1. INTRODUCTION AND MOTIVATION

A generic sampling setup in 2-D

Input signal
\(g(x,y) \)

Acquisition device

\(\phi_{j}(x,y) \)

Sampling

\(S_{j,k} = \{ \delta(x-jT_1,y-kT_2) \} \)

Set of samples in 2-D

\(\sum_{j,k} \delta_{j}(x-jT_{1},y-kT_{2}) \)

Motivation

Image resolution enhancement and super-resolution photogrammetry.

What signals? Non-bandlimited signals but with a finite number of degrees of freedom (rate of innovation), and thus known as signals with Finite Rate of Innovation (FRI) [Vetterli et al.] E.g., Streams of Diracs, non-uniform splines, and piecewise polynomials. Present Focus: Sets of 2-D Diracs, bilevel and planar polygons.

Sampling kernel and properties? Any kernel \(\phi(x,y) \) that is of compact support and can reproduce polynomials of degrees \(\gamma \), \(\gamma \in \mathbb{Z} \), \(\gamma \in \mathbb{R} \) such that

\[\sum_{j,k} \delta_{j}(x-jT_{1},y-kT_{2}) \]

2. SAMPLING OF SIGNALS WITH FINITE RATE OF INNOVATION (FRI) IN 2-D

• SETS OF 2-D DIRACS (LOCAL RECONSTRUCTION)

Consider \(g(x,y) = \sum_{j,k} \phi_{j}(x,y) \delta_{j}(x-jT_{1},y-kT_{2}) \) and \(\phi_{j}(x,y) \) with support \(L_{x}xL_{y} \) such that there is at most one Dirac \(\delta_{j}(x-jT_{1},y-kT_{2}) \) in an area of size \(L_{x}T_{1}xL_{y}T_{2} \).

From the partition of unity the amplitude is determined as:

\[a_{p,q} = \sum_{j,k} S_{j,k} \]

And using polynomial reproduction properties along \(x \)-axis and \(y \)-axis, the coordinate position \((x_{p},y_{q}) \) is determined as:

\[x_{p} = \sum_{j,k} C_{p,j} S_{j,k} \]

• BILEVEL POLYGONS & DIRACS USING COMPLEX-MOMENTS (GLOBAL APPROACH)

Moments are used to characterize unspecified objects. [Shohat et al. 1943, Eldad et al. 2004]. For a convex, bilevel polygon \(g(x,y) \) with \(N \) corner points, and an analytic function \(\phi \) in closure \(\alpha \), the complex-moments of the polygon follow [Milanfar et al.][3].

\[\gamma_{j,k}(x,y) = \int_{\alpha} \phi(x,y) \gamma_{j,k}(x,y) dxdy \]

The \(\gamma_{j,k} \) can be retrieved from \(\gamma_{j,k} \) using annihilating filter \(\gamma_{j,k} \) (Prony’s like method) such that \(d_{j,k}+\gamma_{j,k} = 0 \).

Now for both bilevel polygon and set of Diracs, using complex-moments and annihilating filter method, it is straightforward to see that

\[C_{p,j} = \sum_{j,k} \gamma_{j,k}(x,y) \]

where \(\gamma_{j,k} \) are complex weights and \(\gamma_{j,k} \) are corner point coordinates of the bilevel polygon \(g(x,y) \), \(n = 2,3,\ldots,2N+1 \).

• PLANAR POLYGONS based on DIRECTIONAL DERIVATIVES (LOCAL APPROACH)

Intuitively, for a planar polygon, two successive directional derivatives along two adjacent sides of the polygon results into a 2-D Dirac at the corner point formed by the respective sides.

A planar triangle needs three pairs of directional differences to get decomposed in three 2-D Diracs

3. CONCLUSION AND ONGOING WORK

Conclusion: Local and global sampling choices for the classes of 2-D FRI signals with varying degrees of complexity.

Current investigations: Sampling of more general shapes such as circles, ellipses, and polygons containing polygonal holes inside.

Future plans: Extension of our 2-D sampling results in higher dimensions and effect of noise. Integration of sampling results with wavelet footprints for image resolution enhancement and super-resolution photogrammetry.

4. KEY REFERENCES

