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Abstract. In a previous work, the authors have introduced a Mixture
of Laplacians model in order to cluster the observed data into the sound
sources that exist in an underdetermined two-sensor setup. Since the
assumed linear support of the ordinary Laplacian distribution is not valid
to model angular quantities, such as the Direction of Arrival to the set of
sensors, the authors investigate the performance of a Mixture of Warped
Laplacians to perform efficient source separation with promising results.

1 Introduction

Assume that a set of M microphones x(n) = [x1(n), . . . , xM (n)]T observes a
set of N sound sources s(n) = [s1(n), . . . , sN (n)]T . The case of instantaneous
mixing, i.e. each sensor captures a scaled version of each signal with no delay in
transmission, will be considered with negligible additive noise. The instantaneous
mixing model can thus be expressed in mathematical terms, as follows:

x(n) = As(n) (1)

where A represents the mixing matrix and n the sample index. The blind source
separation problem provides an estimate of the source signals s, based on the
observed microphone signals and some general source statistical profile.

The underdetermined source separation problem (M < N) is a challenging
problem. In this case, the estimation of the mixing matrix A is not sufficient for
the estimation of nonGaussian source signals s, as the pseudo-inverse of A can
not provide a valid solution. Hence, this blind estimation problem can be divided
into two sub-problems: i) estimating the mixing matrix A and ii) estimating the
source signals s.

In this study, we will assume a two sensor instantaneous mixing approach.
The combination of several instruments into a stereo mixture in a recording
studio follows the instantaneous mixing model of (1). The proposed approach can
thus be used to decompose a studio recording into the separate instruments that
exist in the mixture for many possible applications, such as music transcription,
object-based audio coding and audio remixing.
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The solution of the two above problems is facilitated by moving to a sparser
representation of the data, such as the Modified Discrete Cosine Transform
(MDCT). In the case of sparse sources, the density of the data in the mix-
ture space shows a tendency to cluster along the directions of the mixing matrix
columns. It has been demonstrated [6] that the phase difference θn between the
two sensors can be used to identify and separate the sources in the mixture.

θn = atan
x2(n)
x1(n)

(2)

Using the phase difference information between the two sensors is equivalent
to mapping all the observed data points on the unit-circle. The strong super-
Gaussian characteristics of the individual components in the MDCT domain are
preserved in the angle representation θn. We can also define the amplitude rn of
each point x(n), as follows:

rn =
√

x1(n)2 + x2(n)2 (3)

In a previous work [6], we proposed a clustering approach on the observed θn

to perform source separation. In order to model the sparse characteristics of the
source distributions, we introduced the following Mixture of Laplacians (MoL)
that was trained using an Expectation-Maximisation (EM) algorithm on the
observed angles θn of the input data.

p(θn) =
N∑

i=1

αiL(θ, ci,mi) =
N∑

i=1

αicie
−2ci|θn−mi| (4)

where N is the number of the Laplacians in the mixture, mi defines the mean
and ci ∈ R+ controls the “width” of the distribution. Once the model is trained
each of the Laplacians of the MoL should be centred on the Direction of Arrival
(DOA) of the sources in the majority of the cases, i.e. the angles denoted by
the columns of the mixing matrix. One can perform separation using optimal
detection approaches for the individual trained Laplacians.

There is a shortcoming in the previous assumed model. The model in (4)
assumes a linear support for θn, which is not valid as the actual support for θn

wraps around ±90o. The linear support is not a problem if the sources are well
contained within [−90o, 90o]. To overcome this problem, we proposed a strategy
in [6], where in each update we check whether any of the centres are closer to
any of the boundaries (±90o). In this case, all the data points and the estimated
centres mi are rotated, so that the affected boundary (−90o or 90o) is mapped
to the middle of the centres mi that feature the greatest distance. This seemed
to alleviate the problem in the majority of cases, however, it still serves as a
heuristic solution.

To address this problem in a more eloquent manner, one can introduce
wrapped distributions to provide a more complete solution. In the literature,
there exist several “circular” distributions, such as the von Mises distribution
(also known as the circular normal distribution). However, this definition is
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rather difficult to optimise in an EM perspective. In this study, we examine the
use of an approximate warped-Laplacian distribution to model the periodicity
of 180o that exists in atan(·) with encouraging results.

2 A Mixture of Warped Laplacians

The observed angles θn of the input data can be modelled, as a Laplacian
wrapped around the interval [−90o, 90o] using the following additive model:

Lw(θ, c,m) =
1

2T − 1

T∑

t=−T

ce−2c|θ−m−180t|

=
1

2T − 1

T∑

t=−T

L(θ − 180t, c, m) ∀ θn ∈ [−90o, 90o] (5)

where T ∈ Z+ denotes the number of ordinary Laplacians participating in the
wrapped version. The above expression models the wrapped Laplacian by an
ordinary Laplacian and its periodic repetitions by 180o. This is an extension of
the wrapped Gaussian distribution proposed by Smaragdis and Boufounos [7]
for the Laplacian case. The addition of the wrapping of the distribution aims
at mirroring the wrapping of the observed angles at ±90o, due to the atan(·)
function. In general, the model should have T → ∞ components, however, it
seems that in practice a small range of values for T can successfully approximate
the full warped probability density function.

In a similar fashion to Gaussian Mixture Models (GMM), one can introduce
Mixture of Warped Laplacians (MoWL) in order to model a mixture of angular
or circular sparse signals. A Mixture of Warped Laplacians can thus be defined,
as follows:

p(θ) =
N∑

i=1

αiLw(θ, ci,mi) =
N∑

i=1

αi
1

2T − 1

T∑

t=−T

cie
−2ci|θ−mi−180t| (6)

where αi, mi, ci represent the weight, mean and width of each Laplacian respec-
tively and all weights should sum up to one, i.e.

∑N
i=1 αi = 1. The Expectation-

Maximization (EM) algorithm has been proposed as a valid method to train a
mixture model [1]. Consequently, the EM can be employed to train a MoWL
over a training set. We derive the EM algorithm, based on Bilmes’s analysis [1]
for the estimation of a GMM. Bilmes estimates Maximum Likelihood mixture
density parameters using the EM [1]. Assuming K training samples for θn and
Mixture of Warped Laplacians densities (6), the log-likelihood of these training
samples θn takes the following form:

I(αi, ci,mi) =
K∑

n=1

log
N∑

i=1

αiLw(θn, ci,mi) (7)
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Fig. 1. An example of the Wrapped Laplacian for T = [−1, 0, 1] c = 0.01 and m = 45o.

Introducing unobserved data items that can identify the components that
“generated” each data item, we can simplify the log-likelihood of (7) for Warped
Laplacian Mixtures, as follows:

J(αi, ci,mi) =
K∑

n=1

N∑

i=1

(
log αi − log(2T + 1) + log

T∑

t=−T

L(θ − 180t, ci, mi)

)
p(i|θn)

(8)
where p(i|θn) represents the probability of sample θn belonging to the ith Lapla-
cian of the MoWL. In a similar manner, we can also introduce unobserved data
items to identify the individual Laplacian of the ith Warped Laplacian that
depends on θn.

H(αi, ci,mi) =
K∑

n=1

N∑

i=1

(log αi − log(2T + 1) + log ci (9)

−
T∑

t=−T

2ci|θ − 180t−mi|p(t|i, θn))p(i|θn) (10)

where p(t|i, θn) represents the probability of sample θn belonging to the ith

Warped Laplacian and the tth individual Laplacian. The updates for p(t|i, θn),
p(i|θn) and αi can be given by the following equations:

p(t|i, θn) =
L(θn − tπ, mi, ci)∑T

t=−T L(θn − 180t,mi, ci)
(11)

p(i|θn) =
αiLw(θn,mi, ci)∑N
i=1 αiLw(θn,mi, ci)

(12)

αi ← 1
K

K∑
n=1

p(i|θn) (13)
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In a similar manner to [6], one can set ∂H(αi, ci,mi)/∂mi = 0 and solve for mi

for the recursive update for mi, as follows:

∂H

∂mi
=

K∑
n=1

T∑

t=−T

2cisgn(θn − 180t−mi)p(t|i, θn)p(i|θn) = 0 ⇒ (14)

K∑
n=1

T∑

t=−T

θn − 180t

|θn − 180t−mi|p(t|i, θn)p(i|θn) = mi

K∑
n=1

T∑

t=−T

p(t|i, θn)p(i|θn)
|θn − 180t−mi| ⇒

(15)

mi ←
∑K

n=1

∑T
t=−T

θn−180t
|θn−180t−mi|p(t|i, θn)p(i|θn)

∑K
n=1

∑T
t=−T

1
|θn−180t−mi|p(t|i, θn)p(i|θn)

(16)

Similarly, one can set ∂H(αi, ci,mi)/∂ci = 0, to solve for the estimate of ci :

∂H

∂ci
=

K∑
n=1

(c−1
i − 2

T∑

t=−T

|θn − 180t−mi|p(t|i, θn))p(i|θn) = 0 ⇒ (17)

ci ←
∑K

n=1 p(i|θn)

2
∑K

n=1

∑T
t=−T |θn − 180t−mi|p(t|i, θn)p(i|θn)

(18)

Once the MoWL is trained, optimal detection theory and the estimated in-
dividual Laplacians can be employed to provide estimates of the sources. The
centre of each warped Laplacian mi should represent a column of the mixing ma-
trix A in the form of [cos(mi) sin(mi)]T . Each warped Laplacian should model
the statistics of each source in the transform domain and can be used to perform
underdetermined source separation.

A “Winner takes all” strategy attributes each point (rn, θn) to only one of
the sources. This is performed by setting a hard threshold at the intersections
between the trained Warped Laplacians. Consequently, the source separation
problem becomes an optimal decision problem. The decision thresholds θopt

ij be-
tween the i-th and the j-th neighbouring Laplacians are given by the following
equation:

θopt
ij =

ln αici

αjcj
+ 2(cimi + cjmj)

2(ci + cj)
(19)

Using these thresholds, the algorithm can attribute the points with θopt
ij < θn <

θopt
jk to source j, where i, j, k are neighbouring Laplacians (sources). Having at-

tributed the points x(n) to the N sources, using the proposed thresholding tech-
nique, the next step is to reconstruct the sources. Let Si∩K represent the point
indices that have been attributed to the ith source. We initialise ui(n) = 0, ∀
n = 1, . . . ,K and i = 1, . . . , N . The source reconstruction is performed by sub-
stituting:

ui(Si) = [cos(mi) sin(mi)]x(Si) ∀ i = 1, . . . , N (20)



6 N. Mitianoudis, T. Stathaki

0 20 40 60 80 100 120 140 160

−80

−60

−40

−20

0

20

40

60

80

Itearations

A
ng

le
s 

(θ
)

0 20 40 60 80 100 120 140 160 180 200

−80

−60

−40

−20

0

20

40

60

80

Iterations

A
ng

le
s 

(θ
)

Fig. 2. Estimation of the mean using MoL with the shifting strategy (left) and the
warped MoL (right).

3 Experiments

In this section, we evaluate the algorithm proposed in the previous section. We
will use Hyvärinen’s clustering approach [4], O’Grady and Pearlmutter’s [5] Soft
LOST algorithm’s and the MoL-EM Hard as proposed in a previous work [6],
to demonstrate several trends using artificial mixtures or publicly available
datasets1. In order to quantify the performance of the algorithms, we are es-
timating the Signal-to-Distortion Ratio (SDR) from the BSS EVAL Toolbox [2].
The frame length for the MDCT analysis is set to 64 msec for the test signals
sampled at 16 KHz and to 46.4 msec for those at 44.1 KHz. We initialise the
parameters of the MoL and MoWL, as follows: αi = 1/N and ci = 0.001 and
T = [−1, 0, 1] (for MoWL only). The centres mi were initialised in both cases
using a K-means step. The initialisation of mi is important, as if we choose
two initial values for mi that are really close, then it is very probable that
the individual Laplacians may not converge to different clusters. To provide a
more accurate estimation of mi, training is initially performed using a “reduced”
dataset, containing all points that satisfy rn > 0.2, provided that the input sig-
nals are scaled to [−1, 1]. The second phase is to use the “complete” dataset to
update the values for αi and ci.

3.1 Artificial Experiment

In this experiment, we use 5 solo audio uncorrelated recordings (a saxophone,
an accordion, an acoustic guitar, a violin and a female voice) of sampling fre-
quency 16 KHz and duration 8.19 msec. The mixing matrix is constructed as
in (21), choosing the angles in Table 1. Two of the sources are placed close to
the wrapping edges (−80o, 60o) and three of them are placed rather closely at
−40o,−20o, 10o, in order to test the algorithm’s resilience to the wrapping at
1 All the experimental audio results are available online at:
http://www.commsp.ee.ic.ac.uk/∼nikolao/lmm.htm
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±90o. In Table 1, we can see the estimated angles of the original MoL Hard with
the shifting solution and the MoWL. In both cases, the algorithms estimate ap-
proximately the same means mi, which are very close to the original ones. In Fig.
2, the convergence of the means mi in the two cases is depicted. The proposed
warped solution seems to converge smoothly and faster without the perturba-
tions caused by the shifting solution in the previous algorithm. Note that Fig.
2(a) depicts the angles after the rotating steps to demonstrate the shifting of ψi

in the original MoL solution. Their performance in terms of SDR is depicted in
Table 2. Hyvärinen’s approach is very prone to initialisation, however, the results
are acquired using the best run of the algorithm. This could be equally avoided
by using a K-means initialisation step. The Soft Lost algorithm managed to sep-
arate the sources in most cases, however, there were some audible artifacts and
clicks that reduced the calculated quality measure. To appreciate the results of
this rather difficult problem, we can spot the improvement performed by the
methods compared to the input signals. It seems that the proposed algorithm
performs similarly to MoL Hard and the Hyvärinen’s approach, which implies
that the proposed solution to approximate the wrapping of the pdf is valid.

A =
[

cos(ψ1) cos(ψ2) . . . cos(ψN )
sin(ψ1) sin(ψ2) . . . sin(ψN )

]
(21)

Table 1. The five angles used in the artificial experiment and their estimates using
the MoL and MoWL approaches.

ψ1 ψ2 ψ3 ψ4 ψ5

Original −80o −40o -20o 10o 60o

Estimated MoL −81.52o −45.45o −23.45o 12.59o 64.18o

Estimated MoWL −81.59o −44.98o −23.59o 12.18o 64.19o

3.2 Real Recording

In this section, we tested the algorithms with the Groove dataset, available by
(BASS-dB) [3], sampled at 44.1 KHz. The “Groove” dataset features four widely
spaced sources: bass (far left), distortion guitar (center left), clean guitar (center
right) and drums (far right). In Table 2, we can see the results for the four
methods in terms of SDR. The proposed MoWL approach managed to perform
similarly to the previous MoL EM, despite the small spacing of the sources
and the source being placed at the edges of the solution space, which implies
that the warped Laplacian model manages to model the warping of θn without
any additional steps. The proposed MoL approaches managed to outperform
Hyvärinen and Soft LOST approach for the majority of the sources. Again, the
LOST approach still introduces several audio artifacts and clicks.
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Table 2. The proposed MoWL approach is compared in terms of SDR (dB) with
MoL-EM hard, Hyvärinen’s, soft LOST and the average SDR of the mixtures.

Artificial experiment Groove Dataset

s1 s2 s3 s4 s5 s1 s2 s3 s4

Mixed

Signals -6.00 -13.37 -26.26 -6.67 -6.81 -30.02 -10.25 -6.14 -21.24

MoWL-EM hard 6.07 -2.11 5.62 4.09 6.15 4.32 -4.35 -1.16 3.27

MoL-EM hard 6.69 0.32 7.66 3.65 6.03 2.85 -4.47 -0.86 3.28

Hyvärinen 6.53 -1.16 7.60 4.14 5.79 3.79 -3.72 -1.13 1.49

soft LOST 4.58 -4.01 5.09 1.67 3.93 4.54 -5.77 -1.74 3.62

4 Conclusions

The problem of underdetermined source separation is examined in this study. In
a previous work, we proposed to address the two-sensor problem by clustering
using a Mixture of Laplacian approach on the source Direction of Arrival (DOA)
θn to the sensors. In this study, we address the problem of wrapping of θn using
a Warped Mixture of Laplacians approach. The new proposed approach features
similar performance and faster convergence to MoL hard and seems to be able
to separate sources that are close to the boundaries (±900) without any extra
trick and therefore serves as a valid solution to the problem.
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