘wavelet packets’. This extension of standard 

DWT is denoted as Wavelet Packet Transform (WP). 

 

 The binary-tree for WP decomposition, and the time-frequency tiling for 

wavelet packets basis are shown in figure (2.15). Figure (2.16) shows vector 

subspaces for WP. Uniform frequency division with equal frequency resolution for 

all subbands is illustrated in figure (2.17). Two possible ways of WP decomposition 

(square and round shapes) for the original signal in subspace V3 is shown in figure 

(2.18). It demonstrates the flexibility and freedom of WP. In general, WP, a modified 

form of standard DWT, combines the ideas of the best basis selection and entropy 

based criteria for accurate representation of the signal. It offers high degree offers 

high degree of freedom but with complex data-structure algorithms. The complexity 

of computation for WP is O(n log n).  

 

 Algorithms for choosing the best wavelet packets for a particular image, and 

more technical descriptions on WP are given in [65-68]. Usefulness of WP in 

compression and de-noising can be seen through a quick GUI: ‘wavemenu’ and 

various wavelet packet function using ‘wavelet toolbox’ of Matlab. 
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Figure 2.15: Wavelet packet transform:(a) binary-tree decomposition, (b) time-

frequency tiling of basis  
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Figure 2.16: Vector subspaces for WP 
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Figure 2.17: Uniform frequency division for WP 
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Figure 2.18: Flexible representation with WP: either with boxes or with circles 
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2.5.3 Stationary Wavelet Transform (SWT) 

 

The standard DWT as discussed in section 2.4.2 is a non-redundant and compact 

representation of signal in transform domain. The decimation step after filtering 

makes the standard DWT time shift-variant. The stationary wavelet transform (SWT) 

has a similar tree structured implementation without any decimation (sub-sampling) 

step. The balance for PR is preserved through level dependent zero-padding 

interpolation of respective lowpass and high pass filters in the filter bank structures. 

DWT of such kind is based on the ‘A Trous’ algorithm, which modifies the filters 

through insertion of holes [69].  

 

 In literature, various interpretations of SWT are referred to as redundant, non-

decimated, overcomplete or shift-invariant wavelet transform. The implementation 

structure for SWT is shown in figure (2.19), where * denotes the discrete time 

convolution, di are detail (wavelet) coefficients and ci are approximate (scaling) 

coefficients generated through the convolution chain originated from an original 

signal sequence c0 and level-adaptive size-varying highpass filter h1 and lowpass 

filter h0 respectively. 
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Figure 2.19: Three level decomposition with SWT 
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 SWT has equal length wavelet coefficients at each level. The computational 

complexity of SWT is Ο (n2). The redundant representation makes SWT shift- 

invariant and suitable for applications such as edge detection, denoising and data 

fusion. The wavelet toolbox function ‘swt’ is the Matlab implementation of the same 

algorithm. 

 

2.6 Applications of Wavelet Transforms 
 

Finally, applications of widely used standard DWT implementations, utilizing its 

Multiscale and Multiresolution capabilities with fast filterbank algorithms are 

numerous to describe. Depending upon the application, extensions of standard DWT 

namely WP and SWT are also employed for improved performance at the cost of 

higher redundancy and computational complexity.  

 

A few of such applications in Data compression, Denoising, Source and 

channel coding, Biomedical, Non-destructive evaluation, Numerical solutions of 

PDE, Study of distant universe, Zero-crossings, Fractals, Turbulence, and Finance 

etc. are comprehensively covered in [13]. Wavelet applications in many diverse 

fields such as Physics, Medicine and biology, Computer Graphics, Communications 

and multimedia etc. can be found in various books on wavelets [70-74].  

 

2.7 Limitations of Wavelet Transforms 
Although the standard DWT is a powerful tool, it has three major disadvantages that 

undermines its application for certain signal and image processing tasks [75]. These 

disadvantages are described as below. 

 

1.  Shift Sensitivity:  

A transform is shift sensitive, if the shifting in time, for input-signal causes an 

unpredictable change in transform coefficients. It has been observed that the standard 

DWT is seriously disadvantaged by the shift sensitivity that arises from down 

samplers in the DWT implementation [14,76]. Shift sensitivity is an undesirable 

property because it implies that DWT coefficients fail to distinguish between input-
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signal shifts. The shift variant nature of DWT is demonstrated with three shifted 

step-inputs in figure (2.20). In figure (2.20) input shifted signals are decomposed up 

to J= 4 levels using ‘db5’. It shows the unpredictable variations in the reconstructed 

detail signal at various levels and in final approximation. Wavelet packets have also 

been investigated for shift sensitivity. WP gives better results than standard DWT 

implementation at the cost of complexity. The selection of best bases and cycle 

spinning reduces shift sensitivity, but a general representation of WP is not shift 

invariant [31,77]. Though SWT is shift invariant, it has a very large redundancy and 

increased computational complexity. 

 

 
Figure 2.20: Shift-sensitivity of standard 1-D DWT 

 

2.  Poor Directionality: 

An m- Dimensional transform (m>1) suffers poor directionality when the transform 

coefficients reveal only a few feature orientations in the spatial domain. As discussed 

in section 2.5.1, the separable 2-D DWT partitions the frequency domain into three 

directional subbands. 
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 As shown in figures (2.14 b) and (2.21), 2-D DWT can resolve only three 

spatial-domain feature orientations: horizontal (HL), vertical (LH) and diagonal 

(HH). Natural images contain number of smooth regions and edges with random 

orientations; hence poor directionality affects the optimal representation of natural 

images with of the separable standard 2-D DWT. 

 

LH HL HH 

 
Figure 2.21: Directionality of standard 2D DWT  

 

 Implementations of 2-D WP explore all frequency bands, and it can be 

tailored for the selection of the best pattern (basis). However, the Multiscale structure 

of wavelet decomposition and the concept of ‘spatial orientation tree’ [78] are lost. 2-

D form of WP is investigated for directionality in texture analysis applications 

[79,80]. When compared with the standard 2-D DWT, because of its richer set of 

basis, WP perform better in terms of fidelity of direction but not in terms of 

improved directionality. The SWT is based on a filterbank structure, identical to 

standard DWT as far as directionality is concerned, and hence SWT has poor 

directionality. But SWT has improved fidelity in available direction because of large 

redundancy. 

 

3.  Absence of Phase Information:  

For a complex valued signal or vector, its phase can be computed by its real and 

imaginary projections. Digital image is a data matrix with a finite support in 2-D. 

Filtering the image with 2-D DWT increases its size and adds phase distortion. 

Human visual system is sensitive to phase distortion [81]. Further more, ‘Linear 

phase’ filtering can use symmetric extension methods to avoid the problem of 
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increased data size in image processing [81]. Phase information is valuable in many 

signal processing applications [83] such as e.g. in image compression and power 

measurement [84,85].  

 

 Most DWT implementations (including standard DWT, WP and SWT) use 

separable filtering with real coefficient filters associated with real wavelets resulting 

in real-valued approximations and details. Such DWT implementations cannot 

provide the local phase information. All natural signal are basically real-valued, 

hence to avail the local phase information, complex-valued filtering is required 

[86,87]. The difference between ‘real’ and ‘analytic’ wavelets is shown is figure 

(2.22). 

 

 

 

 

 

 

 

 

 

(a) Daubechies wavelet ‘db5’ 

(b) Complex Morlet wavelet 

Imaginary part 

Real part

 
 

Figure 2.22: Presentation of  (a) real, and (b) analytic wavelets 

 

2.8 Summary 
 

It is perceived that the wavelet transform is an important tool for analysis and 

processing of non-stationary signals. The wavelet transform in its continuous form 

can accurately represent minor variations in signal characteristics, but it is data 

intensive. Critically sampled version of continuous wavelet transform, known as 
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standard DWT, is very popular for denoising and compression in a number of 

applications by the virtue of its computational simplicity through fast filterbank 

algorithms, and non-redundancy. Though there are certain signal processing 

applications (e.g. Edge detection, Time-division multiplexing in 

Telecommunication), where more optimal representation is achieved through 

redundant and computationally intensive extensions of standard DWT such as WP 

and SWT.  

 

 All these forms of DWTs result in real valued transform coefficients with two 

or more limitations as discussed in section 2.7. There is an alternate way of reducing 

these limitations with a limited redundant representation in complex domain. 

Formulation of complex-valued ‘analytic∗ filters’ or ‘analytic wavelets’ helps to get 

the required phase information, more orientations, and reduced shift-sensitivity. 

Various approaches of filterbank implementation employing analytic filters 

associated with analytic wavelets are commonly referred to as ‘Complex Wavelet 

Transforms’ (CWT). The formulations of analytic filter and associated complex 

wavelet transforms are discussed in chapter 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
∗  An ‘Analytic function’ is a complex valued function, constructed form a given real-valued 

function by its projections on real and imaginary subspaces (Hilbert space). These projections are 

termed as ‘Hardy space’ projections. The important property of an analytic signal is that its FT has 

single-sided spectral components [2,88,89]. 
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Chapter 3:  

Complex Wavelet Transforms (CWT) 

 

 

 

3.1 Introduction 
 

It is discussed in section 2.7 that standard DWT and its extensions suffer from two or 

more serious limitations. The initial motivation behind the earlier development of 

complex-valued DWT was the third limitation that is the ‘absence of phase 

information’ [86]. Complex Wavelets Transforms (CWT) use complex-valued 

filtering (analytic filter) that decomposes the real/complex signals into real and 

imaginary parts in transform domain. The real and imaginary coefficients are used to 

compute amplitude and phase information, just the type of information needed to 

accurately describe the energy localisation of oscillating functions (wavelet basis).  

 

Edges and other singularities in signal processing applications manifest themselves 

as oscillating coefficients in the wavelet domain. The amplitude of these coefficients 

describes the strength of the singularity while the phase indicates the location of 

singularity. In order to determine the correct value of localised envelope and phase of 

an oscillating function, ‘analytic’ or ‘quadrature’ representation of the signal is used. 

This representation can be obtained from the Hilbert transform of the signal as 

described in section 3.4 [88,89]. It is shown in [90] that for radar and sonar 

applications, the complex I/Q orthogonal signals can be efficiently processed with 

complex filterbanks rather than processing the I and Q channel separately. Thus, the 
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complex orthogonal wavelet may prove to be a good choice, since it will allow 

processing of both magnitude and phase simultaneously. 

 

Chapter 3 is organised into eight sections. An introduction to complex wavelet 

transforms is given in section 3.1. A review of earlier work and the recent 

developments in the field of complex wavelet transforms are given in section 3.2 and 

in section 3.3 respectively. Formal definition and mathematical formulation of 

‘analytic filter’ is described in section 3.4, which is central to the design of all recent 

complex wavelet transforms (CWT). In section 3.5, Dual-Tree DWT (DT-DWT) 

forms of Redundant Complex Wavelet Transforms (RCWT) are discussed. The 

filterbank structure, design methods and typical properties of DT-DWTs are also 

described in section 3.5. Section 3.6 describes the basic design concept of complex 

projection (mapping) based Non-Redundant CWT (NRCWT) and their properties. 

All forms of CWTs are comprehensively compared in section 3.7, their advantages 

and applications over standard DWT are also presented. Section 3.8 is a summary of 

the investigations on CWTs. 

 

3.2 Earlier Work 
 

There is no one unique extension of the standard DWT into the complex plane. 

Lawton [86], and Lina [91], showed that complex solutions of Daubechies wavelets 

are possible. The complex valued Symmetric Daubechies Wavelets (SDW) has been 

used for applications such as image enhancement, restoration and coding 

[86,87,91,92]. The filterbank design to generate complex wavelets with useful 

properties of orthogonality, symmetry and linear phase is described by Zang et. al. 

[90].  

 

The orthogonality is necessary to preserve the energy in transform domain. 

The symmetry property of filter makes it easy to handle the boundary problem for 

finite length signals [14]. Linear phase response of the filter is necessary, to reduce 

the visually objectionable artifacts caused by nonlinear phase distortion, for the 

quality of image [32]. All these complex solutions [86,87,90] result in orthogonal, 
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symmetric, linear phase filter pairs, resulting in a combination of beneficial 

properties that cannot be obtained with real-valued filter bank.  

 

However, the impulse responses of the filters of all such complex solutions 

lack the quadrature (Hilbert pair) between their real and imaginary parts, a desirable 

property for the correct interpretation of local phase of the signal. As the Hilbert 

transform is global in nature (infinitely extended in both time/frequency domain), it 

is not directly applicable to localised wavelets with compact support. This 

observation points to the need for the design of local filters with properties similar to 

the Hilbert transform. The recent research in the field of CWT is directed towards the 

design of complex valued filter bank structure such that the resulting wavelets (real 

and imaginary parts) after high pass filtering form the (approximately) Hilbert 

transform pairs at each successive level in the framework of standard DWT 

decomposition structure (as described in section 2.4.2) [93-100].  

 

3.3 Recent Developments 
 

Recent research in the development of CWTs can be broadly classified in two 

groups; RCWT (Redundant CWTs) and NRCWT (Non-redundant CWTs) as shown 

in table (3.1). Standard DWT is critically decimated and gives N samples in 

transform domain for the same N samples of a given signal. While the redundant 

transform gives M samples in transform domain for N samples of given input signal 

(where M>N) and hence it is expensive by the factor M/N. The NRCWT follows the 

design aim to approach towards N samples in transform domain for a given N input 

samples [101-105]. 

 

The RCWT include two almost similar CWTs. They are denoted as DT-DWT 

(Dual-Tree DWT based CWT) with two almost similar versions namely Kingsbury’s 

DT-DWT(K), and Selesnick’s DT-DWT(S) as classified in table (3.1). These 

redundant transforms consist of two conventional DWT filterbank trees working in 

parallel with respective filters of both the trees in approximate quadrature. The 

filterbank structure of both DT-DWTs (as described in section 3.5.2) is same but the 
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design methods to generate the filter coefficients are different. Both DT-DWTs 

provide phase information; they are shift-invariant with improved directionality 

[94,98-99]. Selesnick [98,99] proposed an alternative filter design methods for DT-

DWT(K) and designed DT-DWT(S), almost equivalent to DT-DWT(K) such that in 

the limit the scaling and wavelet functions form Hilbert transform pairs. DT-DWT(S) 

is designed with simple methods to obtain filter coefficients.  

 

Selesnick’s DDTWT (Double Density Dual-Tree DWT) [108] is the initial 

and more redundant version of DT-DWT(S). DDTWT can be viewed as the 

combination of DDWT (Double Density DWT) [107] and DT-DWT(K). DDTWT 

again consists of two DDWT (Double Density DWT) trees working in parallel with 

respective filters in both trees are in approximate quadrature. Though the dual-tree 

DWT based CWT reduce all three disadvantages of standard DWT, the redundancy 

(though limited) of the transform is a drawback for applications like compression. 

 

To remove this disadvantage, Spaendonck et. al. [104] created a set of 

projection-based non-redundant complex wavelet transforms (NRCWT). The 

projection (mapping) means converting a real signal to analytic (complex) form 

through digital filtering. NRCWT is the DWT of that complex valued projection. 

While these transforms are restricted to IIR filters, Fernandes et. al. [105] showed 

that they produce orthogonal solutions. Fernandes’s projection based CWT (PCWT) 

use flexible design techniques to trade-off between redundancy and shift-invariance.  

 

Spaendonck’s OHCWT (Orthogonal Hilbert transform filterbank based 

CWT) [103] is a three-band orthonormal complex wavelet transform with no-

redundancy for both real- and complex- valued signals. The class of projection based 

NRCWT suggest their potential benefit in compression. Various design approaches 

to reduce one or more disadvantages of standard DWT are summarized in [75]. 
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3.4 Analytic Filter 
 

Gabor introduced the Hilbert transform into signal theory in [40], by defining a 

complex extension of a real signal f(t) as: 

 

x(t) = f(t) + j g(t) (3.1) 

where, g(t) is the Hilbert transform of f(t) and denoted as Η{f(t)} and  j = (-1)1/2.  

 

The signal g(t) is the 90ο shifted version of f(t) as shown in figure (3.1 a).The 

real part f(t) and imaginary part g(t) of the analytic signal x(t) are also termed as the 

‘Hardy Space’ projections of original real signal f(t) in Hilbert space. Signal g(t) is 

orthogonal to f(t). In the time domain, g(t) can be represented as [106]: 

 

g(t) = H{f(t)} =  τ
τπ

d
t

tf
∫
∞

∞− −
)(1  = 

t
tf

π
1)( ∗  (3.2) 

 

 

 

 

 

 

Figure 3.1:  Hilbert Transform in (a) polar form, (b) frequency domain 
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If F(ω) is the Fourier transform of signal f(t) and G(ω) is the Fourier 

transform of signal g(t), then the Hilbert transform relation between f(t) and g(t) in 

the frequency domain is given by 

    

)()()}}({{)( ωωω FSgnjtfHFG −==  (3.3) 

where, -j Sgn(ω) is a modified ‘signum’ function as shown in figure (3.1 b). 
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This analytic extension provides the estimate of instantaneous frequency and 

amplitude of the given signal x(t) as: 

 

Magnitude of x(t) = ))()(( 22 tgtf +  

Angle of x(t) =  tan-1[ g(t)/ f(t) ] (3.4) 

 

The other unique benefit of this quadrature representation is the non-negative 

spectral representation in Fourier domain [89,106], which leads toward half the 

bandwidth utilisation. The reduced bandwidth consumption is helpful to avoid 

aliasing of filter bands especially in multirate signal processing applications. The 

reduced aliasing of filter bands is the key for shift-invariant property of CWT. The 

single-sided spectral representation of an analytic signal is illustrated in figure (3.2). 
 

 

 

 

 (a) 
ω ω

X(ω) F(ω) 

(b) 

1
2

 

Figure 3.2: Spectral representation of (a) original signal f(t),  (b) analytic signal x(t) 

 

The same concept of analytic or quadrature formulation is applied to the 

filterbank structure of standard DWT to produce complex solutions and in turn the 

CWT. The real-valued filter coefficients are replaced by complex-valued coefficients 

by proper design methodology that satisfies the required conditions for convergence. 

Then the complex filter can again be decomposed into two real-valued filters. Thus, 

two real-valued filters that give their respective impulse responses in quadrature will 

form the Hilbert transform pair. The combined pair of two such filters is termed as an 

analytic filter. The formulation and interpretation of the analytic filter is shown in 

figure (3.3).  
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real valued real 
filter   h(n) = hr(n) 

real valued imaginary 
filter   h(n) = hi(n) 

real filter   
h(n) = hr(n)

complex (analytic) 
 filter 

 ha(n) = hr(n) + j hi(n) 

in standard DWT

in CWT

 

 

 

 

 

 

 

 

 

Figure 3.3: Interpretation of an analytic filter by 2-real filters  

 

3.5 Redundant Complex Wavelet Transforms (RCWT) 
 

3.5.1 Introduction 

 

RCWT comprise two types of DT-DWT (Dual-Tree DWT based complex wavelet 

transforms as introduced in 3.3); one is Kingsbury’s DT-DWT(K) [93-97] and the 

other is Selesnick’s DT-DWT(S) [98-100]. These DT-DWT based transforms are 

redundant because of two conventional DWT filterbank trees working in parallel and 

are interpreted as complex because of the respective filters of both the trees are in 

approximate quadrature. In other words, respective scaling and the wavelet functions 

at all decomposition levels of both the trees form the (approximate) Hilbert transform 

pairs. Both versions of DT-DWT use 2-band PR filter sets.  

 

The DT-DWT(S) is the less redundant version of its primitive 3-band PR 

Double-Density Dual-Tree DWT (DDTWT) structure that can be found in [108]. The 

DDTWT is derived by combining two parallel Double-Density DWT (DDWT) trees, 

preserving the quadrature properties of their respective wavelet filters. Thus, 

DDTWT has two important benefits: first is the shift-invariance due to redundant 

DDWT and second is Hilbert pair of wavelets because of two parallel trees in 
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quadrature. It is important to note that DDWT is a shift invariant 3-band redundant 

DWT but not a CWT [107].  

 

Both DT-DWTs have same filterbank structure, which is described in 3.5.2. 

The DT-DWTs use the analysis and synthesis filterbank structures (figure (3.4)) that 

seem identical to those used for standard DWT as shown in figures (2.8) and (2.9). 

The key difference is that all the real filters are replaced with analytic filters 

formulated in figure (3.3) to have complex solutions. The replacement of real filters 

with analytic filters makes the new structure equivalent to two standard DWT 

filterbank structures operating in parallel. Because of two parallel trees for analysis 

as well as synthesis, these CWT are described as Dual-Tree DWT based CWT. The 

insertion of the parallel structure eliminates the disadvantages of standard DWT but 

makes it redundant (limited) and expensive for applications like signal compression. 

 

3.5.2 Filterbank Structure of Dual-Tree DWT based CWT 

 

The filterbank structures for both DT-DWTs are identical. Figure (3.4) shows 1-D 

analysis and synthesis filterbanks spanned over three levels. It is evident from the 

filterbank structure of DT-DWT that it resembles the filterbank structure of standard 

DWT with twice the complexity. It can be seen as two standard DWT trees operating 

in parallel. One tree is called as a real tree and other is called as an imaginary tree. 

Sometimes in future discussions the real tree will be referred to as tree-a and the 

imaginary tree as tree-b. 

 

The form of conjugate filters used in 1-D DT-DWT is given as: 

 (hx + j gx) 

where, hx is the set of  filters {h0, h1}, and gx is the set of filters {g0, g1} both sets in 

only x-direction (1-D). 

 

The filters h0 and h1 are the real-valued lowpass and highpass filters respectively for 

real tree. The same is true for g0 and g1 for imaginary tree. 
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Figure 3.4:  (a) Analysis filterbank for 1-D DT-DWT  
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Figure 3.4: (b) Synthesis filterbank for 1-D DT-DWT  
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Though the notation of h0 and h1 are use for all level in the real part of analysis tree, 

h0 and h1 of first level are numerically different then the respective filters at all other 

levels above level-1. The reason for such difference will be discussed later in the 

filter designs for both the DT-DWTs separately. The same notion is applied for 

imaginary tree filters g0 and g1. The synthesis filter pairs 10
~,~ hh , and 1,0

~~ gg  as shown 

in figure (3.4 b) form orthogonal or biorthogonal pairs with their respective 

counterpart filters of analysis tree as shown in figure (3.4 a). 

 

 The 2-D DT-DWT structure has an extension of conjugate filtering in 2-D 

case. The filterbank structure of 2-D dual-tree is shown in figure (3.5). 2-D structure 

needs four trees for analysis as well as for synthesis. The pairs of conjugate filters are 

applied to two dimensions (x and y), which can be expressed as: 

 

 (hx + j gx) (hy +  j gy)  = (hxhy - gxgy) + j (hxgy + gxhy) (3.5) 
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Figure 3.5:  Filterbank structure for 2-D DT-DWT  
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The filterbank structure of tree-a, similar to standard 2-D DWT spanned over 

3-level, is shown in figure (3.6). All other trees-(b,c,d) have similar structures with 

the appropriate combinations of filters for row- and column- filtering. The overall 2-

D dual-tree structure is 4-times redundant (expensive) than the standard 2-D DWT. 

The tree-a and tree-b form the real pair, while the tree-c and tree-d form the 

imaginary pair of the analysis filterbank. Trees-( ba ~,~ ) and trees-( dc ~,~ ) are the real 

and imaginary pairs respectively in the synthesis filterbank  similar to their 

corresponding analysis pairs. 
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Figure 3.6: Filterbank structure of tree-a of figure 3.5 

 

3.5.3 Kingsbury’s Dual-Tree DWT (DT-DWT(K)) 

 

It is observed that approximate shift invariance is possible with standard DWT (i.e. 

tree-a) by doubling the sampling rate at each level of the tree [95]. For this to work, 

the samples must be evenly spaced and down samplers must be eliminated after the 

level-1 filters. This is equivalent to having two parallel fully decimated trees, real 

(tree-a) and imaginary (tree-b) as in figure (3.4) if the delays of first level filters of 

tree-b are one sample offset by their corresponding filter in tree-a.  
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Figure 3.7: Analysis tree using odd-even filters 
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This offset ensures the pickup of opposite samples in both trees. To get uniform 

interval between the samples of both trees after level-1, filters in one tree must 

provide delays that are half a sample different from those in opposite tree.  

 

The DT-DWT(K) can be designed in two ways to have required delays. The 

first is based on odd-even length filters and the second employs Q-shift (quarter 

shift) filter design. The filterbank structures of analysis tree with odd-even filters and 

Q-shift filters are shown in figures (3.7) and (3.8) respectively. The key issue in the 

design of DT-DWT(K) is to obtain (approximate) shift invariance using any of the 

filter forms. 

 

Constraints for Shift Invariance: 

To check the shift invariance, only one type of coefficients (either scaling or 

wavelet) of both the trees at any one level is retained and all other coefficients at all 

other levels are set to zero. If the reconstructed signal )(~ tf from these coefficients is 

free of aliasing and follows the PR then the transform is said to be shift-invariant at 

that level. 

 

 DT-DWT(K) structure (same as shown in figure 3.4) can be modelled as 

shown in figure (3.9) using either odd-even (figure 3.7), or Q-shift (figure 3.8) filter 

types. 
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Figure 3.9: Modelling of DT-DWT(K) filter structure for deriving the shift-
invariance constraints 
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The PR condition for DT-DWT(K) model (shown in figure (3.9)), using standard 

multirate identities of [14] is given as: 

 

)()(~)(~)(~ ZFZFZFZF ba =+=  

 = [ ])()()()()(1 1

0
ZDZWBZCZWAZWX

M
kk

M

k

k +∑
−

=

 (3.6)

   

where, M = 2m is the total up/down sampling factor determined by the number of 

levels (m) of the dual-tree. The factor W = M
j π2

e . Letters A, B represent transfer 

functions of the analysis dual-tree and C, D represent the corresponding transfer 

functions for the synthesis dual-tree. 

 

For the sake of simplicity (by taking m =3), and only the wavelet coefficients 

of level-3 are chosen to derive the constraints of shift invariance of DT-DWT(K). In 

this case the transfer function A(Z) (h0a to h001a) and B(Z) (g0b to g001b) as shown in 

figure (3.7) are modelled as: 

 

)()()()( 4
001

2
000 ZHZHZHZA aaa=  

)()()()( 4
001

2
000 ZGZGZGZB bbb=  (3.7) 

    

Similarly, C(Z) and D(Z) can be derived for synthesis tree.   

 

The DT-DWT(K) can be shift-invariant if the aliasing terms 

and of equation (3.6) are either very small or cancel 

each other for k . The designing strategies, to reduce these aliasing terms for 

approximate shift-invariance, are different for scaling (lowpass) and wavelet 

(highpass) coefficients [95].   

)()( ZCZWA k )()( ZDZWB k

0≠

 

For lowpass case aliasing can be reduced by letting: 
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)()( 2 ZAzZB
M

±
=  and )()( 2 ZCzZD

M
m

=  so that 

)()( ZDZWB k = (-1)k )()( ZCZWA k ,  for odd values of k. (3.8) 

 

For highpass (bandpass) case, aliasing is generated by overlap of opposite 

frequency pass bands in a single wavelet tree, where as wanted terms (k = 0) are 

produced by overlap of same frequency pass bands. The solution is to give B and D 

the upper and lower passbands of opposite polarity while A and C have the 

passbands of the same polarity (or vice versa). The need to discriminate in this way 

suggests the use of complex filters. Suppose P(Z) and Q(Z) are the prototype 

complex filters, each with just a single sided  passband, and let 

 

[ ] )()()(2)( * ZPZPZPZA +=ℜ=   

[ ] )]()([)(2)( * ZPZPjZPZB −−=ℑ=  

[ ] )()()(2)( * ZQZQZQZC +=ℜ=  

[ ] )]()([)(2)( * ZQZQjZQZD −=ℑ−=  (3.9) 

where [] and [] take real and imaginary parts, and conjugation of  is given 

by .  

ℜ

)(Z

ℑ )(ZP
*P

 

Hence P and Q are filters corresponding to the upper passbands of A and C 

while *P  and  correspond to their lower passbands. This also applies to filters B 

and D, except that their lower passbands are negated. The (real) impulse responses of 

B and D are the Hilbert transforms of those of A and C. The portion of equation (3.6) 

can be written as: 

*Q

 

)()()()( ZDZWBZCZWA kk + =   (3.10) )()(2)()(2 ** ZQZWPZQZWP kk +

 

The task of designing the filters such that the positive frequency complex 

filter does not overlap with shifted versions of the similar filter  becomes 

easy due to their single sided spectral representation. The formulations in equation 

)(ZQ )(ZP
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(3.9) show that the bandpass filter responses for trees-(a, b) (A, B for analysis; C, D 

for reconstruction) should be regarded as the ‘real’ and ‘imaginary’ parts of complex 

responses (P for analysis; Q for synthesis) that have passbands only on one side of 

zero frequency. It is also possible to relate the pairs of scaling function coefficients 

of both trees as real and imaginary parts.  

 

The design of DT-DWT(K) is based on viewing the scaling coefficients from 

tree-b as interpolating mid-way between the corresponding ones from tree-a. In 

practice, the filters with compact support will not have zero gain in their stop bands 

and the aliasing terms in equation (3.6) will not be zero. Furthermore, odd-length 

filters cannot have precisely the same frequency responses as the even-length ones. 

So a typical DT-DWT(K) will only be ‘approximately’ shift-invariant. 

 

Odd-even length filters:  

To have linear phase filters with required delay offset between filters beyond level-1 

of both trees, it is necessary to have odd-length filters in one tree and even-length 

filters in the other tree (figure 3.7). Greater symmetry between two trees can be 

achieved if each tree uses odd and even filters alternately from level to level. The 

filters at level-1 in both trees are odd length, and the corresponding lowpass and 

highpass filter pairs are apart by one sample. The filters in synthesis tree may be 

biorthogonal for PR or near-orthogonal for energy preservation (in transform 

domain) to the filters of analysis tree. The odd-even filter design is based on 

minimum mean squared error in the approximation. The coefficients of (13-19) tap 

odd length and (12-16) even length filters can be found in [94,95]. 

 

Q-shift filters: 

There are certain problems with odd-even length filter approach. First is that the sub-

sampling structure is not very symmetrical (wavelet and scaling functions at a given 

scale are not well aligned). Second, the two trees have slightly different frequency 

responses and the third problem is that filter sets must be biorthogonal, rather than 

orthogonal, because they are linear phase.  
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To overcome all above problems, Q-shift filter are used for DT-DWT(K) 

(figure 3.8), in which all filters beyond level-1 are even length [95]. However, the Q-

shift filters are no longer strictly linear phase. The filters are designed to have a 

group delay of approximately ¼ samples (q).  The required delay difference (½ 

sample (2q)) between the corresponding filters of both the trees is achieved by using 

the time reverse of the tree-a filters in tree-b so that the delay of tree-b filters 

become 3q. As the filter coefficients are no longer symmetric, the perfect 

reconstruction filter sets are orthonormal and the synthesis filters are just the time 

reverse of equivalent analysis filters in both trees. 

 

 The key to the designing of filters for the Q-shift version of the DT-DWT(K) 

is based on the selection of a good even length lowpass filter HL(Z) with the delay of 

¼ sample which also satisfies the standard orthonormal PR condition of 2-band 

filterbank [109]. The lowpass filter HL(Z) of length 2n with a delay that approximates 

¼ sample is designed with linear phase lowpass FIR filter HL2(Z) of length 4n as: 

 

HL2(Z) = HL(Z2) + Z-1 HL(Z-2) (3.11) 

where, HL2 has half the desired bandwidth and twice the desired delay. The alternate 

coefficients of HL2 are taken to obtain HL .  

 

The filters after first level of DT-DWT(K) are derived as: 

 

 H00a(Z) = z-1 HL(Z-1), H01a(Z) = HL(-Z)  

H00b(Z) = HL(Z), H01b(Z) = z-1 HL(-Z-1) (3.12) 

 

The same filters are used for further levels in analysis tree. The time-reversed 

versions of these filters are used in synthesis tree. The recent design methods for Q-

shift filters in frequency domain with filter coefficients can be found in [96]. 
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3.5.4 Selesnick’s Dual-Tree DWT (DT-DWT(S)) 

 

The DT-DWT(S) is again a DT-DWT form of  redundant complex wavelet transform 

having the 1-D filterbank structure shown in figure (3.4). DT-DWT(S), proposed by 

Selesnick [98] is an alternate design approach to Kingsbury’s DT-DWT(K) discussed 

in section 3.5.3.  

 

In [98,99], the alternate way to design the quadrature wavelet pair with 

specified length and vanishing moment multiplicity is shown. The DT-DWT(S) 

employs either ‘Grobner bases’ or general ‘spectral factorization’ methods for the 

design of analytic filters to have quadrature pair of wavelets in a dual-tree structure. 

The design of Hilbert transform pairs of wavelet basis with general spectral 

factorization using flat-delay allpass filters is simpler than the Grobner bases based 

solutions. The design of DT-DWT(S) also proves that for two orthogonal wavelets to 

form a Hilbert transform pair, the scaling filters of both trees should be offset by a 

half sample. The design is based on the limit function defined by infinite product 

formula rather than the concept of midway interpolation of two lowpass filters for 

approximate shift invariance (as in the case of DT-DWT(K)). The underlying 

constraints for the design of DT-DWT(S) are discussed here with key equations from 

[99]. 

 

For the filterbank structure, shown in figure (3.4), let h0 and h1 represent CQF 

(Conjugate Quadrature Filter) pair [53]. That is,  

 

)1()1()( 0
)1(

1 nhnh n −−= −  (3.13) 

 

and, in Z-transform domain  
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The filters g0 and g1 represent a second CQF pair.  

 

For all these real-valued filters hi and gi of DT-DWT(S), the dilation and 

wavelet equations give the scaling and wavelet functions for the real tree as: 

 

).2()(2)(

)2()(2)(

1

0

ntnht

ntnht

h
n

h

h
n

h

−=

−=

∑

∑
ψψ

ϕϕ
 (3.15) 

The scaling function )(tgϕ and wavelet )(tgψ are defined similarly for the imaginary 

tree. 

 

As discussed in section 3.4, )(tgψ is the Hilbert transform of )(thψ , )(tgψ = 

H{ )(thψ }, if 

 

0,)(

0,)()(

<=

>−=

ωωψ

ωωψωψ

h

hg

j

j
   (3.16) 

where, )(ωψ h and )(ωψ g are the Fourier transforms of the wavelets associated with 

the highpass filters of real and imaginary parts of  DT-DWT(S). Similarly, )(0 ωH = 

DTFT{h0(n)}, )(0 ωG = DTFT{g0(n)}are the Fourier transforms of scaling filters h0 

and g0 respectively.  

 

If )(thψ and )(tgψ form Hilbert transform pair, then  

 

)()( ωψωψ gh =  and therefore )()( 00 ωω GH =  (3.17) 

 

That is, the two lowpass filters are related as: 

)(0 ωG  = )(0 ωH )(ωθje−  (3.18)

   

It is derived using infinite-product formula in [98] that it is possible only when 
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πωωωθ <= ,
2

)(  (3.19)

   

Equivalently, the digital filter g0(n) is a half-sample delayed version of  h0(n), 

 

g0(n) =  h0(n-1/2) (3.20)

   

As a half-sample delay can not be implemented with FIR filter, the 

approximate design of FIR filters h0(n) and g0(n) is employed with Grobner bases or 

spectral factorization [98,99]. The filter coefficients for DT-DWT(S) can be found 

from [110]. Orthogonal filter sets are used for DT-DWT(S). First level of analysis 

filterbank of DT-DWT(S) employs a  unique lowpass filter pair to produce one pair 

of Hilbert wavelets at that level, and after first level, a second distinct pair of lowpass 

filters is repeated for the rest of the structure to produce the pairs of Hilbert wavelets 

at all subsequent levels of the DT-DWT(S). All the synthesis filters are the time-

reversed version of their corresponding analysis filters. 

 

3.5.5 Properties of DT-DWT 

 

Both DT-DWTs (Dual-Tree DWT based CWTs) have similar properties because of 

their identical filterbank structures. The important properties for the comparison with 

standard DWT are Shift-sensitivity, Directionality and Phase-information. The key 

properties of DT-DWT(K) and DT-DWT(S) are [95,99]: 

 

1. Shift Invariance:  

DT-DWT has approximate shift-invariance, or in other words, improved 

time-shift sensitivity in comparison with standard DWT. The reconstructed 

details at various levels and approximation at the last level have almost 

uniform shifts for the time-shifted unit step functions. This property is very 

clear from figure (3.10) compared to figure (2.20). The property of shift 

invariance makes the DT-DWT well suited for applications such as Motion 

estimation [111], and Image fusion [112] at various resolution levels. 
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Figure 3.10: Shift-invariance property of 1-D DT-DWT 

 

2. Directionality:  

DT-DWT gives better directional selectivity in 2-D with Gabour like filters 

(also true for higher dimensionality m-D). Standard DWT offers the feature 

selectivity in only 3 directions with poor selectivity for diagonal features 

(figures (2.14) and (2.21)), where as DT-DWT has 12 directional wavelets (6 

for each of real and imaginary trees) oriented at angles of  in 

2-D as shown in figure (3.11). Three-dimensional view of all 12 wavelets is 

given as figure (3.12). The improved directionality with more orientations 

suggests the advantage of DT-DWT in a vide rage of directional image 

processing applications, e.g. texture analysis [113]. 

75,45,15 ±±±

 
Figure 3.11: Directionality of 2-D DT-DWT 
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Figure 3.12: 3-D representation of 12 wavelets of DT-DWT 

 

3. Phase Information:  

Local phase extraction is possible through analytic interpretation of two 

parallel trees of DT-DWT. The phase of any given subband at a given level 

can be computed with its corresponding real and imaginary coefficients based 

on equation (3.4). A 1-D complex wavelet is an envelope of real and 

imaginary wavelets in quadrature (Hilbert pair) as shown in figure (3.13). 

 

4. Perfect Reconstruction:  

The DT-DWT structure follows PR conditions; hence, the original signal can 

be reconstructed from the transform domain complex wavelet coefficients. 

 

5. Limited Redundancy:  

DT-DWT has redundancy of 2:1 (2m:1) for 1-D (m-D) independent of scales 

(levels) of iteration. Though DT-DWT structure is expensive than standard 

DWT, it is significantly less expensive than WP, or non-decimated DWT 

(SWT) for the same advantage of reduced shift-sensitivity. Moreover, DT-
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DWT has other advantages such as improved directionality and phase 

information to compensate for its limited redundancy over standard DWT. 

 

 
Figure 3.13: A complex wavelet as a quadrature combination of real and imaginary 
wavelets for 1-D DT-DWT 
 

 

3.6 Non-Redundant Complex Wavelet Transforms (NRCWT) 
 

3.6.1 Introduction 

 

NRCWT is the class of complex projection (mapping) based DWT introduced in 

section 3.3. NRCWT has two-stage implementation (figure 3.14); first is the complex 

projection of a given signal and second is the implementation of any type of DWT on 

that complex valued projection. The independence of two stages allows them to be 

performed separately and alternatively leading towards a greater flexibility of 

implementation.  
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In true sense, all of the class of NRCWT are not exactly non-redundant CWT, 

which are designed to mitigate all three disadvantages of standard DWT. These 

complex wavelet transforms are categorized under NRCWT because of their two 

broad design aims. First is to offer controllable redundancy that is equal or less than 

the redundancy of DT-DWT (Dual-Tree based CWT or RCWT) while preserving all 

the benefits similar to DT-DWT. Second aim is to offer improved directionality and 

phase information with perfect non-redundancy at the cost of shift-invariant property 

targeting mainly the signal compression applications. 

 

Three types of NRCWT are listed in table (3.1). Fernandes’s PCWT-CR 

(Projection based CWT with Controllable Redundancy) are the arbitrary DWT 

implemented on redundant complex projection of the original signal to preserve all 

potential benefits of DT-DWT. The PCWT-NR (Projection based CWT with No- 

Redundancy) can be designed with perfectly no-redundancy using non-redundant 

complex projection (mapping). PCWT-NR is directional but not shift-invariant. In 

the same way Spaendonck’s OHCWT (Orthogonal Hilbert transform filterbank based 

CWT) is a 3-band perfectly non-redundant and directional transform but is not shift-

invariant.  

 

3.6.2 Projection based CWT (PCWT) 

 

Fernandes et al. [75,105,114] introduced 2-stage projection (mapping) based CWT 

that consist of mapping of a given real-world signal onto complex function space 

through some digital filtering technique (will be discussed later) followed by any 

type of DWT on the complex mapping.  

 

3.6.2.1 Generic Structure 

A generic implementation of projection based complex wavelet transform (PCWT) is 

shown in figure (3.14). The forward CWT consists of an arbitrary DWT filterbank 

preceded by a mapping stage (or vice versa). The reverse CWT has inverse mapping 

stage after a synthesis DWT filterbank (or vice versa).  
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 Forward CWT Inverse CWT 
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Figure 3.14: Generic implementation of PCWT 

 

Unlike other redundant complex wavelet transforms such as DT-DWT and 

DDTWT that also mitigate DWT shortcomings, the decoupled implementation of 

PCWT (from a class of NRCWT) as shown in figure (3.14) has two important 

advantages. First, the controllable redundancy of the mapping stage offers a balance 

between degree of shift sensitivity and transform redundancy. This in turn allows 

creating directional, non-redundant complex wavelet transform with potential 

benefits for image coding systems. Second advantage of PCWT is the flexibility to 

use any DWT in the transform implementation.  

 

In [101,102,114] this flexibility is exploited to create Complex Double 

Density DWT (CDDWT): a shift-invariant, directional CWT with a low redundancy 

of 
12
13

−
−

m

m

 in m direction (2.67 in 2-D) using non-redundant mapping preceded by 

DDWT (Double-Density DWT). Depending on the type of mapping and selection of 

DWT type, the PCWT may be controllable redundant (PCWT-CR) or non-redundant 

(PCWT-NR). Thus, PCWT can either be controllable redundant with shift-

invariance, or non-redundant and directional without shift-invariance 

 

3.6.2.2 Theory of Complex Projection 

The ‘mapping’ block shown figure (3.14) shows the complex projection of the real 

sequence c. The other similar term to identify complex projection is the Hardy space 

projection. The Hardy space projection c+ of a real sequence c is nothing but the 

formulation of an analytic sequence. The Hardy space H2(R→ C) of a real valued 

L2(R → R) function f is given as: 

mapping DWT

 c+ +ĉ  c ĉ
inverse 

IDWT mapping 
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H2(R→ C) ≡ {f ∈ L2(R → R) : F(ω) =0 for all ω <0 } (3.21) 

 

or in frequency domain,  

 

FH(ω) = F(ω)χ [0,∞)(ω) (3.22) 

where, H denotes hardy space mapping and χ is an indicator function (same as unit 

step) on positive frequency axis. FH gives single sided spectral representation. 

 

The other important term related to this complex mapping is ‘unitary map’. 

The unitary map is a linear, bijective, inner-product preserving map. The function 

spaces that are related through unitary map are called isomorphic to each other. The 

unitary map or isomorphism is realisable if it can be implemented through digital 

filter. Thus, complex or Hardy space projection of a real signal is said to be realisable 

if it is possible to use some form of digital filtering for the mapping.  

 

Let f be the projection of an L2(R → R) function onto the arbitrary scaling 

space V1 so that or equivalently ∑ −=
n

nxncxf )()()( ϕ )()()( ωωω Φ=CF . Hence, 

Hardy space image is given by: 

 

)()()( ),0[ ωωχω Φ= ∞ CF H  (3.23) 

 

Unfortunately χ [0,∞) is not 2π  periodic, it can not be applied to the scaling 

coefficient sequence c using a digital filter. Since Hardy space images of L2(R → R) 

function are unrealisable, Fernandes [75] defined the ‘Softy-space S+’, a practical 

approximation to Hardy-space, which employs 2π   periodic indicator function χ 
2π 

[0,∞). 

 

3.6.2.3 Realisation of Complex Projection 

Let h0 and g0 be the arbitrary lowpass analysis and synthesis filters of any 2-band, 

real coefficient, PR filterbank.  
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The mapping and inverse mapping filters h+ and g+ respectively are created by 

shifting H0(ω) and G0(ω) by π/2 so that, 

 

),()( 0 jZHZH −=+  )  (3.24) ()( 0 jZGZG −=+

 

Let the real scaling-coefficient sequence c be associated with function f in 

some arbitrary MRA subspace V1. The mapping filter h+ in figure (3.15) illustrates 

the forward map to the scaling-coefficient sequence c+ associated with f+ ∈ V1
+, the 

image of f where, 

 

}.)()()(
),()()(

),()()(,:{ 11

ωωω

ωωω

ωωω

Φ=

=

Φ=∈∀≡

++

++

++

CF
CHCdefine

CFwhereVffV

 (3.25) 

 
Forward mapping 

ĉ c+c 
Real {.} g+ 

 

h+ 

 

Inverse mapping 
 

 

 

 
Figure 3.15:  Realisable complex projection in softy-space 

 

Figure (3.15) demonstrates that unitary map between V1 and V1
+ is realisable as it is 

implemented with digital filters h+ and g+. The same concept can be extended to 

multilevel representation i.e. V1 to Vk, Zk∈∀ . All representation of Vk to Vk
+ also 

follows the unitary map.  

 

A filter h+ is a complex-coefficient forward mapping filter. It enables 

mapping of function f from Vk to Vk
+. Since h+ is a complex valued, it introduces 

redundancy by a factor of two when applied to real valued scaling-coefficient 

sequence. Filter g+ is an inverse mapping from Vk
+ to Vk. Typical frequency 

response of the forward mapping filter H+(ω) is given in figure (3.16).  
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 |H+(ω)|

-π π ω 

 

 

 

 

 

Figure 3.16:   |H+(ω)|, the magnitude response of complex projection filter h+ 

 

The projection filter h+ significantly suppresses negative frequency. Hence 

the projection filter h+ maps original sequence c of L2(R → R) to c+ of Softy-space 

S+, which is equivalent to the analytic or Hardy space projection cH (f H) in H2(R → 

C) of the sequence c associated with function f. For a lowpass filter h0 of length M 

and a mapping filter h+ of length N, the Softy-space associated with h0 and h+ is 

given as +
∈

+ ≡ kZkNM US V , where S+ is the family of function space spanned by 

multiresolution representation of function f in the Softy-space. 

 

The relation between L2(R → R), Hardy-space H2(R → C) and Softy-space S+ can 

be depicted as figure (3.17). 

 

realizable   

unrealizable   

H2(R → C) 
f H 

L2(R → R) 
f 

 

 

 
approximation   

 

 

Softy-space S+   
f+  

 

Figure 3.17: Relation between function spaces 
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3.6.2.4 Non-Redundant Complex Projection 

The non-redundant complex projection is defined as the concatenation a projection 

filter h+ and a down sampler as shown in figure (3.18). The down sampler eliminates 

odd-indexed scaling coefficients and removes the redundancy created by the 

complex valued projection filter h+. It is important to note that the scaling coefficient 

sequence c and +c~  can both be represented by N real numbers with in a digital 

computer; therefore, there is no data redundancy in sequence +c~ . 

 

 
+c~+cc h+ ↓2 

 

 
N/2 complex scaling 
coefficients 

N complex scaling 
coefficients 

N real scaling 
coefficients  

(= N real numbers) (= 2N real numbers)(= N real numbers) 
 

Figure 3.18: Non-redundant complex projection 

 

 Let the non-redundant complex projection be defined as +H~ such that the 

scaling coefficient sequence c of function f in scaling space V1 is mapped to a 

sequence +c~  of +f~  in the function space +
0

~V as: 

 

{ ( )

}1

20

),()()(
),()()(

,~,2)2(~)(~:~~

VfCFwith
CHCand

ccwhereCFfV

∈∀Φ=
=

↓=Φ=≡
++

+++++ +

ωωω
ωωω

ωωω

 (3.26) 

 

The equivalent relationship between the Non-redundant complex projection 

and Softy-space projection is given in figure (3.19). Let V1
L denote the subset of 

lowpass functions in V1. Where, f1 is the function associated with the original scaling 

coefficient sequence c1, and f0 is the lowpass function in lower resolution space V0 

after 1-level DWT decomposition through MRA. The function f0
+ associated with 

sequence c+ is a Softy-space projection in V0
L+ of a given lowpass function f0 
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associated with the c0 (decimation of sequence c1) through a complex projection 

filter h+.  

 

The +H~  is a direct non-redundant complex projection of function f1 of V1 to 
+

0
~f of +

0
~V  through the decimation of complex coefficients of Softy-space 

projections. It is proved in [114], that the non-redundant complex projection of a 

real signal approximates its Softy-space projection, if the signal has a lowpass 

characteristic. It is shown as +
0

~f ≈ f0
+ in figure (3.19). 

 

 
+H~

+
0

~f

+
0

~V

+H~ V1
L 

 

h+ ↓2, hs 

V0
L V0

L+ V1
L 

V1 

f0 f1  f0
+

 

 

 

 

 

 

 

 

 

 
Non-redundant 
mapping space  L2(R → R) 

 

Figure 3.19: The relationship between non-redundant mapping +H~ and softy-space 
mapping h+ shows that for all lowpass functions f1, the associated functions +

0
~f and 

f0
+are approximately equal. 
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3.6.3 PCWT with Controllable Redundancy (PCWT-CR) 

 

Softy-space S+ projection as discussed in section 3.6.2.3 is way of practical 

realisation of complex projection f+ of f which is equivalent to the Hardy space 

projection fH of f (figure 3.17). Such a complex projection without any decimation 

step is redundant by nature. The projection based CWT (PCWT) of figure (3.14) with 

realisable redundant complex projection through Softy-space S+ can be viewed as 

figure (3.20).  

 

f̂ +f̂

+f̂

mapping [g+] 

DWT 

IDWT  

L → R) Softy-space, S+ 2(R 

inverse 

mapping [h+] 

processing 

DWT( ) 

DWT(f+)

f+

f 

 

 

 

 

 

 

 

 

 
Figure 3.20:  Implementation of realisable PCWT: PCWT-CR 

 

The complex projection of real valued data introduces the redundancy by a factor of 

two. Hence, PCWT shown in figure (3.20) is denoted as ‘projection based CWT with 

controllable redundancy’ (PCWT-CR).  

 

Due to the redundant projection and flexible arbitrary DWT implementation, 

PCWT can be controllable redundant with the minimum redundancy equal to that of 

DT-DWT. Since f+ ≈ fH, the PCWT-CR has approximate shiftability: the subband 

energy in DWT(f+) will remain approximately constant under shifts of f . The 

PCWT-CR has also improved directionality. It also exhibits explicit phase 

information using complex valued DWT implementation of a complex projection  f+ . 
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3.6.4 PCWT with No-Redundancy (PCWT-NR) 

 

As discussed in section 3.6.3, a PCWT-CR has all the advantages that are possible 

with DT-DWT (a class of RCWT) with the same controllable redundancy. Still the 

main disadvantage with PCWT-CR is the redundant projection (mapping). The softy 

space projection of a function f is redundant by a factor of two because of its 

complex valued nature. This redundancy is unacceptable in application such as data 

compression.  

 

Thus, the technique of non-redundant projection is developed as discussed in 

section 3.6.3.4. PCWT based on non-redundant mapping incurs no data redundancy 

while mapping L2(R → R) function onto the function space that approximates Softy 

space as shown in figures (3.18) and (3.19). The arbitrary DWT of the non-redundant 

complex projection of an L2(R → R) function is defined as PCWT-NR. The 

implementation scheme for PCWT-NR is same as generic PCWT but with non-

redundant projects is shown in figure (3.18). 

 

The reversible implementation (realisable bijection or PR) of non-redundant 

complex projection through digital filter ensures its potential applicability in signal 

processing applications. The realisation of non-redundant mapping through real-

valued allpass filters is shown in figure (3.21). 

)(~ ZH +
1c
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)(
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01 ZH −

1−Z
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+
0
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1)~ −+H

+
0
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+
0

~c

Im{ } 

inverse mapping (  

↑2

↑2

 Re{ } forward mapping  

↓2

 

 

 

 

 

 

 
 

Figure 3.21: Realisation of non-redundant mapping 
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Let h00 and h01 are the even and odd polyphase components of a kernel 

lowpass filter h0 then  

)()()( 2
01

12
000 ZHZZHZH −+=  (3.27) 

 

The projection filter h+ is such that  If  and are 

the even and odd polyphase component of the projection filter h

).()( 01 jZHZH −=+

)(

)(0 ZH + )(1 ZH +

+, and c10 and c11 are 

of original sequence c1 then the sequence ~
0 Z+C can be represented as: 

 

 )(~
0 ZC +  =   )()()()( 111

1
100 ZCZHZZCZH +

−
+ +

=   (3.28) )()()()( 1101
1

1000 ZCZHjZZCZH −+− −

where =  and = j)(0 ZH + )(00 ZH − )(1 ZH + )(01 ZH −  

 

For the reversible implementation of figure (3.21), it is derived in [114] that 11ˆ cc =  

can be realised through inverse map 1)~(  since −+H

 

 )(
)(

1 1
00

00

−−=
−

ZH
ZH

, and )(
)(

1 1
01

01

−−=
−

ZH
ZH

 (3.29) 

because )(00 ZH −  and )(01 ZH − are allpass filters. 

 

The DWT implementation with PCWT-CR or with PCWT-NR is flexible and 

arbitrary depending on the application to tradeoff between redundancy and shift-

invariance. Thus by using Selesnick’s [107] Double Density DWT (DDWT) after 

non-redundant complex mapping yields Complex Double Density DWT (CDDWT) 

[75,101] that has redundancy of 2.67 in 2-D. In other words, CDDWT is a kind of 

PCWT-NR, which is not perfectly non-redundant.  

 

The non-redundant projection preserves the advantages such as phase 

information and improved directionality of Softy-space mapping. But due to the 

insertion of decimator block in non-redundant projection, it is not shift-invariant. 
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The advantage of PCWT-NR is the reduced and controllable redundancy in 

comparison with DT-DWT based redundant CWT (with redundancy of 4 in 2-D). 

 

3.6.5 Orthogonal Hilbert Transform Filterbanks based CWT (OHCWT) 

 

The Orthogonal Hilbert Transform Filterbanks based CWT  (OHCWT) proposed by 

Spaendonck et al. [103] is a kind of non-redundant CWT. It uses the basic concept of 

complex projection in a modified from.  

 

The 3-band filterbank structure of OHCWT is shown in figure (3.22). This 

structure is derived with the design specification such as preservation of polynomial 

trend, Hilbert transform pairs of wavelets, orthogonality and realisation with FIR 

filters. The design aim of OHCWT is to offers no redundancy for both real and 

complex valued signals. The filterbank features one real lowpass filter and two 

complex highpass filters. All filters are critically sampled. The formulation of 

complex wavelets is achieved through two complex highpass filters.   
 

)(ˆ nf

H(1/Z) 

G(1/Z) 

↓ 2↓ 2

↓ 4↓ 4

↓ 4↓ 4 G*(1/Z) 

H(Z) 

G*(Z) 

G(Z)  

 
f (n)

 

 

 
Figure 3.22:  3-band filterbank structure for 1-D OHCWT 

 

The foundation filterbank structure shown in figure (3.22) has unbalanced 

down/up sampling. The lowpass branch consist of a conventional real-valued 

lowpass filter H(Z) whose output is down sampled by two. The two highpass 

branches consist of two complex highpass filters G(Z) and G*(Z) whose outputs are 

down sampled by four. The suitability of OHCWT for processing real valued signal 

demands special symmetry between two complex highpass filters such that one can 

be removed in case of real signal.  
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It is also shown in [103] that for real signals, a single highpass filter with 

down sampling by four can be decomposed as a two stage filterbank, in which the 

first stage consists of a real valued highpass filter and subsampler, and the second 

stage contains a complex projection filter (Hilbert transform). This equivalent 

decomposed structure is shown in figure (3.23).  

 

 

 

 

 

 
 

real highpass
filter 

real lowpass
filter 

complex 
projection filter

Hilbert pair 
of wavelets

same iteration 
structure 

↓ 2Q*(Z) f (n) 
↓ 2

↓ 2

↓ 2

H(Z) 

G(Z) 

Q(Z) 

Figure 3.23: Single level analysis filterbank equivalence of 1-D OHCWT for real 
signal as shown in figure (3.22). One highpass filter is removed and other highpass 
filter is decomposed in two-stage filterbank. 

 

The complex projection filter and its complex conjugate form a separable 

filterbank that can be designed in isolation. Thus, OHCWT can be implemented 

with standard DWT followed by the complex projection of highpass branch output. 

The transform can be computed up to desired level by iterating the modified 

filterbank structure of figure (3.23) on the real lowpass branch. 

 

The crucial problem of designing a complex highpass filter G(Z) for OHCWT 

is simplified to the design of a conventional real orthonormal filterbank structure 

G(Z), and the orthogonal conjugate symmetric complex filterbank structure Q(Z) 

and  Q*(Z). The filter G(Z) in figure (3.23) is the complementary to the lowpass 

filter H(Z). The orthoconjugate complex projection FIR filter can be obtained from 

an orthonormal filter U(Z) which satisfies half sample symmetry condition as: 

 

U(Z) = zU(Z-1) (3.30) 

 

Through a simple shift of π/2 in frequency so that the projection filter Q(Z) is 

 73



Chapter 3: Complex Wavelet Transforms (CWT)        
 

 Q(Z) = U(-jZ) (3.31) 

 

Coefficients of such projection filters can be availed through the complex 

Daubechies solutions of Lawton, and Lina [85, 86]. These are the shortest FIR 

solutions with required half-sample symmetry. 

  

 The OHCWT proposed by Spaendonck et al. [103] with orthonormal bases 

has a simple filterbank structure. This structure permits the design of two types of 

FIR filterbanks; a general (standard) multiresolution DWT and a complex conjugate 

symmetric filterbank with Hilbert transform properties. Separable and isolated 

implementation of both filterbank makes this transform very flexible. Due to its non-

redundancy for real- and complex- valued signals, the transform is promising for 

application such as compression and related problems where both amplitude and 

phase play pivotal role. The approximate Hilbert transform imposition between real 

and imaginary parts of the conjugate filters show substantial aliasing energy in 

negative frequency range, which may affect the reliability of amplitude and phase 

information. 

 

3.7 Advantages and Applications of CWT 
 

The initial versions of complex wavelet transforms by Lina, and Lawton [86,87] 

proved their potential for signal/image denoising and enhancement in comparison 

with standard real wavelet transform. As classified in section 3.3, the recent 

developments in CWT can be broadly categorised in two groups; first is RCWT 

(redundant complex wavelet transforms) with the important DT-DWT forms as 

discussed in section 3.5, and the second is NRCWT (non redundant complex wavelet 

transforms) with PCWT variants as discussed in section 3.6.  

 

The DT-DWT versions of RCWT have limited redundancy with very good 

properties of shift-invariance, improved directionality and availability of phase 

information, which are not present in standard DWT. RCWT has a huge potential in 

signal/image Denoising, Enhancement, Segmentation, Edge detection and Motion 
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estimation. The investigations in [112,115] also suggest the potential of RCWT in 

Image fusion and Digital watermarking, but RCWT is not suitable for applications 

like image compression, where no-redundancy is of primary concern. The suitable 

class of CWTs for compression is NRCWT (non-redundant complex wavelet 

transforms).  

 

All forms of NRCWT discussed in section 3.6 are based on complex 

projection filters. The PCWT (projection based CWT) and OHCWT (orthogonal 

Hilbert transform filterbank based CWT) are designed with the aim to have non-

redundancy for improved image compression applications where the directionality 

and phase information play an important role. Though the class of NRCWT with 

non-redundant mapping achieves the non-redundancy, the approximate and tight 

design of Hilbert transform pairs of wavelets does not give approximate shift-

invariance. The filterbank design for CWT to achieve all the benefits with non-

redundancy is still an active and challenging area. The comparative summary of all 

CWT (as classified in table 3.1) is given in the table (3.2). 

 

The possible advantages of the recent CWTs, either RCWT or NRCWT have 

yet not been investigated in many signal/image processing applications. It has been 

suggested in [93], that DT-DWT based RCWT can yield better results in 

signal/image Denoising and Enhancement. Because of the additional advantages of 

RCWT, there are ample potential applications for investigation such as Motion 

estimation for video signal processing, Remote sensing, Bio-medical image 

analysis/registration, and Texture analysis/classification. The PCWT (from the class 

of NRCWT) has potential for improved image compression especially for the 

transmission and storage of information. NRCWT has also some of the available 

benefits of RCWT in terms of directionality and phase information.  

 

DT-DWT can be investigated for many 1-D signal (e.g. ECG, Speech) and 2-

D imaging (e.g. MRI, SAR) for analysis, denoising and enhancement. Due to the 

properties of shift-invariance, better directionality, and explicit phase information, it 

is proposed that RCWT may yield improved analysis/denoising of various signals 
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which in turn be very useful in applications such as Automated Diagnostics for 

medical professional for bio-medical signals, Target Recognition/Tracking and 

Remote sensing for SAR signals.  

 

NRCWT can be investigated for signal compression as they are non-

redundant and have improved properties than the standard DWT. The combination of 

RCWT and NRCWT may also yield significant improvements in many signal/image 

applications. Use of RCWT can extract crucial information with flexible timings and 

storage for processing, while NRCWT can be useful for compressed transmission or 

storage when instant retrieval of signals is of prime importance.  

 

Three possible ways of implementing CWT for natural signals are illustrated 

in figure (3.24). The hybrid mode of operation as shown in figure (3.24 c) is the 

application specific time-variant combination of RCWT and NRCWT. The NRCWT 

can be used at the first instance to select the region of interest (ROI), and then 

RCWT can be applied onto the region of interest (ROI) for improved feature 

detection, enhancement or analysis. The implementation of RCWT on a small sized 

ROI avails all the benefits of RCWT with only a limited increase in redundancy for a 

small part of an entire signal/image. 

 

3.8  Summary 
 

In this chapter, a thorough investigation on CWT is presented. Earlier work and 

recent developments on CWT are discussed. The motivation to avail phase 

information was the key objective of the earlier work on CWT. Recent developments 

explored the complex extensions to widely used standard DWT, and presented the 

recent forms of CWTs such as RCWT and NRCWT. These newer forms of CWT, 

with improved properties in terms of shift-sensitivity, directionality, and phase 

information, has the potential to replace the standard DWT in many signal processing 

applications (e.g video coding). DT-DWT is an important form of RCWT with the 

potential for Motion estimation, whereas PCWT-NR is an important form of 

NRCWT with the potential for Compression. 
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   T

yp
e 

 

Features 

Standard 

DWT 

RCWT 

DT-DWT(K)  

DT-DWT(S) 

NRCWT 

PCWT-CR   

PCWT-NR (CDDWT) 

OHCWT   

Proposed by Mallat 

[27] 

Kingsbury 

[93] 

Selesnick   

[98] 

Fernandes 

[101, 114] 

Fernandes 

[101,114] 

Spaendonck et 

al [103] 

Key 

identification  

feature 

Multilevel 

Resolution 

Two parallel 

standard 

DWT  

trees in 

quadrature 

Two parallel 

standard 

DWT  

trees in 

quadrature 

Redundant 

complex 

mapping 

followed by 

any DWT or 

vice versa 

Non-

redundant 

complex 

mapping 

followed by 

any DWT or 

vice versa 

3-band structure 

with two 

conjugate high 

pass filters 

decimated by 4 

Shift-

invariance 

No 

Poor 

Yes 

Very good 

Yes 

Very good 

Yes 

Good 

No 

Poor 

No 

Poor 

 

Directionality 

(for 2-D) 

Poor 

3 at each 

level 

Very good 

6 at each 

level for  

each tree 

Very good 

6 at each 

level for  

each tree 

Good 

6 at each 

level 

 

Fair 

6 at each 

level 

with 

distortion in 

image shape 

in LH and 

HL subbands 

Fair 

6 at each level 

Phase 

Information 

No Yes 

Very good 

Yes 

Very good 

Yes 

Good 

Yes 

Fair 

Yes 

Fair 

Redundancy 

(for 2-D) 

No 

1:1 

Fixed 

4:1 

Fixed 

4:1 

Flexible 

but 

>= 4:1  

Flexible 

1:1 with 

standard 

DWT, and 

2.67 with 

DDWT 

No 

1:1 

 

 

 

 
Table 3.2:  Comparative summary of complex wavelet transforms (Contd.)  
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   T

yp
e 

 

 

Features 

 

NRCWT 

 

PCWT-CR  

PCWT-NR (CDDWT) 

OHCWT   

PR Yes Yes Yes Yes Yes Yes 

Decomposition 

Filter band structure 

Fixed 

2-band 

Fixed 

2-band 

Fixed 

2-band 

Flexible; Flexible; 

Depends on 

type of  

DWT 

Flexible 

3-band for 

(complex) 

2-band  for 

(real) 

Strong application 

area for improved 

performance 

compared to 

standard DWT 

 

 

- 

Denoising, 

Enhancement, 

Segmentation, 

Motion- 

estimation, 

Image fusion, 

Digital 

watermarking 

, Texture 

Analysis 

[93, 100, 

111,112,113, 

115] 

Denoising, 

Enhancement, 

Segmentation, 

Motion- 

estimation, 

Image fusion, 

Digital 

watermarking

, Texture 

Analysis 

[93, 100, 

111,112,113, 

115] 

Denoising, 

Enhancement, 

Segmentation, 

Motion- 

estimation, 

Image fusion, 

Digital 

watermarking 

, Texture 

Analysis 

[93, 100, 

111,112,113, 

115] 

 

 

Directional 

and 

Phase based 

Compression 

[114] 

 

 

 

Directional 

and 

Phase based 

Compression 

[114,103] 

 

 RCWT 

Standard  

DWT DT-DWT(K)  

DT-DWT(S)

Depends on 

type of DWT 

 

Table 3.2:  Comparative summary of complex wavelet transforms 
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source forward 

RCWT 

inverse 

RCWT 

redundancy (1:2 for 1-D) 

processing
on 

coefficients

analysis 

a. Redundant processing: when redundancy is allowed for analysis, improved 

processing (denoising, enhancement, estimation) or for feature detection. 
 

source forward 
NRCWT 

inverse 

NRCWT

redundancy (≈1:1)   
 

instant 
retrieval

transmission

storage

compressed
coefficients

lossy 

 

 

 

 

 

 
b.   Non-redundant processing: when non-redundancy is of prime importance for 

high-resolution compression in transmission or storage at the cost of shift-

invariance.  

 

 

 

 

 

 
non-redundant 

processing 

redundant 
processing 

1 (a) 1 (a) 

2 (b) 2 (b) 

3 (c) 

3 (c) 

source sink 
hybrid-mode 

 

c. Hybrid processing: 1(a) for denoising, enhancement or motion estimation 2(b) 

for compression: transmission and storage, 3(c) for time-context variant 

applications based on ROI 

 

Figure 3.24:  Three possible ways of implementing CWT for natural signals 
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Chapter 4:  

Application I- Denoising 
  
 

 

4.1 Introduction 
 

Many scientific experiments result in a datasets corrupted with noise, either because 

of the data acquisition process, or because of environmental effects. A first pre-

processing step in analyzing such datasets is denoising, that is, estimating the 

unknown signal of interest from the available noisy data. There are several different 

approaches to denoise signals and images. Despite similar visual effects, there are 

subtle differences between denoising, de-blurring, smoothing and restoration.  

 

Generally smoothing removes high frequency and retains low frequency 

(with blurring), de-blurring increases the sharpness signal features by boosting the 

high frequencies, whereas denoising tries to remove whatever noise is present 

regardless of the spectral content of a noisy signal [116]. Restoration is kind of 

denoising that tries to retrieve the original signal with optimal balancing of de-

blurring and smoothing. Traditional smoothing filters such as Mean, Median and 

Gaussian filters are liner operators normally employed in spatial domain, which 

smooth the signals with blurring effects [117-119].  

 

 80

A frequency domain approach (high pass) of ‘Inverse’ filtering for de-

blurring [120] is sensitive to noise, and is not alone suitable for denoising. The 

Wiener filtering executes an optimal tradeoff (in MSE sense) between inverse 
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filtering and noise smoothing. It is useful in restoration by removing the additive 

noise and inverting the blurring simultaneously [120-122]. Wavelet based denoising 

schemes, widely popular since last decade, are non-linear thresholding of wavelet 

coefficients in time-scale transform domain. 

 

Recent advances in wavelet based denoising combine variants of wavelet 

transforms with computationally involved Hidden Markov models, spatially adaptive 

methods and interscale dependency [125, 137-139] for improved performance. 

Newer generations of basis functions such as Ridgelets, Curvelets and Contourlets 

[140-142] have shown noticeable effectiveness over wavelets for images and higher 

dimensional data processing employing complicated mathematical models. 

 
The fundamental concepts and classifications of Wavelet Transforms (WTs) 

and Complex Wavelet Transforms (CWTs) are discussed in Chapter 2 and Chapter 3 

respectively. Some of the numerous applications of WTs and CWTs in many diverse 

fields are enlisted in sections 2.6 and 3.7 respectively. The basic purpose of this 

chapter is to describe the implementation of CWTs for Denoising. For critical 

evaluation, the performance of redundant CWTs (DT-DWT(K) and DT-DWT(S)) is 

compared with suitable type(s) of WTs and other conventional approaches.  

 

Chapter 4 is organised into six sections. Section 4.1 is an introduction. 

Section 4.2 describes the concept of signal and image denoising in wavelet domain. 

Section 4.3 discusses generalised 1-D denoising, and section 4.4 is about a special 

case of 1-D denoising for audio signals. Section 4.5 presents 2-D denoising for 

various images. Section 4.6 is the conclusion for denoising application. 

 

4.2 Wavelet Shrinkage Denoising 

 

4.2.1 Basic Concept 

 

Wavelet Thresholding, Wavelet Shrinkage, and Non-linear Shrinkage are widely 

used terms for wavelet domain denoising. Denoising by thresholding in wavelet 
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domain has been developed principally by Donoho et al. [123,124]. In wavelet 

domain, large coefficients correspond to the signal, and small ones represent mostly 

noise. The denoised data is obtained by inverse-transforming the suitably 

thresholded, or shrunk, coefficients. 

 

4.2.2 Shrinkage Strategies 

 

The standard thresholding of wavelet coefficients is governed mainly by either ‘hard’ 

or ‘soft’ thresholding function as shown in figure (4.1). The first function in figure 

(4.1 a) is a ‘liner’ function, which is not useful for denoising, as it does not alter the 

coefficients. The ‘linear’ characteristic is presented in the figure just for comparing 

the non-linearity of other two functions.  

The hard thresholding function is given as: 

 

 z = ( ) λ>= www ,hard  , and  

 z = ( ) λ<== wwhard ,0  (4.1) 

where, w and z are the input and output wavelet coefficients respectively. λ  is a 

threshold value selected. 

 

Similarly, soft thresholding function is given as: 

 

( ) )0,max()sgn( λ−⋅== wwwsoftz  , λ>w  and 

( ) 0== wsoftz , λ<=w  (4.2) 

 

 

 

  

 

 

output 

input 

Slope =1 

a 

-λ 
λ 

-λ 
λ 

 

Figure 4.1: Thresholding functions

 

b c 

; (a) linear, (b) hard, (c) soft 

82



Chapter 4: Application I- Denoising 
In hard thresholding, the wavelet coefficients (at each level) below threshold 

λ  are made zero and coefficients above threshold are not changed whereas in soft 

thresholding, the wavelet coefficients are shrunk towards zero by an offset λ . 

Generally soft thresholding gives fewer artifacts and preserves the smoothness. The 

choice of threshold value is very crucial for a given signal for denoising.  

 

Donoho et al. [123,124] introduced various shrinkage rules based on different 

threshold values and thresholding functions such as ‘visushrink’ with fixed universal 

threshold n2log2σλ = and ‘sureshrink’ based on Stein’s Unbiased Risk 

Estimator (SURE), where λ  is not fixed but statistically related to the associated 

transform domain data sets.  

 

There are other variants of thresholds and thresholding functions optimised 

for specific applications (e.g. MRI, Ultrasonic and SAR signal processing) that 

shrink the wavelet coefficients in between hard and soft thresholding under varying 

noise distributions [125-132]. Typically, wavelet based denoising is performed with 

fast and space saving decimated wavelet transforms. It is observed that the use of 

non-decimated transforms minimizes the artifacts in the denoised data [133-135]. In 

[136], it is demonstrated that the complex wavelet transforms (CWTs), being more 

directional, posses a good potential to tradeoff the denoising performance with its 

limited redundancy.  

 

4.3 1-D Denoising 
In section 4.3, level adaptive thresholding (hard and soft) is applied separately for 

each subband of 1-D signal using standard DWT, WP, SWT and redundant CWTs 

(DT-DWT(K) and DT-DWT(S)) for a comparative investigation. 

 

4.3.1 Signal and Noise Model 

 

Signal and noise model for 1-D denoising simulations is given as:    

)()()( ngnsnx σ+= ,    n = 1 to N (4.3) 
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where, s(n) is an N point original signal, x(n) is a noisy signal corrupted by (0,1) 

additive white Gaussian noise g(n) with a spread of σ  as standard deviation. For 

experiment, a number of signals with varying degree of smoothness (blocks, bumps, 

heavy sine etc) and of various SNR are generated using Matlab function ‘wnoise’. 

 

4.3.2 Shrinkage Strategy 

 

Level adaptive threshold values are selected in transform domain based on various 

strategies (rigrsure, heursure etc) using Matlab function ‘thselect’ and actual hard or 

soft thresholding is performed using Matlab function ‘wthresh’ 

 

4.3.3 Algorithm 

 

The wavelet shrinkage denoising of 1-D noisy signal x(n), in order to recover y(n) as 

an estimate of original signal s(n) is represented as a 4-step algorithm [116] with j as 

decomposition levels, W as forward WT and W-1 as inverse WT. 

 

1. ωj = W(x),  j = 1 to J 

2. λj = Level adaptive threshold selection (ωj) 

3. zj =  Thresholding(ωj, λj) 

4. y = W-1(zj) 

 

The standard DWT is performed with Matlab (wavelet toolbox) functions 

‘wavedec’ and ‘waverec’, wavelet packet (WP) algorithm is implemented with 

functions ‘wpdec’, ‘bestree’, ‘wprec’ and with various tree management utilities 

available. The SWT is implemented with functions ‘swt’ and ‘iswt’. The DT-DWT 

algorithms employing DT-DWT(K) and DT-DWT(S) are implemented with Matlab 

following the discussion given in section 3.5. 
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4.3.4 Performance Measure 

 

The performance of various denoising algorithms is quantitatively compared using 

MSE (mean square error) and SNR (signal to noise ratio) as: 

 

MSE = 
2

1
)()(1 ∑

=

−
N

n
nyns

N
 

SNR =  10 log10 



















−∑

∑

=

=
2

1

1

2

)()(

)(

N

n

N

n

nyns

ns
   (4.4) 

where, s(n) is an original signal and y(n) is an estimate of s(n) after denoising. 

 

The qualitative performance is compared by plotting the original and recovered 

signals based on human visual perspective. 

 

4.3.5 Results and Discussion 

 

Some sample results of experiment to compare performance measures for various 

signals under different SNR conditions are shown in tables (4.1) to (4.5). Figures (4.2 

a) and (4.2 b) show the qualitative comparisons of denoising of 1-D ‘blocks’ signal 

using various WTs for ‘rigrsure’ case of table (4.1). Where MSEi = initial MSE of 

noisy signal, SNRi= initial SNR of noisy signal. MSEh, MSEs = MSE after hard and 

soft thresholding respectively. 

 

 After observing and analysing the statistics of large number of experiments, 

the conclusions are as follows: 

 

1. The ‘rigrsure’ and ‘minimax’ are optimum for soft and hard thresholding 

respectively. The threshold value selection based on ‘rigrsure’ is based on 

SURE criteria and is suitable for level adaptive thresholding with various 

amounts of noise and for large range of decomposition levels. 
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2. Though threshold value with ‘sqtwolog’ gives the best performance with hard 

thresholding in case of ‘blocks’, it is not suitable for all types of signals with 

varying degree of noise and decomposition levels. 

 

3. Denoising performance varies with type of signal under consideration. 

 

4. Redundant CWT namely DT-DWT(K) and DT-DWT(S) perform better than 

standard DWT  and WP but slightly poorer than SWT.  

 

5. Standard DWT has improved performance than the entropy based WP. In 

case of very high SNR, standard DWT and entropy based WP have the same 

results because under this condition the best tree is same as standard DWT 

tree. 

 

6. Denoising with DT-DWT(K) is slightly superior than DT-DWT(S). In poor 

SNR conditions, DT-DWT(K) performs equally well with either hard of soft 

thresholding.  

 

7. DT-DWT(K) gives better performance with hard thresholding whereas DT-

DWT(S) gives improved performance with soft thresholding. 

 

8. Increasing the filter tap length improves the denoising performance with hard 

thresholding but degrades the SNR and MSE with soft thresholding. There is 

no change in performance of DT-DWT algorithms, as the filter lengths are 

kept fixed for both DT-DWT. 

 

9. Increase in decomposition levels (J=8) degrades the performance of standard 

DWT, and SWT with soft thresholding. It also degrades the performance of 

WP, DT-DWT(K) and DT-DWT(S) for both hard and soft thresholding. 
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Performance

Measure 

DWT WP SWT DT-

DWT(K) 

DT-

DWT(S) 

 Threshold criteria: ‘rigrsure’ 

MSEh 0.63 0.76 0.54 0.24 0.52 

MSEs 0.24 0.31 0.19 0.29 0.23 

SNRh (dB) 17.53 16.73 18.23 21.81 18.36 

SNRs (dB) 21.69 20.64 22.68 20.86 21.90 

 Threshold criteria: ‘heursure’ 

MSEh 0.37 0.47 0.24 0.32 0.27 

MSEs 0.37 0.40 0.31 0.57 0.31 

SNRh (dB) 19.84 18.85 21.84 20.53 21.21 

SNRs (dB) 19.86 19.52 20.65 17.98 20.59 

 Threshold criteria: ‘sqtwolog’ 

MSEh 0.27 0.37 0.14 0.34 0.19 

MSEs 0.55 0.58 0.52 0.37 0.49 

SNRh (dB) 21.17 19.87 24.07 20.30 22.82 

SNRs (dB) 18.17 17.93 18.40 16.93 18.63 

 Threshold criteria: ‘minimaxi’ 

MSEh 0.43 0.61 0.22 0.20 0.37 

MSEs 0.27 0.32 0.26 0.37 0.25 

SNRh (dB) 19.18 17.70 22.16 22.64 19.85 

SNRs (dB) 21.21 20.44 21.43 19.86 21.50 

 
Table 4.1: Effect of thresholding criteria for 1-D denoising on a signal ‘blocks’ with 
N=1024 points, initial SNRi= 15.36 dB, MSEi= 1.05, level of WT decomposition 
J=4, wavelet type for DWT, WP and SWT is ‘db2’, filters for DT-DWT(K) are 
‘near_sym_b’ and ‘qshift_b’ as given in appendix A, filters for DT-DWT(S) are as 
given in appendix B. 
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Performance

Measure 

DWT WP SWT DT-

DWT(K) 

DT-

DWT(S) 

 Signal: ‘bumps’ with SNRi= 7.18, MSEi=1.05 

MSEh 0.34 0.59 0.20 0.10 0.20 

MSEs 0.16 0.21 0.11 0.12 0.11 

SNRh (dB) 12.11 9.70 14.37 17.18 14.36 

SNRs (dB) 15.26 14.18 17.15 16.45 17.13 

 Signal: ‘heavy sine’ with SNRi= 20.13, MSEi= 1.05 

MSEh 0.28 0.56 0.14 0.12 0.21 

MSEs 0.13 0.19 0.09 0.11 0.10 

SNRh (dB) 25.81 22.87 28.94 29.65 26.99 

SNRs (dB) 29.17 27.64 30.94 29.80 30.50 

 Signal: ‘doppler’ with SNRi= 5.94, MSEi= 1.05 

MSEh 0.28 0.50 0.20 0.12 0.15 

MSEs 0.15 0.19 0.l0 0.11 0.11 

SNRh (dB) 11.72 9.17 13.10 15.31 12.14 

SNRs (dB) 14.51 13.43 16.02 15.74 15.84 

 Signal: ‘quad chirp’ with SNRi= 11.86, MSEi= 1.06 

MSEh 1.05 0.98 1.02 0.82 1.00 

MSEs 0.87 0.70 0.78 0.74 0.72 

SNRh (dB) 11.84 12.11 11.97 12.91 12.03 

SNRs (dB) 12.68 13.59 13.12 13.34 13.43 

 
Table 4.2: Effect of different SNRi and MSEi for 1-D denoising with ‘rigrsure’ 
thresholding on various signals with N=1024 points, level of WT decomposition J= 
4, wavelet type for DWT, WP and SWT is ‘db2’, filters for DT-DWT(K) 
(‘near_sym_b’ and ‘qshift_b’) and  filters for DT-DWT(S) are as given in appendix 
A and B respectively. 
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Performance

Measure 

DWT WP SWT DT-

DWT(K) 

DT-

DWT(S) 

MSEh 0.21 0.48 0.14 0.11 0.22 

MSEs 0.14 0.18 0.10 0.11 0.11 

SNRh (dB) 10.25 6.73 12.06 12.96 10.00 

SNRs (dB) 12.11 10.91 13.44 12.97 12.97 

 
Table 4.3: Effect of low SNRi for 1-D denoising on ‘blocks’ signal with N=1024 
points, threshold criteria is ‘rigrsure’, SNRi= 3.32, MSEi=1.05, level of WT 
decomposition J= 4, wavelet type for DWT, WP and SWT is ‘db2’.  
 

Performance

Measure 

DWT WP SWT DT-

DWT(K) 

DT-

DWT(S) 

MSEh 0.61 0.72 0.53 0.24 0.52 

MSEs 0.28 0.36 0.25 0.29 0.23 

SNRh (dB) 17.69 17.01 18.30 21.81 18.36 

SNRs (dB) 21.09 19.94 21.59 20.86 21.90 

 
Table 4.4: Effect of long tap filters for 1-D denoising on ‘blocks’ signals with N 
=1024 points, threshold criteria = ‘rigrsure’, SNRi= 15.36, MSEi=1.05, level of WT 
decomposition J=4, wavelet type for DWT, WP and SWT = ‘db6’. 
 

Performance

Measure 

DWT WP SWT DT-

DWT(K) 

DT-

DWT(S) 

MSEh 0.64 0.95 0.54 0.58 0.59 

MSEs 0.27 0.75 0.19 0.32 0.44 

SNRh (dB) 17.53 15.76 18.24 20.51 17.36 

SNRs (dB) 21.30 16.78 22.67 17.92 19.13 

 
Table 4.5: Effect of more number of decomposition levels for 1-D denoising on 
‘blocks’ signal with N=1024 points, threshold criteria = ‘rigrsure’, SNRi= 15.36, 
MSEi=1.05, level of WT decomposition J= 8, wavelet type for DWT, WP and SWT 
= ‘db2’. 
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4.4 Audio Signal Denoising 
 

4.4.1 WT for Audio Signals 

 

Audio signal denoising is a special 1-D application. Traditionally audio signal 

processing is based on time-frequency (STFT) representation rather than time-scale. 

The choice of wavelets for audio signal processing is due to it multiresolution 

properties with constant-Q filterbank, which is a suitable model for the internal 

auditory processing of inner ear. The CWTs are more closely related to Fourier 

techniques (due to their complex valued representation) than the real valued WTs. 

The basic approach of denoising audio signal with redundant CWT (namely DT-

DWT(K)) mentioned in this section is taken from [143]. Various other approaches to 

wavelet based audio signal processing can be found in [144-146]. 

 

4.4.2 Denoising Model 

 

The traditional Fourier based model for noise reduction in many audio signals 

of interest (e.g. speech, music) is known as STSA (Short Time Spectrum 

Attenuation) [147]. The variant of STSA derived in wavelet domain is STWA (Short  

Time Wavelet Attenuation) as shown in figure (4.3).  

 

 

 

 

 

 

 

 

 

 

 

|Xw|

|Gw|

|Zw| 

∠Xwx = s + σ g 
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g 
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Short-time 
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(Forward WT)
Suppression 
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Noise  
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Short-time 
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(InverseWT) 

Short-time 
Analysis 

(Forward WT)

Figure 4.3: Block diagram of STWA (short time wavelet attenuation) method 
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STWA is equivalent to applying a real valued gain between 0 and 1 with 

threshold based offset to the wavelet coefficients at each level of the noisy 

(observed) short time audio signal x(n) based on a predefined thresholding strategy in 

order to get an estimated wavelet coefficients Zw for the recovered signal y(n). The 

formula governing this wavelet attenuation is termed as ‘noise suppression rule’; it 

depends in general on the power of signal PXw and power of noise PGw in wavelet 

domain. The observed signal magnitude is termed as |Xw| and the estimate of noise 

magnitude is as |Gw|. The noise estimate is assumed to be accurate as it can be 

derived in the absence of actual audio signal (assuming noise remains stationary 

between such observation intervals). 

 

4.4.3 Shrinkage Strategies 

 

The noise suppression rule in wavelet domain is based on heuristic thresholding in 

order to optimise quantitative measures like MSE and SNR (defined in equation 4.4) 

or qualitative human perceptual (through eyes and ears). The global thresholding is 

optimised to minimise the artifacts or residual noise, which is known as bird noise, 

warble, clicks, whistles or musical noise.  

 

The approach of denoising audio signal mentioned in this section compares 

the performance of standard DWT and redundant CWT. Processing of wavelet 

coefficient processing is investigated with 4 different thresholding rules namely hard, 

soft, Wiener filtering and raised-cosine-law. In all cases, wavelet coefficients above 

predetermined threshold are unchanged but the coefficients below threshold are 

attenuated in different ways with [147] 

 

XwP  = 2||∑ Xw  and  =  GwP 2||∑ Gw as: 

 

Hard thresholding: Threshold value (λ) = 2 GwP  

   Zw = Xw for Xw ||∀  ≥  λ 

Zw = 0  for |Xw|∀  <λ   
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Soft thresholding: Threshold value (λ) = 4 GwP  

Zw = Xw   for |Xw|∀  ≥  λ 

Zw = ( | Xw| - 
4
1
λ)  for || Xwje ∠ || Xw∀  <λ   

 

Wiener filtering: Threshold value (λ) = no specific threshold 

Zw =  
( )

Xw

GwXw

P
PP −

 Xw  for Xw∀  

 

Raised-cosine-law: Threshold value (λ) = 7 GwP  

Zw = Xw    for || Xw∀  ≥  λ 

Zw =   













− Xw
λ
πcos1

2
1   Xw for | Xw |∀  <λ 

 (4.5) 

4.4.4 Performance Measure 

 

The performance of standard DWT and DT-DWT(K) for audio signal denoising is 

compared quantitatively using MSE and SNR as defined in equation (4.4). The 

qualitative performance is compared with human perceptual (through eyes and ears). 

The relevant spectrograms of audio signals are shown in figures (4.4) and (4.5). 

 

4.4.5 Results and Discussion 

 

It is clear from the performance results of tables (4.6), and figures (4.4) and (4.5) that 

the denoising capability of redundant CWT (namely DT-DWT(K)) is superior than 

the standard DWT for audio speech with lower initial SNR. In both cases, hard 

thresholding and Wiener filtering perform poorer whereas soft thresholding and 

raised-cosine-law perform better.  
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Methods and 
Initial 

Parameters 
Standard DWT DT-DWT(K) 

Thresholding 
Rule 

MSE 

MSEi= 824 

SNR (dB) 

SNRi= 5.00 

MSE 

MSEi= 824 

SNR (dB) 

SNRi= 5.00 

Hard 343 8.81 212 10.90 

Soft 237 10.40 175 11.72 

Wiener 625 6.20 630 6.17 

Raised-cosine 205 11.04 161 12.10 

 
Table 4.6: The MSE and SNR of denoised audio signal (y) from the observed noisy 
signal (x) with respect to original signal (s). The initial value of MSE and SNR for 
noisy signal are MSEi= 824  , SNRi= 5.00 dB . The wavelets used for standard DWT 
is ‘bior6.8’ and for DT-DWT(K) is ‘near_sym_b’ and ‘qshift_b’. The maximum 
decomposition level employed is J = log2(N), where N = 65536 = size of audio 
signal. The audio signal contains a microphone quality snap shot of a male lecturer’s 
speech. 
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Figure 4.4: Spectrograms of audio signals with standard DWT based denoising 
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Figure 4.5: Spectrograms of audio signals with DT-DWT(K) based denoising 
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4.5 2-D Denoising 
In this section 2-D denoising performance of redundant CWTs (both DT-DWT(K) 

and DT-DWT(S)) is compared with other wavelet based algorithms such as standard 

DWT, SWT. The results are also compared with conventional image filtering 

(denoising/smoothing) methods such as Average (Mean), Median, and Wiener 

filtering [148-150]. For conventional filtering methods, relevant Matlab (Image 

processing toolbox) functions are employed [151]. 

 

4.5.1 Image and Noise Model 

 

The standard test images such as Lenna, Goldhill, Peppers, Airplane and Pattern are 

taken for experiments (see Appendix C). Original images are corrupted by additive 

white Gaussian noise.  

The image and noise model is given as: 

 

x = s + σ⋅g 

where, s is an original image and x is a noisy image corrupted by additive white 

Gaussian noise g of standard deviation σ. Both images s and x are of size N by M 

(mostly M =N and always power of 2). 

 

4.5.2 Shrinkage Strategy 

 

All wavelet-based algorithms in this section determine the optimum threshold value 

iteratively with a selected resolution-step size from ‘stpsz’ = {1,2,5,10} to minimize 

the MSE for both hard and soft thresholding options separately.  

 

4.5.3 Algorithm 

 

2-D denoising is an extension of 1-D denoising based on 2-D separable WT 

implementation (discussed in section 2.5.1). The basic algorithm for wavelet 

shrinkage denoising remains same as listed in section 4.3.3 but is applied to the 

matrix of 2-D data.  
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For all conventional filtering methods, 3-by-3 filter kernel is taken for 

convolution. For all wavelet based methods, decomposition is performed up to J 

levels. For standard DWT and SWT the arbitrary wavelet basis employed is ‘wtype’. 

Filters for DT-DWT(K) (‘wtype-k’), and DT-DWT(S) (‘wtype-s’),  are given in 

Appendix A and B respectively.  

 

4.5.4 Performance Measure 

 

The quantitative measures for 2-D denoising, namely MSE (Mean Square error) and 

PSNR (Peak Signal to Noise Ratio) are determined as: 

 

MSE = [ ]
2

1 1
),(),(1 ∑ ∑

= =

−
N

n

M

m
mnymns

NM
 

  PSNR = 10 log10 







MSE
255

    (4.7) 

where, s is an original image and y is a recovered image from a noisy image x.  

 

The qualitative performance is evaluated through human visual system by 

observing the recovered images with various algorithms. 

 

4.5.5 Results and Discussion 

 

A few sample results of denoising performance (using various methods) based on 

quantitative measure are presented in tables (4.7) to (4.12) and the qualitative 

performance based on human visual system for various algorithms are shown in 

figures (4.6) to (4.15). 

 

The performance results of various algorithms can be evaluated for low and high 

noise conditions as follows: 
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1. Under low noise conditions (σ=10), conventional filtering methods namely 

Median and Weiner perform better than standard DWT. Though the 

performance of Mean filter is poorer than standard DWT. 

 

2. The denoising capability (σ=10) of both DT-DWTs is better than SWT and 

standard DWT for all natural images as well as for synthetic ‘Pattern’ image. 

The performance of both DT-DWTs is nearly same with DT-DWT(K) 

slightly better then DT-DWT(S). 

 

3. Under high noise conditions (σ=40), all conventional filtering methods give 

poor denoising results than even standard DWT. For all images, performance 

of both DT-DWTs is better than SWT and standard DWT. The performance 

of DT-DWT(K) is the best using both hard and soft thresholding. 

 

4. The lowest values of optimum threshold (for both hard and soft thresholding) 

for DT-DWT(K) in all noise conditions (σ= 10 or 40) suggest its superior 

denoising capabilities with improved feature preservation (with less blurring). 

 

5. The effect of improved directionality on denoising for redundant CWT (both 

DT-DWTs) compared to less directional standard DWT is quite clear for 

‘pattern’ image for all noise conditions. 

 

6. From human visual perspective, the performance of various algorithms for 

high noise conditions is quite clear. The performance of DT-DWTs is 

distinguishably superior to standard DWT.  But under low noise conditions, 

minute differences are very difficult to perceive hence all wavelet based 

methods seem to have nearly same visual effects. 
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Images with σ =10 Performance Measure 

for 

Denoising Methods 
Lenna Goldhill Peppers Airplane Pattern 

Initial MSE (MSEi)  100 100 100 100 99 

  (a) MSE (Conventional filtering) 

Mean 68 75 57 64 153 

Median 60 65 41 44 69 

Wiener 40 42 30 28 67 

 (b) MSE (Hard thresholding) 

Standard DWT 56 65 43 45 79 

SWT 39 41 28 26 42 

DT-DWT(K) 35 39 27 24 29 

DT-DWT(S) 35 38 26 23 30 

 (c) MSE (Soft thresholding) 

Standard DWT 44 48 38 40 63 

SWT 36 39 28 28 47 

DT-DWT(K) 33 37 27 27 35 

DT-DWT(S) 33 37 27 27 38 

 
Table 4.7: MSE for various denoising methods (σ =10) for different images: (a) 
Conventional filtering (b) Hard thresholding (c) Soft thresholding with parameters 
J=3, stpsz =1, wtype = ‘db2’, wtype-k = ‘near_sym_b’ and ‘qshift_b’, wtype-s = 
‘FSfilt’ and ‘otherfilt’. 
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Images with σ =10 Performance Measure 

for 

Denoising Methods 

Lenna Goldhill Peppers Airplane Pattern 

Initial PSNR  
(PSNRi in dB) 

28.12 28.15 28.12 28.12 28.15 

  (a) PSNR in dB (Conventional filtering) 

Mean 29.82 29.34 30.57 30.02 26.26 

Median 30.35 29.99 32.02 31.71 29.69 

Wiener 32.08 31.87 33.33 33.62 29.82 

 (b) PSNR in dB (Hard thresholding) 

Standard DWT 30.63 29.99 31.71 31.52 29.15 

SWT 32.24 31.95 33.65 33.93 31.88 

DT-DWT(K) 32.65 32.19 33.75 34.25 33.49 

DT-DWT(S) 32.64 32.25 33.84 34.38 33.28 

 (c) PSNR in dB (Soft thresholding) 

Standard DWT 31.65 31.28 32.23 32.10 30.14 

SWT 32.59 32.18 33.60 33.53 31.39 

DT-DWT(K) 32.91 32.37 33.77 33.77 32.65 

DT-DWT(S) 32.87 32.33 33.77 33.76 32.27 

 
Table 4.8: PSNR for various denoising methods (σ =10) for different images: (a) 
Conventional filtering (b) Hard thresholding (c) Soft thresholding with parameters 
J=3, stpsz =1, wtype = ‘db2’, wtype-k = ‘near_sym_b’ and ‘qshift_b’, wtype-s = 
‘FSfilt’ and ‘otherfilt’. 
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Images with σ =10 Denoising Methods 

Lenna Goldhill Peppers Airplane Pattern 

 (a) Optimum threshold value (λh) 

for Hard thresholding 

Standard DWT 30 27 30 28 22 

SWT 28 27 31 30 30 

DT-DWT(K) 16 15 17 17 17 

DT-DWT(S) 32 30 35 34 35 

 (b) Optimum threshold value (λs)  

for Soft thresholding 

Standard DWT 11 10 12 11 7 

SWT 12 11 14 13 11 

DT-DWT(K) 7 7 8 8 7 

DT-DWT(S) 15 14 16 16 14 

 
Table 4.9: Optimum threshold value for various denoising methods (σ =10) for 
different images: (a) Hard Thresholding λh (b) Soft thresholding λs. with parameters 
J=3, stpsz =1, wtype = ‘db2’, wtype-k = ‘near_sym_b’ and ‘qshift_b’, wtype-s = 
‘FSfilt’ and ‘otherfilt’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103



Chapter 4: Application I- Denoising 
 
 

Images with σ =40 Performance Measure 

for 

Denoising Methods 
Lenna Goldhill Peppers Airplane Pattern 

Initial MSE (MSEi)  1593 1600 1605 1593 1595 

  (a) MSE (Conventional filtering) 

Mean 234 242 223 231 317 

Median 322 325 304 310 388 

Wiener 317 322 305 301 342 

 (b) MSE (Hard thresholding) 

Standard DWT 177 224 199 242 609 

SWT 124 162 114 141 294 

DT-DWT(K) 113 155 108 135 212 

DT-DWT(S) 116 161 110 139 225 

 (c) MSE (Soft thresholding) 

Standard DWT 186 224 207 240 521 

SWT 133 172 137 168 376 

DT-DWT(K) 121 159 125 156 252 

DT-DWT(S) 124 168 129 159 275 

 
Table 4.10: MSE for various denoising methods (σ =40) for different images: (a) 
Conventional filtering (b) Hard thresholding (c) Soft thresholding with parameters 
J=4, stpsz =1 wtype = ‘db2’, wtype-k = ‘near_sym_b’ and ‘qshift_b’, wtype-s = 
‘FSfilt’ and ‘otherfilt’ 
 

 

 

 

 

 

 

 

 

 104



Chapter 4: Application I- Denoising 
 

Images with σ =40 Performance Measure 

for 

Denoising Methods 
Lenna Goldhill Peppers Airplane Pattern 

Initial PSNR 
(PSNRi in dB) 

16.11 16.09 16.10 16.10 16.10 

  (a) PSNR in dB (Conventional filtering) 

Mean 24.45 24.28 24.60 24.50 23.10 

Median 23.05 23.00 23.30 23.20 22.20 

Wiener 23.12 23.06 23.30 23.40 22.80 

 (b) PSNR in dB (Hard thresholding) 

Standard DWT 25.66 24.63 25.10 24.30 20.30 

SWT 27.12 26.03 27.60 26.60 23.40 

DT-DWT(K) 27.62 26.23 27.80 26.80 24.90 

DT-DWT(S) 27.48 26.06 27.70 26.70 24.60 

 (c) PSNR in dB (Soft thresholding) 

Standard DWT 25.44 24.63 25.00 24.30 21.00 

SWT 26.88 25.75 26.80 25.90 22.40 

DT-DWT(K) 27.30 26.09 27.10 26.20 24.10 

DT-DWT(S) 27.29 25.88 27.00 26.10 23.70 

 
Table 4.11: PSNR for various denoising methods (σ =40) for different images: (a) 
Conventional filtering (b) Hard thresholding (c) Soft thresholding with parameters 
J=4, stpsz =1, wtype = ‘db2’, wtype-k = ‘near_sym_b’ and ‘qshift_b’, wtype-s = 
‘FSfilt’ and ‘otherfilt’. 
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Images with σ =40 Denoising 

Methods Lenna Goldhill Peppers Airplane Pattern 

 (a) Optimum threshold value (λh)  

for Hard thresholding 

Standard DWT 146 147 140 137 117 

SWT 133 131 131 128 122 

DT-DWT(K) 78 75 78 75 71 

DT-DWT(S) 153 147 148 142 141 

 (b) Optimum threshold value (λs) 

 for Soft thresholding 

Standard DWT 75 73 71 68 50 

SWT 76 71 73 69 55 

DT-DWT(K) 45 43 43 41 36 

DT-DWT(S) 88 83 85 80 70 

 
Table 4.12: Optimum threshold value for various denoising methods (σ =40) for 
diffferent images: (a) Hard Thresholding λh (b) Soft thresholding λs with parameters 
J=4, stpsz =1, wtype = ‘db2’, wtype-k = ‘near_sym_b’ and ‘qshift_b’, wtype-s = 
‘FSfilt’ and ‘otherfilt’. 
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σ=10
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Figure 4.6: Conventional filtering methods for denoising of  ‘Lenna’ image with 
reference to tables (4.7) and (4.8). 
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σ = 10, J=3 
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Figure 4.7: Wavelet Transform based methods for denoising of ‘Lenna’ image with 
reference to tables (4.7) to (4.9). 
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σ = 10, J=3 

 

 
 

 
Figure 4.8: Threshold Vs MSE for determination of optimum threshold value for all 
wavelet based methods. Image for denoising is ‘Lenna’ with reference to table (4.9). 

 109



Chapter 4: Application I- Denoising 
σ = 40 
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Figure 4.9: Conventional filtering methods for denoising of  ‘Lenna’ image with 
reference to tables (4.10) and (4.11). 
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σ = 40, J=4 
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Figure 4.10: Wavelet Transform based methods for denoising of ‘Lenna’ image with 
reference to tables (4.10) to (4.12). 
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σ = 40, J=4 

 
 

 
Figure 4.11: Threshold Vs MSE for determination of optimum threshold value for all 
wavelet based methods. Image for denoising is ‘Lenna’ with reference to table 
(4.12). 
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Figure 4.12: DWT based denoising of ‘Lenna’ image using hard and soft 
thresholding with reference to tables (4.10) to (4.12). 
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Figure 4.13: SWT based denoising of ‘Lenna’ image using hard and soft thresholding 
with reference to tables (4.10) to (4.12). 
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Figure 4.14: DT-DWT(K) based denoising of ‘Lenna’ image using hard and soft 
thresholding with reference to tables (4.10) to (4.12). 
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Figure 4.15: DT-DWT(S) based denoising of ‘Lenna’ image using hard and soft 
thresholding with reference to tables (4.10) to (4.12). 
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4.6 Conclusion 
 

It is concluded that DT-DWTs are superior to standard DWT for all 1-D and 2-D 

denoising application. The choice of shrinkage (thresholding) strategy, and selection 

of optimum threshold value are very crucial for wavelet shrinkage denoising using 

any form of WT. DT-DWTs are especially efficient in higher noise conditions. 

Entropy based WP is not suitable for generalised denoising applications in poor SNR 

conditions. Almost equal performance of limited redundant DT-DWT with other 

advantages makes it a promising choice over highly redundant SWT for signal and 

image denoising applications. 
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Chapter 5:  

Application II- Edge Detection 
 

 

 

5.1 Introduction 

 

For many natural signals the vital information about its originating source, external 

environment, processing, and the characterisation of important features is closely 

linked with the transients (or local singularities, edges) in those signals under 

consideration [148,150,152-154]. For 1-D signal, edge is considered as a distinct 

observable variation in the smoothness or continuity. For 2-D, image intensity is 

often proportional to scene radiance, physical edges (corresponding to the significant 

variations in reflectance, illumination, orientation and depth of scene surfaces) are 

represented in the image by changes in the intensity function.  

 

Due to wealth of information associated with edges, edge detection is an 

important task for many applications related to computer vision and pattern 

recognition [154,155]. There are various categories of edges such as step, ramp, 

exponential or certain non-deterministic singularities with varying degree of 

sharpness [156]. Steps (and its combinations) are the most common type of edge 

encountered. This type of edges result from various phenomena; for example when 

one object hides another, or when there is shadow on a surface. It generally occurs 

between two regions having almost common, but different grey levels.  
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Chapter 5 is organised into five sections. Section 5.1 is an introduction. 

Section 5.2 presents the survey of various classical edge detection approaches and 

highlights a few important multiscale approaches. Section 5.3 is about 1-D edge 

detection in higher noise environment using multiscale algorithms. In this section, 

existing algorithms are critically reviewed and compared with individually developed 

new algorithms. In section 5.4, a very simple 2-D edge detection methodology is 

presented to compare edge detection performance of the extensions of DWT with 

DT-DWT(K).  Section 5.5 is the conclusion of the study of edge detection.  

 

5.2 Edge Detection Approaches 

 

5.2.1 Classical Approaches 

 

In a function, singularities can be characterised as discontinuities where derivative(s) 

or gradient approaches infinity. However, if the signal data is discrete, then the edges 

are often defined as the local maxima of the derivative(s). Essentially an edge 

detector is a high pass filter (operator) that can be applied to extract the edge points 

in a signal [118,148,150]. The classical 2-D gradient operators such as Roberts, 

Prewitt, Sobel and Fri-Chen for edge detection reduce to an FIR filter with impulse 

response [-1,0,1] in 1-D [148]. All these operators being high pass filters are 

sensitive to noise (especially widely used AWGN) [157].  

 

To combat with noise, more general robust extensions, so-called filtered 

derivate methods (e.g. Marr and Hildreth) are devised [158-160]. These pre-

smoothing approaches combine various smoothing operators (e.g Gaussian) with 

gradient estimation are more effective in higher noise conditions and are attractive 

due to low complexity linear implementation. The weakness of all above approaches 

is that the optimal result may not be obtained by using a fixed size operator. 

Attempting to achieve simultaneously detection and localisation of an edge results in 

a tradeoff between the level of smoothing and the accuracy of estimated edge 

location. The tradeoff is also sensitive to category of edge (sharp or smooth) and 

SNR of the signal. Canny [161] in his computational approach to edge detection 
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showed exploited such tradeoff and derived an improved edge detector for noisy 

environment by different size kernels in filtered derivative method with non-

maximum suppression and dual thresholding.  

 

Various attempts for edge detection in noisy conditions are based on 

combinations of many different explicit and heuristic models (e.g. liner filtering, 

covariance models, dispersion of gradient, regularisation, statistics, neural networks, 

genetic algorithms, fuzzy reasoning etc.) in order to closely approximate the 

uncertainty of noise distributions. Most of these attempts compare the results with 

well-known detectors such as Sobel, Canny, DoG, and LoG. Because of only 

qualitative performance comparisons (without well accepted objective performance 

measure based on ground-truth calibration), there is a belief that edge detection 

algorithms are reaching an asymptotic level of performance [162]. 

 

5.2.2 Multiscale Approaches 

 

The developments in the field of multi-resolution wavelet transforms with their 

ability to detect and characterise singularities, attracted many researchers to explore 

the optimal edge detection problem in higher noise conditions [163-166,176,177]. 

The advantage with multiscale approach is its inherent implementation, with variable 

size derivative operators at various scales, to tradeoff between detection and 

localisation of local singularities. The indirect inter-dependence of wavelet 

coefficients at different scales opens the possibility to explore the hidden association 

of information at various scales (levels).  

 

The important investigations of multiscale edge detection include MZ-MED 

(Mallat and Zong’s Multiscale Edge Detection) based on modulus maxima evolution 

from course to fine scales [164], multiscale products by Xu et.al. [165] based on 

Rosenfeld’s idea of cross-scale correlation [166]. A few other multiscale singularity 

detection approaches are as [167-170].  
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 Usefulness of wavelet based singularity detection in natural signals (e.g. 

Speech, ECG and Seismic) is evident from [173-175]. All these multiscale edge 

detection methods use fast implementation of non-decimated, non-orthogonal dyadic 

wavelet transform based on ‘a-trous’ algorithm with a cubic spline kernel. Higher 

redundant non-decimated wavelet transform is a practical approximation (in discrete 

domain) to continuous wavelet transforms that is more appropriate for accurate 

localisation of detected edge. The spline kernel has simplicity of iterative MRA 

implementation. The spline kernel generates wavelets similar to derivative of 

Gaussian, optimal in noisy environment [171,172].  

 

5.3 1-D Edge Detection 
 

5.3.1 Review of Existing Approaches 

 

The existing multiscale edge detection research (at Signal Processing Group of 

University of Strathclyde) in higher noise environment include Setarehdan and 

Soraghan’s FMED (Fuzzy Multiscale Edge Detection) approach of fuzzy-based 

modulus maxima across scales [176], and Akbari and Soraghan’s FWOMED (Fuzzy-

based Weighted Offset MED) across scales [177]. 

 

 In this section, 1-D edge detection is critically reviewed with existing 

multiscale methods for single step-edge detection with varying slope and noise. The 

standard FMED (Fuzzy Multiscale Edge Detection) algorithm is explored with 

different wavelet basis (e.g ‘cubic spline’, ‘db3’), and new FMED (‘db3’) and DB-

FMED (Dual-Basis FMED) algorithms are developed. Also redundant CWT (based 

on DT-DWT(K)) is employed for edge detection, and a new and an original CMED 

(Complex Multiscale Edge Detection) algorithm is developed. The performance (in 

terms of RMSE of detected edge localisation in terms of sample points) of new 

algorithms is compared with the available results from relevant existing techniques.  
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5.3.2 Edge Model 

 

The single step-edge model with varying slopes and noise levels is taken for all 

simulations. The standard time shifted unit step (s) is a step edge model with slope of 

1 (in discrete domain) is denoted as ∆ = 0. One or more samples (∆) in between the 

sharp step edge create a linear slope of 1:(∆+1). For simplicity as slope is represented 

with ∆. The AWGN (additive white Gaussian noise) of arbitrary standard deviation 

(σ ) is superimposed on a given step edge to generate the noisy step edge (x= s+gn). 

The sample size of step edge profile is (n =1 to N) with only a single positive going 

edge located at n ≥ En. A discrete signal is generated by first En zeros followed by ∆ 

samples forming a linear slope and lastly (N-∆-En) number of ones. The generalised 

step edge model with different parameters of slope and noise is shown in figure (5.1).  
 

 

 

 

 

 

 

 

(b) ∆ = 2, σ = 0 

(c) ∆ = 0, σ > 0 

(a) ∆ = 0, σ = 0 

 n=1          n=En       n=N 

 

 
Figure 5.1: Generalised step edge model: (a) with no slope and no noise, (b) with 
slope of 2 samples and no noise (c) with no slope and noise of arbitrary standard 
deviation between [0: 0.1:1] 
 

5.3.3 Multiscale Decomposition 

 

Many 1-D multiscale edge detection algorithms such as MZ-MED and variants of 

FMED except CMED employs non-decimated wavelet transform based on ‘a-trous’ 

algorithm (i.e. SWT). The redundancy created by equal size wavelet coefficients at 
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all levels is important for correct detection and localisation of the step edge without 

any loss of information.  

 

Using SWT, N point edge profile is decomposed up to J=log2(N) levels. The 

filterbank implementation of classical MZ-MED and standard FMED of uses a 

lowpass and highpass filters derived from cubic spline kernel (approximately 

Gaussian) and its scale dependent derivatives as shown in figure (5.2).  
 

 
Figure 5.2:  Cubic spline smoothing function φ(t) and its derivative ψ(t) = d/dt(φ(t)). 
ψj(t)= (1/j)ψ (t/j) is a wavelet yielding a filter bank that estimates the derivative at a 
level j. 
 

Singularity information at various scales (levels) is used in different ways by 

different algorithms to determine the correct edge location. 

 

5.3.4 FMED (Fuzzy Multiscale Edge Detection) Algorithms 

 

Novel implementations of existing standard FMED (Fuzzy Multiscale Edge 

Detection) algorithm include FMED (‘db3’), which uses multiscale decomposition 

with 6-tap ‘db3’ wavelet, and DB-FMED (Dual-Basis FMED), which uses the 

combination of ‘cubic-spline’ scaling kernel and ‘db3’. The implementation steps for 

all FMED based algorithms are described as: 

 

1. Non-decimated WT is computed for edge profile x using SWT (Matlab 

function swt) up to j = 1 to J=log2(N) levels.  FMED (‘cubic’) uses cubic 

spline scaling kernel, FMED (‘db3’) uses wavelet basis ‘db3’ for J level 
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decomposition while DB-FMED uses two parallel SWT decomposition trees, 

one with ‘db3’ and other with ‘cubic spline’ kernel. For cubic spline 

implementation, lowpass filter taken is h0 = [1,4,6,4,1]/16 and other analysis 

and synthesis filters are computed with matlab function ‘orthfilt’.  

 w(j,n) = WT(x(n)),  j =1 to J, n= 1 to N 

 

2. For DB-FMED, coefficients of both trees at each level are combined with 

wavelet fusion averaging rule resulting in only one decomposition tree. 

 

 w(j,n)= average{w(j,n)(‘db3’) + w(j,n)(‘cubic spline’)} 

 

3. Depending on size of edge profile (x), slope, and on the wavelet basis 

selection, there is a localisation error (in terms of samples) of true edge from 

fine to course level in multiscale propagation. This error is reduced with 

predetermined offset (± noff) by proper amount and in correct direction (+ for 

right and - for left) through cyclic shift of wavelet coefficients at each level. 

 

 wo(j,n) = offset { w(j,n), ± noff } 

 

  In simulations the relevant offsets for all J levels are selected as:  

 FMED(‘cubic spline’):  noff = 0 (∆ =0) and noff = -(∆-1) (∆>0) 

 FMED(‘db3’):  noff  = -(∆-2) (for all ∆>=0) 

 DB-FMED:  noff = +1 (∆ =0) and noff  =  -(∆-2) (∆>0) 

 

 Wavelet coefficients at each level (scale) are zero clipped w+ such that only 

positive coefficients are selected for positive going edge model (considered 

as per figure (5.1)) and negative w- coefficients if negative going edge model 

is considered. 

  

w+ (j,n) = +Ve_clip{wo(j,n)},   w- (j,n) = -Ve_clip{wo(j,n)} 
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4. Coefficients at each level are normalised between [0,1] to be consistent with 

fuzzy membership axioms and set operations [178]. Now wavelet coefficients 

at each level j can be viewed as fuzzy subset Fj of (µFj(n),n), where µ is the 

membership value associated with each of n wavelet coefficients at level j. 

 

 Fj = (µFj(n),n) = Normalised {w+ (j,n) or w- (j,n)} 

 

5. Each local maximum of normalised wavelet coefficients (at each level) is a 

potential representative of actual step edge in a given signal. Hence at each 

scale, a membership value (µFj(n),n) with local maxima (modulus maxima) is 

identified and boosted by assigning the highest fuzzy membership value 1.  

 

 (µFj(n), n) = 1,  if  (µFj(n), n) is a local maximum 

 

6. At finer levels the amount of noise is higher and also the chances of false 

edge detection are more while at courser levels, the amount of noise is less 

but the localisation of true edge is ambiguous. So depending on the edge 

location En (in original edge profile) and noise variance, heuristically some 

arbitrary number of levels (fuzzy subsets) is selected to compute a minimum 

fuzzy set (Fmin) in vertical direction for optimal edge detection. 

 

 Fmin = Minimum {Fj} such that 

 (µFmin(n), n) =  Minimum{ (µFj(n), n) }  

    for j = k1 to k2 ∈ {1 to J},  n= 1 to N 

 

 In the presented experiments with FMED algorithms, number of levels 

considered are j = 2 to J. 

 

7. The final step of the algorithm is to find the position (index) of a sample 

having maximum membership value (horizontal operation) from the 

computed minimum fuzzy set (Fmin). The detected position (index) reveals 

the true position of an edge in a given noisy edge profile. 
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 Detected Edge (Dn) = Position{Maximum{ Fmin }} 

 

8. Performance of FMED algorithm is judged by minimisation of RMSE 

between the true edge En and detected edge Dn. 

 

5.3.5 CMED (Complex Multiscale Edge Detection) Algorithms 

 

Basic CMED (Complex Multiscale Edge Detection) algorithm is based on redundant 

CWT using DT-DWT(K) to exploit the limited redundancy with improved denoising 

ability for 1-D edge detection. DT-DWT(K) is a kind of two standard DWT trees 

working in parallel, so at each subsequent decomposition there is a data size 

reduction by a factor of 2.  

 

Due to quadrature nature of DT-DWT(K), the wavelet coefficients of two trees 

pick up the same singularity with some offset and polarity inversion between 

respective real and imaginary levels. The novelty of the CMED algorithm is in the 

proper alignment of wavelet coefficients of both real and imaginary trees from fine to 

course level for efficient edge detection under noisy conditions.  

 

The key steps of basic CMED algorithm are as follows: 

 

1. A given noisy single step-edge profile (x) is decomposed using multi-scale 

DT DWT(K) up to J levels in two trees. 

 

2. To compensate for offset and polarity discrepancies, real-tree coefficients are 

left shifted (cyclically) by 1-sample (noff = -1) for all levels (j = 1 to J) and 

polarity of real-tree coefficients are reverses (for j = 2 to J). 

 

3. For maintaining the same size of coefficients at all levels, both real and 

imaginary trees coefficients are interpolated with right amount of level 

dependent zeros (2j-1) at each level (j = 1 to J) before each coefficient. 

 

 126



Chapter 5: Application II- Edge Detection 
4. All coefficients at each level of both trees are zero clipped (keeping only +ve 

values) to account for positive going edge. 

 

5. All the coefficients are normalised between [0,1]. 

 

6. Coefficients of both real and imaginary trees at each level are combined using 

the formula of complex magnitude and phase. The magnitude tree is used for 

further processing. 

 

7. Depending on the true location of edge, optimum level jopt = log2(En) is 

selected for edge detection with minimum RMSE. 

 

8. The position of maximum magnitude coefficient at a selected optimum level 

gives the location of detected edge. 

 

The basic CMED algorithm is not fuzzy based and it works only at a unique level 

for optimum edge detection using combined real and imaginary trees. Variants of 

CMED algorithm such as CMED algorithm with only imaginary tree (IMED), and 

CMED algorithm with fuzzy union of various scales are also investigated (FCMED). 

The other variant of CMED namely SFCMED (Spatial Fuzzy CMED) is also 

explored through fuzzy combination of reconstructions (of decimated coefficients) at 

different scales in spatial domain. 

 

5.3.6 Performance Measure 

 

Root Mean Square Error (RMSE) and percentage Hit (% Hit) are taken for 

evaluating the performance of single positive going step edge with different slope 

conditions (∆) under varying degree of SNR. Related definitions and equations are 

given as: 

 

 RMSE (in terms of samples) = 2)( EnEd −  (5.1) 

where, Ed = Position of detected edge, En = Position of correct edge 
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The percentage Hit is defined in two forms, first is percentage Accurate Hit 

(%AHit) that is the percentage of detected edge Ed exactly at the true edge location 

En (detected without noise), and the second form is percentage Interval Hit (%IHit) 

that is the percentage of detected edge Ed within [En-1 to En+∆+1], in the portion of 

transition of step edge profile. In other words,   

 

%AHit  Ed at En (where En is dependent on basis function and slope) and 

%IHit  Ed is within [En-1 to En+∆+1] samples. (5.2) 

 

SNR(dB) = 10 log10
{ }








 −
2

2)(
σ

ssE
 (5.3) 

where, E(⋅) is an expectation operation, s is an original single step-edge profile with- 

out noise, s  is the mean value of signal s, and σ 2  is the variance of AWGN super 

imposed on signal s. 

 

Slope (∆) = number of samples within the transition of step-edge profile. (5.4) 

 

5.3.7 Results and Discussion 

 

The results of MZ-MED and FWOMED are taken from [177], results of FMED 

(‘cubic’) are taken from an individual implementation of the standard FMED 

algorithm developed in [176]. Other novel implementations of standard FMED with 

different basis such as FMED(‘db3’) and  DB-FMED are developed individually 

during the studies of standard FMED. An original CMED algorithm is developed 

using DT-DWT(K). A quantitative comparison of various algorithms for a selected 

step-edge profile, with different parameters is given in tables (5.1) to (5.5), uniformly 

iterated 50, 000 times for all algorithms using Monte-Carlo simulations.  

 

Implementation of FMED (‘cubic’) for a noisy and sloppy single edge step-

edge profile (with nearly accurate detection of the edge as a result) is shown in figure 

(5.3). Wavelet coefficients at J levels and their zero clipped +ve parts are shown in 

figure (5.4). J level fuzzy subsets of clipped coefficients and their interactions (at 
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level 2 to J) to form a minimum fuzzy set are shown in figure (5.5). Processing steps 

related to basic CMED algorithm are highlighted through figures (5.6) to (5.10).  

 

From the results in tables (5.1) to (5.5), it can be concluded that for all noise 

and slope conditions, the FWOMED algorithm is better than well known MZ-MED 

algorithm and FMED (‘cubic’) algorithm in terms of RMSE error. Two FMED based 

algorithms namely FMED (‘db3’) and DB-FMED perform better than all other non-

decimated multiscale edge detection algorithms in varying slope and noise 

conditions. Performance of FMED (‘db3’) is optimum in lower slope conditions (∆ 

=0,1), where as DB-FMED is optimum for moderate to higher slope conditions (∆ 

=3,5). Basic CMED algorithm is comparable to other FMED algorithms in lower 

noise conditions (σ ≤ 0.4) for all slope conditions.  

 

CMED algorithm is significantly poorer in higher noise conditions. Also the 

other major disadvantage of basic CMED algorithm is its limitation to detect the 

edges located only at power of two indices. The other variants such as IMED, 

FCMED and SFCMED are even poorer than basic CMED. The limitations of basic 

CMED algorithm are because of the use of decimated DT-DWT(K) and single level 

detection strategy. But the promising %Hit results (table 5.5) with accurate 

localisation of edge at courser levels (at level 4 and 5 in figure (5.9)) with DT-

DWT(K) suggest its potential for further investigations to generalise the basic 

CMED algorithm.  

 

It is proposed that by developing new non-decimated version of DT-DWT(K) 

with multilevel fuzzy reasoning might generalise a basic CMED to NFCMED (Non-

decimated Fuzzy CMED) for detection of any arbitrary edge (not exactly at power of 

2 locations). NFCMED being equally redundant at all levels and having all the 

benefits of CWT might prove to be a challenging research for comparable 

performance against the variants of FMED algorithms. 
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Step edge having ∆ =0, N =128 (initial 32 zeros + ∆ + N-32-∆ ones) 

noff = 0 for FMED(‘cubic_spline’),  noff = -(∆-2) for FMED(‘db3’),  

noff = +1 for DB-FMED, noff = -1, jopt =5 for CMED  

Noise 

Parameters 

RMSE (after 50 000 iterations) 

SNR 

(dB) 

σ MZ-MED FWOMED FMED 

(‘cubic’) 

FMED 

(‘db3’) 

DB-

FMED 

CMED 

 

∞ 0 0 0 0 0 0 0 

12.73 0.1   0.30 0.17 0.21 0 

6.71 0.2 0.26 0.86 0.48 0.35 0.38 0 

3.19 0.3   0.67 0.65 0.61 0.20 

0.69 0.4 1.29 1.33 1.23 0.96 1.07 1.32 

-1.25 0.5   1.96 1.68 1.69 3.37 

-2.83 0.6 2.98 2.45 2.94 2.35 2.41 6.30 

-4.17 0.7   3.86 2.93 3.18 8.63 

-5.33 0.8 5.81 4.83 5.23 3.82 3.99 10.65 

-6.35 0.9   5.71 4.48 4.85 12.79 

-7.27 1.0 9.31 7.83 6.45 5.36 5.70 14.48 

 
Table 5.1: RMSE of various 1-D edge detection algorithms with ∆=0 in varying 
AWGN noise conditions. 
 

Step edge having ∆ =1, N =128 (initial 32 zeros + ∆ + N-32-∆ ones) 

noff = -(∆-1) for FMED(‘cubic_spline’),  noff = -(∆-2) for FMED(‘db3’),  

noff = -(∆-2) for DB-FMED, noff = -1, jopt =5 for CMED 

Noise 

Parameters 

RMSE (after 50 000 iterations) 

SNR 

(dB) 

σ MZ-MED FWOMED FMED 

(‘cubic’) 

FMED 

(‘db3’) 

DB-

FMED 

CMED 

 

∞ 0 0 0 0 0 0 0 

6.71 0.2 0.75 0.57 0.26 0.25 0.31 0.01 

0.69 0.4 1.56 1.24 1.16 1.09 1.10 1.25 

-2.83 0.6 3.27 2.44 2.86 2.39 2.44 6.07 

-5.33 0.8 5.89 4.73 4.76 3.90 3.98 10.78 

-7.27 1.0 9.67 7.93 6.37 5.49 5.64 14.40 

 
Table 5.2: RMSE of various 1-D edge detection algorithms with ∆=1 in varying 
AWGN noise conditions. 
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Step edge having ∆ =3, N =128 (initial 32 zeros + ∆ + N-32-∆ ones) 

noff = -(∆-1) for FMED(‘cubic_spline’),  noff = -(∆-2) for FMED(‘db3’),  

noff = -(∆-2) for DB-FMED, noff = -1, jopt =5 for CMED 

Noise 

Parameters 

RMSE (after 50 000 iterations) 

SNR σ MZ-MED FWOMED FMED 

(‘cubic’) 

FMED 

(‘db3’) 

DB-

FMED 

CMED 

 

∞ 0 0 0 0 0 0 0 

6.71 0.2 1.11 0.95 1.02 1.05 0.86 0.01 

0.69 0.4 1.92 1.51 2.00 1.87 1.71 1.67 

-2.83 0.6 3.51 2.64 3.66 3.13 3.05 6.37 

-5.33 0.8 6.08 4.97 5.41 4.63 4.59 11.24 

-7.27 1.0 9.41 8.03 7.03 6.12 6.24 14.90 

 
Table 5.3: RMSE of various 1-D edge detection algorithms with ∆=3 in varying 
AWGN noise conditions. 
 

Step edge having ∆ =5, N =128 (initial 32 zeros + ∆ + N-32-∆ ones) 

noff = -(∆-1) for FMED(‘cubic_spline’),  noff = -(∆-2) for FMED(‘db3’),  

noff = -(∆-2) for DB-FMED, noff = -1, jopt =5 for CMED 

Noise 

Parameters 

RMSE (after 50 000 iterations) 

SNR 

(dB) 

σ MZ-MED FWOMED FMED 

(‘cubic’) 

FMED 

(‘db3’) 

DB-

FMED 

CMED 

 

∞ 0 0 0 0 0 0 0 

6.71 0.2 1.63 1.34 2.00 2.01 1.82 0.01 

0.69 0.4 2.39 1.85 3.02 2.82 2.61 2.62 

-2.83 0.6 3.78 2.91 4.70 4.09 3.96 7.61 

-5.33 0.8 6.22 5.14 6.38 5.47 5.44 12.10 

-7.27 1.0 9.60 8.14 8.05 7.04 7.03 16.04 

 
Table 5.4: RMSE of various 1-D edge detection algorithms with ∆=5 in varying 
AWGN noise conditions. 
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Step edge having N =128 (initial 32 zeros + ∆ + N-32-∆ ones) Noise 

and 

Slope 
% AHit (after 50 000 iterations) % IHit (after 50 000 iterations) 

σ ∆ 
FMED 

(‘cubic’) 

FMED 

(‘db3’) 

DB-

FMED 

CMED 

 

FMED 

(‘cubic’) 

FMED 

(‘db3’) 

DB-

FMED 

CMED 

 

0 100 100 100 100 100 100 100 100 

1 100 100 100 100 100 100 100 100 

3 100 100 100 100 100 100 100 100 
0 

5 100 100 100 100 100 100 100 100 

0 54 67 63 100 100 98 100 100 

1 76 78 71 99 98 99 98 99 

3 32 30 39 99 99 99 100 99 
0.2 

5 17 15 18 99 99 100 100 99 

0 38 48 41 98 83 82 88 98 

1 46 46 46 98 81 85 84 98 

3 20 20 25 97 88 93 94 97 
0.4 

5 12 12 13 96 89 93 93 96 

0 25 33 27 89 61 63 70 89 

1 29 29 30 90 59 67 67 90 

3 14 15 16 89 72 80 81 89 
0.6 

5 8 9 10 87 74 82 83 87 

0 17 23 19 81 44 59 54 81 

1 19 20 21 81 44 53 53 81 

3 10 11 12 80 59 68 69 80 
0.8 

5 7 7 8 79 63 71 72 79 

0 13 17 14 73 34 38 44 73 

1 14 16 15 74 34 44 43 74 

3 8 9 10 73 48 58 58 73 
1.0 

5 6 6 7 71 54 62 62 71 

 
Table 5.5: % Hit of various 1-D edge detection algorithms in varying slope and 
AWGN noise conditions. 
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Figure 5.3: 1-D edge detection with FMED (‘cubic’) with σ =0.6 and ∆=5. 

 
 

 
Figure 5.4: J level wavelet coefficients (left) and their only positive parts (right) with 
FMED(‘cubic’) under the noise of σ =0.6 and slope of ∆=5. 
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Figure 5.5: J level fuzzy subsets (left) and their corresponding 2 to J level fuzzy 
intersection (right) for the computation of minimum fuzzy set (right top) employing 
FMED (‘cubic’) under the noise of σ =0.6 and slope of ∆=5 
 
 

 
Figure 5.6: 1-D edge detection with CMED: σ =0.6 and ∆=5 
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Figure 5.7: J level of decimated real and imaginary coefficients with CMED: σ =0.6 
and ∆=5 
 

 

 
Figure 5.8: J level of decimated original and modified (inverted and left cyclic shift 
of 1 sample for levels 2 to J )  real coefficients with CMED: σ =0.6 and ∆=5 
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Figure 5.9: J level of interpolated modified real and original imaginary coefficients 
with CMED: σ =0.6 and ∆=5 
 

 
 
Figure 5.10: J level of complex magnitude coefficients (left) and fuzzy subsets of 
complex magnitudes (right). Top left shows detected edge with complex magnitude 
(at level 5) and top right shows detected edge with fuzzy subset (at level 5) 
employing CMED: σ =0.6 and ∆=5 
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5.4 2-D Edge Detection 
 

As discussed in the introduction of section 5.1, edge information is very precious for 

various image-processing applications. Review of many conventional algorithms and 

methods based on edge detection for image processing can be found in [179-181]. 

Though Canny’s operator is a robust edge detector in a noisy environment [161], 

some less noticed and unconventional methods for edge in noisy conditions can be 

found in [182,183].  

 

5.4.1 Basic Approach 

 

Multiscale methods based on non-orthogonal (and redundant) wavelet transform 

[163,164] showed promising performance for edge detection in noisy environment, 

and are widely employed in many applications. Object segmentation, Motion 

estimation, Image fusion, Image registration and CBIR (Content Based Image 

Retrieval) are just a few examples utilising the multiscale edge information for image 

processing [184-190]. More recently many researchers have combined advanced 

techniques such as Fuzzy reasoning [191-193], HMM (Hidden Markov Models) 

[194,195], Neural networks [196,197], and Genetic algorithms [198] for improved 

multiscale image segmentation, registration and object extraction in wide range of 

applications.  

 

Though redundancy and Gaussian like wavelet basis are common in many 

multiscale edge-detection applications, viewpoint of our research is different for 2-D 

edge detection. Central theme of this research is to investigate the effects of 

redundancy, shift-invariance and directionality of different types of wavelet 

transforms in edge detection. In this section, 2-D edge detection is investigated using 

various wavelet based, and conventional algorithms. 2-D separable wavelet-based 

algorithms employ standard DWT, SWT and redundant CWT (namely DT-DWT(K) 

and DT-DWT(S)), whereas conventional algorithms are based on 2-D edge operators 

such as Prewitt, Sobel, and Canny.  
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5.4.2 Algorithms 

 

5.4.2.1 WT based Algorithm 

2. The lowpass subband is filled with zeros and all high-pass subbands are 

unchanged. 

 

3. A J level reconstruction is performed with relevant inverse wavelet 

transform.  

 

4. From recovered image, 2-D edge thinning mask is computed using local 

maxima approach. 

 

5. The recovered image is thresholded by a suitable heuristic threshold to 

eliminate features below certain intensities. 

6. Final edge detection is achieved by multiplying the thresholded image with 

thinning mask. 

 

5.4.2.2 CWT based Algorithm 

 

With DT-DWT(K) and DT-DWT(S) 

1. An image (of size in power of 2 in both directions) is taken. 

Conventional 2-D edge detection is performed using Matlab (image processing 

toolbox) function ‘edge’ with default settings. The wavelet-based algorithms employ 

a simple strategy (without any advanced optimisation techniques to combat with 

noise) to verify the subtle differences of edge detection performance of various 

wavelet transforms. 

 

With standard DWT and SWT 

1. A given image (2-D signal) is decomposed to J levels using standard DWT or 

SWT with suitable wavelet basis. 
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2. The image is decomposed with the redundant CWT (using DT-DWT(K) or 

DT-DWT(S)) to the depth of J levels. 

 

3. All lowpass subbands (four) of last levels are set to zeros. 

 

4. Any highpass subbands of real or imaginary trees are not altered 

 

5. J level inverse transform is taken to reconstruct the image. 

 

6. A 2-D thinning mask from reconstructed image is computed by finding local 

maximum (horizontal and vertical). Comparative neighbour-hood approach is 

used to form this mask. 

 

7. Reconstructed image is thresholded with heuristic threshold value using hard 

or soft thresholding to form a binary image. 

 

8. A refined image with sharp edges is obtained by multiply a thinning mask 

with binary output image. 

 

5.4.3 Performance Measure 

 

In general it is quite challenging to compare the performance of edge detection 

algorithms in quantitative manner. Even though the definition of edge is also difficult 

to quantify objectively, there are a few proposed measure to quantify the 

performance of edge detectors such as conditional probabilities P(
nt
nd ), P(

nt
nd ), 

MSD (Mean Squared Distance) and FOM (Figure of Merit) as suggested in 

[199,200]. 

MSD = ∑
=

nd

i
di

nd 1

21  

FOM = ∑
= +

nd

i dintnd 1
29.01

1
},max{

1  (5.5) 
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where, nd = no. of detected edge pixels, nt = no. of true edge pixels, di = edge 

deviation of ith detected pixel from its true position. 

 

These quantitative measures may be reasonable for predetermined and simple 

test images but not practical for natural images, and are not widely used. Hence in 

this research, the results are presented for qualitative comparisons relying on the 

human visual system. 

 

5.4.4 Results and Discussion 

 

The results of various edge detectors for a test image are shown in figures (5.11) and 

(5.12).  
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Figure 5.11: 2-D edge detection with conventional edge operators 
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Figure 5.12: 2-D edge detection with wavelet based methods. For all method, test 
image is 256×256 ‘ring.jpg’, J =2 and threshold value = 35. For standard DWT and 
SWT wavelet basis is ‘db2’. The wavelet filters used for DT-DWT(K) are  
‘near_sym_b’ and ‘qshift_b’ as given in appendix A and the filters for DT-DWT(S) 
are as given is appendix B. 
 

 

From the figures (5.11) and (5.12), it is clear that conventional 2-D edge 

detectors (of matlab) with default thresholding schemes are better than simple 

implementation of wavelet based detectors for detection boundaries with very good 

sharpness and resolutions without noise as well and in noisy conditions. Canny edge 

detector with its defaults settings is more liberal (and more leaky) than Prewitt and 

Sobel but flexibility makes it more robust in blurred images.  
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The results in figure (5.12) show that the performance of both DT-DWT 

methods is superior to the standard DWT due to its (4:1) redundancy, and improved 

directionality (with more spatial orientations). The superior performance of SWT 
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compared to standard DWT lies in its highly redundant representation. Visually, 

performance of SWT is comparable to both DT-DWTs. The results presented here 

are without the presence of noise.  

 

A set of experiments show that the redundancy is of prime importance for 

improved edge detection in wavelet domain. Improved directionality also plays an 

important role in images with large number of randomly oriented edges. More 

sophisticated techniques may be employed in wavelet domain to combat with noise 

utilizing the directionality and/or redundancy of the transforms for improvement over 

conventional edge detectors. 

 

5.5 Conclusion 
 

It is concluded that redundancy of the transform is very important for efficient Edge 

detection with multiscale approaches. Directionality of the transform also plays an 

important role in fidelity of Edge detection in multi dimensions. 

 

Multiscale algorithms (FMED extensions) with non-decimated SWT having 

Gaussian like kernel are promising for single edge, 1-D Edge detection in higher 

noise environment over other classical Edge detection approaches (Canny, Prewitt 

etc.). Limited redundant DT-DWT, being a decimated extension, is not very 

promising for 1-D Edge detection in its original form with CMED. The accuracy of 

edge localisation at lower resolution scales is higher with DT-DWT (using CMED 

algorithm) than with SWT (using FMED algorithms) suggests it potential for further 

investigations using its non-decimated extension. 

 

 For 2-D Edge detection, performance of DT-DWT is superior to standard 

DWT but almost similar to SWT. Integration of advanced noise removal, and multi- 

edge detection techniques with non-decimated DT-DWT might be suitable for 

efficient Edge detection in images corrupted by higher noise. 
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Chapter 6: 

Conclusions and Future Scope 
 

 

 

6.1 Conclusions 
 

In this thesis, Wavelet Transforms (WT) is reviewed in detail. The history, evolution, 

and various forms of WTs are investigated. Advantages, applications, and limitations 

of popular standard DWT and its extensions are realised. Complex Wavelet 

Transforms (CWT), a powerful extension to real valued WT is thoroughly 

investigated to reduce the major limitations of standard DWT and its extensions in 

certain signal processing applications.  

 

The history, basic theory, recent trends, and various forms of CWTs with 

their applications are collectively and comprehensively analysed. Recent 

developments in CWTs are critically compared with existing forms of WTs. 

Potential applications are investigated and suggested that can be benefited with the 

use of different variants of CWTs.  
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Individual software codes are developed for simulation of selected 

applications such as Denoising and Edge detection using both WTs and CWTs. The 

performance is statistically validated and compared to determine the advantages and 

limitations of CWTs over well-established WTs. Promising results are obtained using 

individual implementation of existing algorithms incorporating novel ideas into well-

established frameworks. 



Chapter 6: Conclusions and Future Scope 
In chapter 2, the background for analysing the CWTs is presented. WTs are 

reviewed in detail with individual investigations and simulations. Complex 

mathematical formulations and important properties of WTs are studied. Evolution 

and advantages of WTs as an alternative to FT for non-stationary signals are studied. 

1-D and 2-D implementations of various versions of WTs are realised with software 

simulations. Applications of various forms of WTs are surveyed. It is realised that 

WT is an important tool for non-stationary signal processing applications. WT has a 

great potential for singularity detection, denoising and compression and it presents a 

novel framework of time-scale for analysing and characterising many natural signals 

with the wealth of time-varying information. Chapter 2 concludes with three major 

disadvantages of widely used standard DWT, namely; Shift-sensitivity, Poor-

directionality, and Lack of Phase-information. These disadvantages severely limit the 

applications of WTs in certain signal processing applications. It ends with motivation 

to reduce these disadvantages of WTs through a complex extension known as CWTs. 

 

Thorough analysis of CWTs is presented in chapter 3. The limitations of the 

earlier work on CWTs (with the motivation to utilise both the magnitude and phase 

information in more effective manner than real valued WTs) are presented. Recent 

developments in the field of CWTs, with the motivation to reduce all three 

limitations of standard DWT, are critically analysed. CWTs are classified into two 

important categories namely RCWT (Redundant CWT) and NRCWT (Non-

redundant CWT). RCWT include DT-DWT(S) (Selesnick’s Dual-Tree DWT) and 

DT-DWT(K) (Kingsbury’s Dual-Tree DWT). Theory, filterbank structure and 

properties of both DT-DWTs are critically investigated and compared. Similarly for 

NRCWT, Fernandes’s PCWT (Projection based CWT), and Spaendonck’s non-

redundant OHCWT (Orthogonal Hilbert Transform filterbank based CWT) are 

investigated.  

 

Implementation for both DT-DWTs and PCWT is realised through Matlab 

simulations based on the theories of sections 3.5 and 3.5. Comparative summary of 

all CWTs are presented in table (3.2). Depending upon the redundancy and 

properties, potential applications are suggested (based on literature review, thorough 
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investigations, and after primary level implementations) that can be benefited by 

further investigations with various forms of CWTs as an alternative to existing DWT 

extensions.  

  

In chapter 4, individual implementations of WTs and CWTs (explicitly DT-

DWTs) with Matlab simulations are presented for an important signal/image 

processing application namely Denoising. In chapter 4, 1-D and 2-D CWTs are 

implemented for signals and images in exiting framework of wavelet shrinkage 

denoising algorithms. Some novel modifications are made in threshold selections and 

thresholding strategies. The results are compared with variants of WT based 

algorithms and other conventional filtering techniques such as Mean, Median and 

Wiener Filtering. It is observed that in general for higher noise environment, CWTs 

perform better than WTs and other conventional techniques for different 1-D and 2-

D signals. Effects of number of wavelet parameters are investigated. 1-D CWTs are 

also investigated with certain novel ideas for audio denoising (with initially poor 

SNR), producing some promising results over standard DWT.  

 

In chapter 5, for Edge Detection application, the background research in the 

Signal Processing Group of University of Strathclyde is explored further with the 

novel ideas in existing frameworks. The existing WT based 1-D edge-detection 

algorithms such as MZ-MED, FMED and FWOMED are reviewed. Individual 

implementation of cubic spline base FMED algorithm culminated in newer FMED 

(‘db3’) and DB-FMED algorithms with their novel implementation using different 

bases. The newer algorithms showed an improved performance over both FMED and 

FWOMED in higher noise and slope conditions. Experiments with CWT for 1-D 

edge detection resulted in a basic CMED algorithm. CMED algorithm is still in its 

primary stage, with promising edge localisation property at lower resolution scales, 

compared to other WT based multiscale algorithms. For 2-D edge detection, a very 

basic strategy of neglecting the lowpass subband is applied to investigate the 

advantage of CWT over standard DWT. Other conventional edge detectors such as 

Prewitt and Canny are also implemented for comparison. The result of 2-D edge 

detection shows the improved performance of CWTs over standard DWT because of 
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its improved directionality and limited redundancy. The performance of redundant 

WT (i.e. SWT) compared to DT-DWT based CWT suggests the importance of higher 

redundancy in edge detection. 

 

6.2 Future Scope 
 

 It is concluded that CWT (having separable implementation, perfect 

reconstruction, limited (or no) redundancy, and improved properties over real-valued 

WTs) has a potential for many signal and image processing applications yet to be 

explored.  

 

Due to limited academic time span, NRCWT such as Fernandes’s PCWT and 

Spaendonck’s OHCWT have yet to be explored for denoising applications. It is 

assumed that the properties of PCWT-CR similar to DT-DWTs will result in a 

comparable performance. Even non-decimated DT-DWTs might even improve the 

denoising performance over existing DT-DWTs. 

 

The initial simulations for 1-D edge detection show potential scope of further 

investigation to enhance basic CMED algorithm in higher noise conditions. The 

suggested NFCMED (Non-decimated Fuzzy CMED) algorithm should be explored 

for improved 1-D edge detection in higher noise conditions. The extension of 

NFCMED in 2-D incorporating multiple edge detection and other techniques suitable 

for higher noise might yield a robust and optimum algorithm for object extraction 

and segmentation from noisy video clips. Fernandes’s PCWT with redundant 

projections (PCWT-CR) should also be explored in similar manner that gives fully 

redundant projection based CWT suitable for edge detection applications. 

 

DT-DWTs with their good shift invariance should be considered for potential 

investigations in applications such as Motion estimation in video coding, SAR 

remote sensing, Texture segmentation, and Image fusion. The non-redundant 

NRCWT (explicitly PCWT-NR and OHCWT) has a strong potential for further 

 146



Chapter 6: Conclusions and Future Scope 
investigations in directional compression leading toward an improved moderate to 

low bit-rate video codecs.  

 

Potential applications for further investigations with CWTs are summarised 

in table (3.2). There is also a potential challenge for improvement in filter designs to 

further minimising the aliasing of subbands for immunity towards shift-sensitivity, 

and merging the standard DWT strategies to add two more orientations at 0° and 90° 

to the available orientations of CWT for further improved directionality. Many 

researchers perceived that though wavelets showed tremendous applications in signal 

processing, they are still not optimum in dealing with sparse singularises in natural 

images. Curvelets, Contourlets, and Piecewise approximations are the newer basis 

emerging beyond wavelets. It would be interesting to explore the possibility of 

similar complex extensions to such newer basis and analyse their properties in signal 

processing context. 
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Appendices 

Appendix A 
 
 
Filters used to implement DT-DWT(K) uses Kingsbury’s Dual-Tree Complex 

Wavelet Transform available from: ngk@eng.cam.ac.uk ,  

http://www-sigproc.eng.cam.ac.uk/~ngk/ 

 

First stage Filters:  

Antonini, Legall, near_sym_a and near_sym_b.  

Q-shift Filters (after first stage):  

qshift_06, qshift_a, qshift_b, qshift_c, and qshift_d. 

 

 

For example ‘near_sym_b’ filters: 
 

 Real-tree Analysis Filter 
 Lowpass Filter (h0) Highpass Filter (h1) 
1 -0.00175781250000 -0.00007062639509 
2 0                   0 
3 0.02226562500000    0.00134190150670 
4 -0.04687500000000   -0.00188337053571 
5 -0.04824218750000   -0.00715680803571 
6 0.29687500000000    0.02385602678571 
7 0.55546875000000    0.05564313616071 
8 0.29687500000000   -0.05168805803571 
9 -0.04824218750000   -0.29975760323661 
10 -0.04687500000000    0.55943080357143 
11 0.02226562500000   -0.29975760323661 
12 0   -0.05168805803571 
13 -0.00175781250000    0.05564313616071 
14     0.02385602678571 
15    -0.00715680803571 
16    -0.00188337053571 
17     0.00134190150670 
18                    0 
19    -0.00007062639509 

 
Table (A1): First stage filters (for near_sym_b): Imaginary-tree analysis filters are 
one sample delayed than the real-tree filters. Synthesis filters are obtained by 
negating odd-indexed coefficients and swapping bands. 
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Appendix A (Contd.) 
 
 
 

For example ‘qshift_b’ filters: 
 
 
 

 Analysis Filters 
 Lowpass Filters Highpass Filters 
 h0a (real) h0b (imaginary) h1a (real) h1b (imaginary) 

1 0.00325314276365 -0.00455689562848 -0.00455689562848 -0.00325314276365 
2 -0.00388321199916 -0.00543947593727 0.00543947593727 -0.00388321199916 
3 0.03466034684485 0.01702522388155 0.01702522388155 -0.03466034684485 
4 -0.03887280126883 0.02382538479492 -0.02382538479492 -0.03887280126883 
5 -0.11720388769912 -0.10671180468667 -0.10671180468667 0.11720388769912 
6 0.27529538466888 0.01186609203380 -0.01186609203380 0.27529538466888 
7 0.75614564389252 0.56881042071212 0.56881042071212 -0.75614564389252 
8 0.56881042071212 0.75614564389252 -0.75614564389252 0.56881042071212 
9 0.01186609203380 0.27529538466888 0.27529538466888 -0.01186609203380 

10 -0.10671180468667 -0.11720388769912 0.11720388769912 -0.10671180468667 
11 0.02382538479492 -0.03887280126883 -0.03887280126883 -0.02382538479492 
12 0.01702522388155 0.03466034684485 -0.03466034684485 0.01702522388155 
13 -0.00543947593727 -0.00388321199916 -0.00388321199916 0.00543947593727 
14 -0.00455689562848 0.00325314276365 -0.00325314276365 -0.00455689562848 

 
Table (A2): Q-shift filters (after first stage) of type ‘qshift_b’ 

 
 
 

 Synthesis Filters 
 Lowpass Filters Highpass Filters 
 g0a (real) g0b (imaginary) g1a (real) g1b (imaginary) 

1 -0.00455689562848 0.00325314276365 -0.00325314276365 -0.00455689562848 
2 -0.00543947593727 -0.00388321199916 -0.00388321199916 0.00543947593727 
3 0.01702522388155 0.03466034684485 -0.03466034684485 0.01702522388155 
4 0.02382538479492 -0.03887280126883 -0.03887280126883 -0.02382538479492 
5 -0.10671180468667 -0.11720388769912 0.11720388769912 -0.10671180468667 
6 0.01186609203380 0.27529538466888 0.27529538466888 -0.01186609203380 
7 0.56881042071212 0.75614564389252 -0.75614564389252 0.56881042071212 
8 0.75614564389252 0.56881042071212 0.56881042071212 -0.75614564389252 
9 0.27529538466888 0.01186609203380 -0.01186609203380 0.27529538466888 

10 -0.11720388769912 -0.10671180468667 -0.10671180468667 0.11720388769912 
11 -0.03887280126883 0.02382538479492 -0.02382538479492 -0.03887280126883 
12 0.03466034684485 0.01702522388155 0.01702522388155 -0.03466034684485 
13 -0.00388321199916 -0.00543947593727 0.00543947593727 -0.00388321199916 
14 0.00325314276365 -0.00455689562848 -0.00455689562848 -0.00325314276365 

 
Table (A3): Q-shift filters (after first stage) of type ‘qshift_b’ 
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Appendix B 
 
Filters used to implement DT-DWT(S) uses Selesnick’s Dual-Tree DWT available 

from: selesi@taco.poly.edu, http://taco.poly.edu/selesi/ 

 

 

 
 

 Analysis Filters 
 Real Tree Imaginary Tree 
 Lowpass  Highpass Lowpass  Highpass  

1 0 0 0.01122679215254 0 
2 -0.08838834764832 -0.01122679215254 0.01122679215254 0 
3 0.08838834764832 0.01122679215254 -0.08838834764832 -0.08838834764832 
4 0.69587998903400 0.08838834764832 0.08838834764832 -0.08838834764832 
5 0.69587998903400 0.08838834764832 0.69587998903400 0.69587998903400 
6 0.08838834764832 -0.69587998903400 0.69587998903400 -0.69587998903400 
7 -0.08838834764832 0.69587998903400 0.08838834764832 0.08838834764832 
8 0.01122679215254 -0.08838834764832 -0.08838834764832 0.08838834764832 
9 0.01122679215254 -0.08838834764832 0 0.01122679215254 

10 0 0 0 -0.01122679215254 
 

Table (B1): First stage analysis filters 
 
 
 

 Synthesis Filters 
 Real Tree Imaginary Tree 
 Lowpass  Highpass  Lowpass  Highpass  

1 0 0 0 -0.01122679215254 
2 0.01122679215254 -0.08838834764832 0 0.01122679215254 
3 0.01122679215254 -0.08838834764832 -0.08838834764832 0.08838834764832 
4 -0.08838834764832 0.69587998903400 0.08838834764832 0.08838834764832 
5 0.08838834764832 -0.69587998903400 0.69587998903400 -0.69587998903400 
6 0.69587998903400 0.08838834764832 0.69587998903400 0.69587998903400 
7 0.69587998903400 0.08838834764832 0.08838834764832 -0.08838834764832 
8 0.08838834764832 0.01122679215254 -0.08838834764832 -0.08838834764832 
9 -0.08838834764832 -0.01122679215254 0.01122679215254 0 

10 0 0 0.01122679215254 0 
 

Table (B2): First stage synthesis filters 
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Appendix B (Contd.) 
 
 
 
 
 
 
 
 
 

 Analysis Filters 
 Real Tree Imaginary Tree 
 Lowpass  Highpass Lowpass  Highpass  

1 0.03516384000000 0 0 -0.03516384000000 
2 0 0 0 0 
3 -0.08832942000000 -0.11430184000000 -0.11430184000000 0.08832942000000 
4 0.23389032000000 0 0 0.23389032000000 
5 0.76027237000000 0.58751830000000 0.58751830000000 -0.76027237000000 
6 0.58751830000000 -0.76027237000000 0.76027237000000 0.58751830000000 
7 0 0.23389032000000 0.23389032000000 0 
8 -0.11430184000000 0.08832942000000 -0.08832942000000 -0.11430184000000 
9 0 0 0 0 

10 0 -0.03516384000000 0.03516384000000 0 
 

Table (B3): Remaining stage (after first stage) analysis filters 
 
 
 

 Synthesis Filters 
 Real Tree Imaginary Tree 
 Lowpass  Highpass Lowpass  Highpass  

1 0 -0.03516384000000 0.03516384000000 0 
2 0 0 0 0 
3 -0.11430184000000 0.08832942000000 -0.08832942000000 -0.11430184000000 
4 0 0.23389032000000 0.23389032000000 0 
5 0.58751830000000 -0.76027237000000 0.76027237000000 0.58751830000000 
6 0.76027237000000 0.58751830000000 0.58751830000000 -0.76027237000000 
7 0.23389032000000 0 0 0.23389032000000 
8 -0.08832942000000 -0.11430184000000 -0.11430184000000 0.08832942000000 
9 0 0 0 0 

10 0.03516384000000 0 0 -0.03516384000000 
 

Table (B4): Remaining stage (after first stage) synthesis filters 
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Appendix C 
 

Test images for 2-D denoising. All images are 512 by 512 except  
‘Pattern’ image, which is 256 by 256 

 

Lenna Goldhill

Peppers Airplane
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