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ABSTRACT

In this paper, we propose new sampling schemes for classes of
2-D signals with finite rate of innovation (FRI). In particular, we
consider sets of 2-D Diracs and bilevel polygons. As opposed to
using only sinc or Gaussian kernels [7], we allow the sampling
kernel to be any function that reproduces polynomials.

In the proposed sampling schemes, we exploit the polynomial
approximation properties of the sampling kernels in association
with other relevant techniques such as complex-moments [10], an-
nihilating filter method [3], and directional derivatives. Specifi-
cally, for the bilevel polygons, we propose two different methods:
the first uses a global reconstruction algorithm and complex mo-
ments, while the second is based on directional derivatives and
local reconstruction algorithms. The trade-off between these two
reconstruction modalities is also briefly discussed.

1. INTRODUCTION

We know that most natural-world phenomena are observed and
analyzed through sampling, thus sampling is one of the core el-
ements in many applications of modern science and technology.
Although Shannon’s sampling theory and its extensions are very
powerful and have been successfully utilized for bandlimited sig-
nals, in many situations this ‘bandlimited-sinc’ constraint is too
restrictive to abide for the available acquisition devices and pro-
cessing algorithms [1]. The conventional ‘bandlimited’ scenario
has been extended to classes of nonbandlimited signals such as
uniform splines that reside in a subspace spanned by a generating
function and its shifted versions [1, 2]. For a comprehensive ac-
count on the modern sampling developments, we refer to [1].

Very recently, novel sampling schemes have been presented
for larger classes of 1-D signals that are neither bandlimited nor
reside in a subspace [3]. Such signals belong to a class of sig-
nals with a finite number of degrees of freedom (or rate of inno-
vation) and are classified as signals with Finite Rate of Innova-
tion (FRI). Streams of Diracs, nonuniform splines, and piecewise
polynomials are examples of such signals. These novel sampling
schemes feature: sinc and Gaussian sampling kernel, Annihilating
filter method, and perfect reconstruction using only a finite num-
ber of samples (lowpass estimates). Nevertheless, both sinc and
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Gaussian kernels pose difficulties in practice due to their slow de-
cay and infinite support.

Extensions of the schemes in [3] to the 2-D case are examined
in [7] and [8]. These 2-D extensions, however, protract with the
sinc and Gaussian kernels. In [4, 5] it was shown that 1-D FRI
signals can be sampled using a very rich class of kernels such as
functions that reproduce polynomials, exponential splines [6], and
functions with rational Fourier transforms. In this paper we fur-
nish extensions of these results in 2-D; we focus on the case of 2-D
kernels that can reproduce polynomials and show that sets of 2-D
Diracs and polygonal images can be sampled and perfectly recon-
structed using these kernels. For the polygonal case, we present
two alternative schemes: one is based on complex-moments and
annihilating filter method, the other on the link between finite dif-
ferences and directional derivatives.

The paper is organized as follows: In the next section we show
a generic sampling setup for 2-D, and highlight the useful prop-
erties of our sampling kernels. In Section 3, we present a local
sampling scheme for sets of 2-D Diracs as an extension to the 1-D
scheme given in [4]. In Section 4, we address a global scheme for
sampling the bilevel polygons, inspired by the complex-moments
based approach of [9, 10]. We then extend this global sampling
scheme (of bilevel polygons) to sets of Diracs as an alternative
to a local one presented in Section 3. In Section 5, we propose
a novel directional-derivatives based sampling scheme for planar
polygons. The scheme is local (involve only a corner point at a
time) and holds only local complexities irrespective of the number
of corner points. Finally, we conclude in Section 6.

2. SAMPLING SETUP AND KERNEL

Consider a 2-D generic sampling setup, where a continuous
2-D FRI signal g(x, y) is prefiltered with a smoothing kernel
ϕxy(x, y). The filtered version g(x, y) ∗ϕxy(−x,−y) is sampled
uniformly to obtain a set of samples Sj,k given by

Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 (1)

where x, y ∈ R, j, k ∈ Z, and Tx, Ty ∈ R+ are the sampling
intervals along x and y directions respectively.

Our sampling kernel ϕxy(x, y) is given by the tensor product
of two 1-D functions ϕ(t), t ∈ R that can reproduce polynomials.
The sampling kernel ϕxy(x, y) then follows the partition of unity
and polynomial approximation properties as given by
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where γ = {0, 1, . . . , Γ− 1} specify numbers of degrees of poly-
nomials that the sampling kernel ϕxy(x, y) can reproduce. The
coefficients Cx

γ,j and Cy
γ,k are kernel dependent weights along x

and y directions respectively. We further assume that ϕxy(x, y) is
of compact support Lx × Ly . Notice that orthogonal Daubechies
scaling functions and biorthogonal B-Splines, among many other
scaling functions, satisfy the above properties.

3. SETS OF 2-D DIRACS:
AN EXTENSION OF 1-D CASE

We begin with a simple class of FRI signals, that is, a set of 2-D
Diracs g(x, y) =

P
j∈Z

P
k∈Z aj,k δxy (x− xj , y − yk), where

a, x, y ∈ R. Each Dirac can be parameterized by an amplitude and
a position (in terms of two Cartesian coordinates x and y) and thus
has a finite number of degrees of freedom (or rate of innovation)
which equals three.

Assume that there is at most one Dirac in an area of size
LxTx × LyTy , and that the sampling kernel ϕxy(x, y) can re-
produce polynomials of degrees zero and one. With the backdrop
from [4], we are sure that only Lx × Ly inner products (kernels)
overlap in any given region of size LxTx × LyTy that encloses a
unique Dirac ap,qδxy(x−xp, y−yq), p, q ∈ Z. Therefore, relating
the properties of partition of unity (2) and polynomial approxima-
tions (3) as illustrated in Figure 1, the amplitude and position of a
given Dirac are given by 1
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where the coefficients Cx
1,j and Cy

1,k are identified from equa-
tion (3).

Hence, a sampling scheme for Diracs follows

Proposition 1. Given a sampling kernel ϕxy(x, y) that can repro-
duce polynomials of degree zero and one along both Cartesian axis
x and y and of compact support Lx ×Ly , a set of finite amplitude
2-D Diracs g(x, y) =

P
j∈Z

P
k∈Z aj,k δxy (x− xj , y − yk)

is uniquely determined from its samples defined by Sj,k =
〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 if and only if there is at most
one Dirac in any distinct rectangular area of size LxTx × LyTy .

1As the proof is in the line of its 1-D formulation [4], we omit it for the
judicious use of the space.
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Fig. 1. Sampling of a 2-D Dirac using linear B-Spline B1
xy(x, y):

(a) Partition of unity responsible for the determination of ampli-
tude ap,q , (b) Reproduction of polynomial of degree 1 along x
direction responsible for the determination of coordinate xp, and
(c) Reproduction of polynomial of degree 1 along y direction re-
sponsible for the determination of coordinate yq .

4. BILEVEL POLYGONS AND DIRACS:
USING COMPLEX MOMENTS

Consider the other class of FRI signal g(x, y) that consists of an
arbitrary bilevel polygon with N corner points (vertices) such that
inside the polygon is ‘1’ and outside is ‘0’. Naturally, the rate of
innovation in this case is 2N . Assume that the bilevel polygon
is convex and simply connected. The positions of its N corner
points {zn}, n = 1, 2, . . . , N are given by a set of N complex
scalars z = x + iy, where i =

√
−1, and x, y are the Cartesian

coordinates.
Following the formulations from [9, 10] and applying

Davis’s theorem, we have a set of N complex coefficients
ρn = i

2

�
z∗n−1−z∗n
zn−1−zn

− z∗n−z∗n+1
zn−zn+1

�
, where z∗ is the complex

conjugate of z. Since the polygon is closed and simply
connected, it follows the modulo operation zN+n = zn.
It is demonstrated in [9, 10], as a special case, that for
an analytic function f(z) = zm, m ∈ N, in the clo-
sure (O) of the polygon, the weighted complex moments

τm =
R

O
f
′′
(z) dz = m(m − 1)

R
O

zm−2 dz =
NP

n=1

ρnzm
n .

Notice that τ0 = τ1 = 0 from the above relation. The result
of [10] states that at least 2N − 1 complex moments can uniquely
determine the N corner points of a given bilevel polygon.

Let g(x, y) be a bilevel polygon, and ϕxy(x, y) be the sam-
pling kernel that satisfies the properties outlined in equations (2)
and (3) with Γ ≥ 2N . The polynomial approximation property
of ϕxy(x, y) allows us to obtain the complex moments of g(x, y)
directly from its samples Sj,k. For instance, τ3 is given by

τ3 = 6

Z
O

z dz = 6
X

j

X
k

�
Cx

γ,j + iCy
γ,k

�
Sj,k

where γ = m−2 = 1. Similarly, we can obtain any other moment
τm for m = 2, . . . , Γ + 1.



Applying the annihilating filter method [3], a filter A[l], l =
0, 1, . . . , N is designed such that τm ∗ A[l] = 0. The N complex
roots of the annihilating filter A[l] provide positions (in x + iy
form) of N corner points of the given bilevel polygon. Assump-
tions of convexity and simply connectedness guarantee a unique-
ness of the polygonal reconstruction. Consequently, a sampling
perspective to the result of [10] follows

Proposition 2. Given a sampling kernel ϕxy(x, y), a simply
connected and convex bilevel polygon g(x, y) with at most N
corner points is uniquely determined by its samples Sj,k =
〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, provided that ϕxy(x, y)
can reproduce polynomial up to degree 2N − 1 along both the
Cartesian axis x and y.

Now imagine a case where, instead of a bilevel polygon, signal
g(x, y) consists of a set of N 2-D Diracs. Then, it is easy to show
that the above proposition can be extended to the set of N Diracs.

The complex-moments based approach provides a global so-
lution for the reconstruction of bilevel polygons and sets of Diracs.
The complexity of the solution, however, increases with the com-
plexity of the signal g(x, y) (i.e. with the numbers of corner
points). Polygons with very close corner points still pose a recon-
struction challenge due to numerical instabilities in the algorithmic
implementations.

Simulation results, for a simple scenario, are shown in Fig-
ure 2. Figure 2(a) shows the original bilevel image g(x, y) that
consists of three polygonal shapes. Assume that the polygons
are enough apart such that in the sampled version of g(x, y) as
shown in part (b), they do not overlap. From these samples, us-
ing complex-moments, we can retrieve the exact locations of the
corner points for each polygonal shape individually. For instance,
a set of samples around pentagon is given in part (c). The recon-
structed corner points of the pentagon are indicated with + in part
(d).

5. PLANAR POLYGONS:
DIRECTIONAL DERIVATIVES BASED APPROACH

Consider a continuous planar polygon g(x, y) with N corner
points. All N sides (boundaries) of the polygon are identified by
the 2-D lines yi = tan(θi)xi + bi, i = 1, 2, . . . , N where bi are
shifts (offsets), and θi denotes the orientations.

We understand that for a continuous polygon g(x, y), in the-
ory, two successive directional derivatives Dθ1 and Dθ2 along the
two adjacent polygonal sides with orientations θ1 and θ2 result into
a 2-D Dirac at the corner point formed by the two respective sides.

In practice, we do not have direct access to g(x, y) but only to
the samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, where
ϕxy(x, y) is the sampling kernel. A discrete equivalent to the
directional derivatives is the evaluation of directional differences
over the set of samples Sj,k. The connection between these
two dwells in the lattice theory, and in particular, involves sub-
sampling over a rectangular lattice of Z2. A quick overview on
the fundamentals of the lattice theory can be found in [11]. For a
detailed treatment we refer to [12].

Assume that the base lattice Λ = {λ : λ = n1~v1 + n2~v2}
with ni, ~vi ∈ Z, where ~vi = {vi,1, vi,2 | i = 1, 2}. The
base lattice Λ is characterized by a (non-unique) sampling matrix

VΛ =

�
v1,1 v1,2

v2,1 v2,2

�
with its determinant defined as det(VΛ).

The row vectors ~v1 and ~v2 determine the orientations θ1 and θ2 of
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Fig. 2. (a) An original image g(x, y) of size 3767 × 3767 pixels
consists of three bilevel polygons: triangle, rectangle, and pen-
tagon. (b) The set of 50 × 50 samples produced by the inner
products of g(x, y) with a B-Spline sampling kernel ϕxy(x, y) =
β9

xy(x, y) with support 631× 631 pixels that can reproduce poly-
nomials up to degree nine. (c) Sampled version of the pentagon.
(d) Original pentagon and five reconstructed corner points (with
+).

the two adjacent polygonal sides at a given corner point such that
θ1 = tan−1

�
v1,2
v1,1

�
, and θ2 = tan−1

�
v2,2
v2,1

�
.

Following the modus operandi depicted in Figure 3, apply a
pair of directional differences along θ1 and θ2 over the two pairs
of samples Sj,k (identified by Λ) around an arbitrary corner point
A of the planar polygon g(x, y) . It follows that

Dθ2 [Dθ1 [Sj,k]]

=
�
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Fig. 3. Two successive directional differences Dθ1 and Dθ2 eval-
uated along θ1 and θ2 over the two pairs of samples Sj,k around
an arbitrary corner point A of the planar polygon g(x, y).



By using Parseval’s identities, and after certain manipulations,
we derive that

Dθ2 [Dθ1 [Sj,k]]

|det(VΛ)| =
D ∂

∂θ2

� ∂
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��
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where ζθ1,θ2(x, y) =
β0

θ1,θ2
(x,y)∗ϕxy(x,y)

| sin(θ2−θ1)| . Notice that
β0

θ1,θ2(x, y) = β0
θ1(x, y) ∗ β0

θ2(x, y), and β0
θ1 , β0

θ2 are the 2-D
box B-Splines of order zero along the orientations θ1 and θ2 re-
spectively.

The modification of ϕxy(x, y) into ζθ1,θ2(x, y) around a
given corner point reclines in the directional differences over
Sj,k ∈ Z2 directed by the sampling matrix VΛ. The kernel
ζθ1,θ2(x, y) has a support (|v1,1|+ |v2,1|+Lx)×(|v1,2|+ |v2,2|+
Ly), where Lx × Ly is the support of the original sampling ker-
nel ϕxy(x, y). A simple illustration of both kernels is given in
Figure 4. The presence of amplitude scaling factors 1

|det(VΛ)| and
1

| sin(θ2−θ1)| in equation (6) is due to subsampling over lattices and
to structural properties of the modified kernel.

Given a valid sampling kernel ϕxy(x, y), the modified ker-
nel ζθ1,θ2(x, y) always satisfies partition of unity (2) and repro-
duces polynomials of degree one along both x and y directions (3).
These properties of the modified kernel ζθ1,θ2(x, y) enable us
to determine the amplitude ap,q and coordinate positions xp, yq

of the resultant 2-D Dirac at a given corner point from the set
of samples Sj,k. We need only a finite number of samples, i.e.
(|v1,1|+ |v2,1|+Lx)× (|v1,2|+ |v2,2|+Ly) in the vicinity of the
corner point. The reconstruction scheme of (4) and (5) generalizes
as follows

ap,q =

P
j

P
k Dθ2 [Dθ1 [Sj,k]]

|det(VΛ)| (7)

xp =

P
j

P
k Cx

1,j Dθ2 [Dθ1 [Sj,k]]

ap,q |det(VΛ)|

yq =

P
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P
k Cy

1,k Dθ2 [Dθ1 [Sj,k]]

ap,q |det(VΛ)| (8)

where both the sets of weighting coefficients Cx
1,j and Cy

1,k for the
kernel ζθ1,θ2(x, y) follow equation (3).

By a finite number of iterations along the valid orientations
(where tan(θ) ∈ Q), N correct pairs of directional differences are
identified. Using these pairs, a given polygon is decomposed into
N corner points. The local reconstruction scheme of (7) and (8)
equally applies to each of the N corner points individually.

This local sampling scheme is suitable for resolving planar
polygons with varying amplitudes and with a large set of orien-
tations of their sides using only a finite number of samples. Yet,
there must be at most one corner point in the support of its as-
sociated modified kernel ζθ1,θ2(x, y). This scheme has a local
complexity irrespective of the number of corner points in a given
polygon.

6. CONCLUSION

In this paper, we have proposed several sampling schemes for the
classes of 2-D nonbandlimited signals using sampling kernels that
reproduce polynomials. Combining the tools like annihilating fil-
ters, complex-moments, and directional derivatives, we provide
local and global sampling choices with varying degrees of com-
plexity. Future work will explore cross-fertilization between the

(a) (b)

Fig. 4. For example, (a) ϕxy(x, y) is a Haar scaling function with
support 1× 1, (b) Modified kernel ζθ1,θ2(x, y) with support 4× 4
for an arbitrary corner point of the polygon formed by the two
sides with orientations tan(θ1) = 2/1 and tan(θ2) = −1/2.

proposed sampling schemes and the potential extensions of foot-
prints in 2-D for image resolution enhancement.
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