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AABBSSTTRRAACCTT

Biometric identification methods are trying to replace traditional identification meth-

ods such as PIN numbers, identity cards etc. One of the common biometrics that can be

used to identify a person's identity is speech. Speaker verification systems accept or reject

the identity claim of a speaker by comparing a set of measurements of his speech with a

reference set of measurements of the speech of the person whose identity is claimed.

Many speaker verification systems were proposed and developed in the last decade with

good performance.

The basic aim of this thesis will be the analysis and development of a modular config-

urable speaker verification system, employing a graphical interface that will guide the

user through enrolment and verification. In this framework, we will evaluate the perform-

ance of a speaker verification system using Gaussian Mixture Models, with many differ-

ent configurations
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CCHHAAPPTTEERR  11

IINNTTRROODDUUCCTTIIOONN

The process of authentication of a person in order to gain access to a specific system

or service has obtained a great increase in interest over the last years. In order to enhance

the security level obtained by identification cards and personal identification numbers

(PIN), a number of biometric patterns are being used, including fingerprint, hand geome-

try, iris, retina, and voice. Different levels of accuracy can be achieved with these tech-

niques, but maybe the one inducing greater problems is the human voice, due to its inher-

ent variability [28].

However, if we are able to cope with this variability using the appropriate modeling,

updating and thresholding techniques, speech is one of the best ways of introducing

biometric patterns into security systems because of the simplicity of the speech acquisi-

tion systems. Additionally, for remote applications, such as telephone banking etc, speech

is the more appropriate way of performing secure transactions. In this project, we are to

explore the development of a Speaker Verification system, i.e. a system that uses speech

to verify the identity of a person.

The main objectives of this project are to gain a good knowledge of current speaker

verification techniques and develop a software framework for testing and evaluating

speaker verification algorithms. The project involves the development of a software li-

brary that will perform all the essential speech processing tasks, as well as a Graphical

User Interface that will enhance and facilitate the evaluation procedure. The whole design

should give emphasis on the modularity of the system, so that it can be reconfigured. Fi-

nally, a baseline speaker verification technique using Gaussian Mixture Models will be

implemented and evaluated within the software framework.

The structure of this report is as follows:
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In Chapter 2, the importance of biometrics in modern identification methods will be

analysed. Moreover, the design of a modular speaker verification system will be dis-

cussed in detail.

In Chapter 3, all the essential preprocessing techniques that are used in speaker verifi-

cation are presented.

In Chapter 4, basic speech feature extraction techniques are presented. Some of the

most commonly used feature sets in speaker verification are analysed, such as LPC, re-

flection, complex cepstrum, mel-frequency cepstral, delta and delta2 mel-frequency cep-

stral and PLP coefficients.

In Chapter 5, the current speaker modelling algorithms will be presented. Emphasis

will be given on the Gaussian Mixture Modelling technique.

In Chapter 6, the design of a configurable Graphical User Interface (GUI) for evalu-

ating and testing speaker verification algorithms will be analysed

In Chapter 7, the implementation of a GMM speaker verification system within the

testing framework is tested and the results for various configurations are presented and

analysed.

In Chapter 8, some of the conclusions of this study will be presented, as well as some

proposals for future work.
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CCHHAAPPTTEERR  22

SSPPEEAAKKEERR  VVEERRIIFFIICCAATTIIOONN  SSYYSSTTEEMM  DDEESSIIGGNN

2.1 Introduction to biometrics

There are many every day applications, where somebody needs to 'authenticate' him-

self, in other words to prove his identity, in order to gain access to certain services, i.e.

his email, his bank account, his office etc. Hitherto, men have used many different ways

for authentication. Recently, the immense technological evolution has introduced many

new methods for identification, such as identity cards, passwords, passports or security

methods. However, identity cards can be lost, forged, stolen and passwords can be for-

gotten or compromised.

Over the last years, we have witnessed the emergence of biometrics into the identifi-

cation procedure. A biometric system is a pattern recognition system that establishes the

authenticity of a specific physiological or behavioural characteristic possessed by a user

[9].

Fingerprint recognition is one of the first and best-known biometric technologies.

Automatic fingerprint-based identification systems have made their first commercial ap-

pearance in the early 1960s. These systems were primarily used in forensic applications

for investigating criminals. However, biometric technology has now become a feasible

alternative to traditional identification systems in many application domains.

In addition to fingerprint recognition technology, other biometric technologies are be-

ginning to emerge. New biometric applications include face (both optical and infrared),

hand, finger, iris, retina, signature, and voice recognition. Investigations of other charac-

teristics, like ear, odour, keystroke entry pattern, and gait are into research.
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2.2 Performance Criteria for Biometric systems

However, despite the great demand for per-

sonal identification applications and the ineffi-

ciency of the conventional means for personal

identification, biometrics technology is not as

widespread as many of us might expect. One of

the primary reasons is performance. Issues af-

fecting the performance of biometric systems

include accuracy, cost, integrity, and ease of

use.

 Accuracy
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correctly results in the acceptance of an ide

authentication system, even if a legitimate biometr

authentication cannot be guaranteed. This could be 

processing methods, and, more importantly, the

characteristic as well as its presentation. There is 

could be incorrectly authenticated. Furthermore, 

implementation is sensitive to the target populatio

technology to a personal identification application

realistically evaluate the technology in the contex

population.

 Cost

Cost is greatly related to accuracy, as Figure 2.1 

sitive to the additional cost of including biometric

Given the increasing availability of inexpensive pro

ble in the near future to make biometrics accessible
Figure 2.1: This figure illustrates the
close relation between cost and accu-
racy of biometric identification sys-
tems [9]
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due to sensor noise, limitations of the
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also the possibility that an impostor

the accuracy of a given biometric

n. To successfully apply a biometric

, it is important to understand and

t of the target application and target

illustrates. Many applications are sen-

 technology, such logging to a PC.

cessing power, it will become possi-

 to new personal identification appli-
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cations. The increased demand for biometrics may lower their prices, thus making

biometric identification systems affortable.

 Integrity

 Authentication is of no use if the system cannot provide assurance that the legitimate

owner indeed presented the characteristic. Data from multiple, independent biometric

characteristics can serve to reinforce the identity of a subject. Multiple biometrics can al-

leviate several other practical problems in biometrics-based personal identification. For

example, a fraction of the target population may either not actually possess a particular

biometric identifier or may present a characteristic that does not tender any usable infor-

mation. Furthermore, certain biometrics may not be acceptable to segments of the target

population.

 Ease of use

A biometric identification system that can not be easily operated by average people is

very unlikely to present any commercial and practical success. Moreover, long and tiring

training procedures or the usage of characteristics that may be considered intrusive are

bound to undermine the practical application of such systems.

 Privacy

Despite its obvious strengths, there are a few negative preconceptions about biomet-

rics, concerning the possible usage of biometrics in order to track people and therefore

secretly violating their right to privacy. On the other hand, it is dangerous to avoid certain

technologies for fear that they will be used unfairly.

All these aspects should be taken into consideration, so that biometrics identification

systems can really be incorporated into every day applications.



A graphical framework for the evaluation of speaker verification 6

2.3 Properties of Biometric Identification systems

In order to measure the real-life performance of biometric systems and consequently

understand their strengths and weaknesses better, we must understand the elements that

comprise an ideal biometric system [8]. In an ideal system

 all members of the population possess the characteristic that the biometric identi-

fies, like irises or fingerprints;

 each biometric signature differs from all others in the controlled population;

 the biometric signatures don’t vary under the conditions in which they are col-

lected

 the system resists countermeasures.

There are two kinds of biometric systems: identification and verification.

In identification systems, a biometric signature of an unknown person is presented to a

system. The system compares the new biometric signature with a database of biometric

signatures of known individuals. On the basis of the comparison, the system reports (or

estimates) the identity of the unknown person from this database. Systems that rely on

identification include those that the police use to identify people from fingerprints and

mug shots. Civilian applications include those that check for multiple applications by the

same person for welfare benefits and driver’s licenses.

In verification systems, a user presents a biometric signature and a claim that a par-

ticular identity belongs to the biometric signature. The algorithm either accepts or rejects

the claim. Alternatively, the algorithm can return a confidence measurement of the

claim’s validity. Verification applications include those that authenticate identity during

point-of-sale transactions or that control access to computers or secure buildings. Per-

formance statistics for verification applications differ substantially from those for identi-

fication systems. The main performance measure for identification systems is the sys-

tem’s ability to identify a biometric signature’s owner. More specifically, the perform-

ance measure equals the percentage of queries in which the correct answer can be found

in the top few matches.



A graphical framework for the evaluation of speaker verification 7

The performance of a verification system, on the other hand, is traditionally charac-

terised by two error statistics: false-reject rate and false-alarm rate. These error rates

come in pairs; for each false-reject rate there is a corresponding false alarm. A false reject

occurs when a system rejects a valid identity, whereas a false alarm occurs when a system

incorrectly accepts an identity (an impostors).

In a perfect biometric system, both error rates would be zero. Unfortunately, biometric

systems aren’t perfect, so you must determine what trade-offs you’re willing to make. If

you deny access to every-one, the false-reject rate will be one and the false-alarm rate

will be zero. At the other extreme, if you grant everyone access, the false-reject rate will

be zero and the false-alarm rate will be one. Clearly, systems operate between the two

extremes. For most applications, you adjust a system parameter (a threshold) to achieve a

desired false-alarm rate, which results in a corresponding false-reject rate. There is also

an operation point where the FA and FR rates are equal. This is called equal-error rate

(EER). The next figure illustrates this concept.

2.4 Speaker Verification Systems

Among the other biometrics methods, identity verification based on a person's voice

has special advantages for practical deployment. Speech is our most natural mean of

communication and therefore the public acceptance of the system can be very high.

Moreover, the added advantage of being less intrusive to the user's privacy, compared to

other biometrics systems, such as retinal scanning and fingerprint verification is also well

Threshold

100

EER

    0

FA                         FR

Error Rate (%)

Figure 2.2: False-Alarm and False-Reject curves
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appreciated [25]. Furthermore, research on speech has been extensive over recent years

offering a significant background for the development of high performance verification

systems. We will shortly look at some of the human speech properties.

2.4.1 Human Speech properties

Speech is produced by co-ordinated movements of the articulators (tongue, jaw, vocal

folds etc) in a sequence of configurations, and by simultaneous application of pressure

via the diaphragm to air in the lungs [1]. Chosen amounts of air exiting through a chosen

shape of vocal tract produce the desired sequence of sounds. We can generally model

speech as a baseband signal, limited to a bandwidth of 7-8 KHz. The spectral characteris-

tics of the speech wave are time-varying, since the physical system changes rapidly over

time. As a result, speech can be divided into sound segments that possess similar acoustic

properties over short periods of time, i.e. the vowel o in the word ‘shop’. Nonetheless,

speech is not quite a string of discrete well-formed sounds, but rather a series of steady-

state sounds with intermediate transitions. The preceding and/or succeeding sound in a

string can affect whether a target is reached completely, how long it is held and other

finer details of the sound. This interplay is generally called coarticulation. The inability

of the speech production system to change instantaneously is due to requirement of finite

movement of the speech system articulators (i.e. muscles) to produce the sound.

Furthermore, if we look at the spectrum of a steady-state segment, we can observe

several frequency components. The exact position of these frequency components is

much dependent on the actual shape, size and position of several cavities that are formed

in the vocal tract. Each vocal tract shape is characterised by a set of resonant frequencies.

Since those resonances tend to ‘form’ the overall spectrum, we refer to them as formants

or formant frequencies. In principle, there is an infinite number of formants in a given

sound, but in practice, we usually find 3-5 in the Nyquist band after sampling. Formant

frequencies usually appear as peaks in the spectrum.

A special category of segments that speech is usually divided into are the so-called

phonemes. More specifically, phonemes are the basic theoretical units for describing how

speech conveys linguistic mean. Each phoneme can be considered to be a code that con-
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sists of a unique set of articulatory gestures. From an acoustical point of view, we can say

that the phoneme represents a class of sounds that convey the same meaning. For exam-

ple, in the word ‘shade’, we can meet the phonemes ‘sh’ and ‘aa’. Phonemes are usually

divided into two categories: voiced and unvoiced. Voiced phonemes (and sounds gener-

ally) are produced by forcing air through the glottis or an opening between the vocal

folds. A phoneme can be regarded as unvoiced, if it is generated by forming a constric-

tion at some point along the vocal tract, and forcing air through the constriction to pro-

duce turbulence. However, there are some sounds that can be simultaneously voiced and

unvoiced and they are called mixed phonemes.

Moreover, there are some more metrics that are used to describe phonemes. One of

these is the fundamental period To, which is actually the time between successive vocal

fold openings, while the rate of vibration is called the fundamental frequency Fo=1/To.

More frequently, we will meet the term pitch basically implying the fundamental fre-

quency Fo. Pitch can take values from 50 to 200 Hz and shouldn’t be confused with for-

mant frequencies 250 to 5000 Hz. In speech signals, pitch doesn’t remain constant, but it

fluctuates according to the stress the speaker poses to his phrasing.

2.4.2 Speaker Verification Systems architecture

Speaker verification systems fall into two basic types: text-dependent and text-

independent [6,8].

In text-dependent verification, the speaker says a predetermined phrase. This tech-

nique inherently enhances verification performance, but requires a cooperative user. In

such systems, with adequate time alignment, one can make precise and reliable compari-

sons between two utterances of the same text, using extended phonetic classification of

recorded utterances.

In text-independent recognition, the speaker need not say a predetermined phrase and

need not co-operate or even be aware of the recognition system. These systems often use

long-term statistics of speech to extract speaker specific data. Normally, these systems

require longer speech samples for training and verification.

 A Speaker verification task is normally divided into two procedures:
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 Enrolment procedure

During this procedure the user needs to register himself to the system. In other words,

the user may provide the system with a set of utterances so that it can build his speech

model and use it as a reference later. The procedure builds an initial reference template

for a speaker by capturing the verification utterance. It's important to obtain a good en-

rolment template for a high performance system.

The whole procedure can be modelled by the following three modules. The first stage

is the Preprocessing module, which prepares the training speech samples for the next

modules. The next stage is the Feature Extraction module that aims to extract the infor-

mation about the user conveyed in the training speech samples. The final stage, the Ref-

erence Template module, aims to arrange and store the extracted feature sets, so that it

can be then used for reference, when the user requires authorisation.

 Verification procedure

During this procedure the user provides a set of utterances, so as to authenticate him-

self to the system, so to gain access to certain resources. The system tries to compare the

presented speech samples to the already recorded user's speech model and decide whether

to accept or reject the user.

The whole procedure can be modelled by the following block diagram. The first two

modules are identical to the ones used in the enrolment procedure. Hence, these two

modules extract a set of features vectors from the user's recorded utterance that are com-

pared with the user's reference template. Finally, a decision rule grants or declines

authorisation to the user.

Training
Speech

Samples

Preprocessing Feature
Extraction

Build User
Reference
 Template

Figure 2.3: Speaker Enrolment Procedure
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 The basic aim of this project is to build a modular speaker verification front-end with

a graphical user interface. In other words, we aim to build a system, where the adminis-

trator can change the configuration of the speaker verification system by adding, remov-

ing stages in each module or even modify its parameters. This made it absolutely neces-

sary to maintain the modularity of the system in the MATLAB programmes developed as

well as in the Graphical User Interface. The following figures describe the proposed sys-

tem's operation in detail. The next chapters follow the same order in the analysis of the

system.

Input
Speech

Samples

Preprocessing Feature
Extraction

User's
Reference
Template

Verify
User's

Identity

Accept/Reject
User

Figure 2.4: Speaker Verification Procedure
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FEATURE
EXTRACTION

PREPROCESSING

Speech samples
recorded by new

user

Preemphasis

Amplitude
Normalisation

Endpoint
Detection

Segmentation/Windowing

Feature Extraction:
 LPC Coefficients
 Reflection Coefficients
 Cepstrum Coefficients
 Mel-Frequency Cepstrum Coefficients
 Delta MFC Coefficients
 Delta-Delta MFC Coefficients
 PLP Coefficients

Build model for new user (Reference Template):
 Hidden Markov Models
 Gaussian Mixture Models
 Vector Quantisation
 Neural Networks

Figure 2.5: Speaker Enrolment Procedure Overview
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Speech samples recorded by
the user

PREPROCESSING

FEATURE EXTRACTION

Reference Tem-
plate info for
claimed user

Compare with Reference
Template

Accept / Reject

Figure 2.6: Speaker Verification Overview
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PPRREEPPRROOCCEESSSSIINNGG

3.1 Introduction

The first module in a speaker verification front-end will be the preprocessing of the

input speech data. In this module, the input speech data used either for training the sys-

tem or for the verification procedure are imposed to certain signal processing algorithms,

so that the feature extraction, performed in the next module can be more accurate.

In our preprocessing module, we will include endpoint detection, amplitude normali-

sation and preemphasis. It is not absolutely necessary to use all these algorithms. It usu-

ally depends on the recording quality of the speech samples.

3.2 Endpoint Detection

In a speaker verification system, it is a fundamental task to detect the endpoints of

speech signals. In other words, the system must detect and remove the non-voiced parts

in the user’s recorded utterance. The main motivation behind endpoint detection is that

the processing of these non-voiced parts is bound to undermine the performance of our

system. The features extracted from these segments can not characterise the speaker’s

identity and can mislead the recogniser. Moreover, we reduce the total processing time of

the system by removing these unwanted parts.

The detection of the edges of a spoken word is a very difficult procedure. One par-

ticular class of problems is those attributed to the speaker and to the manner of producing

speech [2]. For example, during articulation, the talker often produces sound artifacts, in-

cluding lip smacks, heavy breathing and mouth clicks and pops. Some of them can be
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separated quite easily, other not. For example, a heavy breathing noise in the beginning

of the utterance can not be separated, whereas a mouth click can.

A second factor that makes reliable speech endpoint detection difficult is the environ-

mental conditions in which speech is produced [2]. The ideal recording environment is a

quiet room with no acoustic noise or signal generators other than that produced by the

speaker. Such an ideal environment is not always practical. Therefore, an endpoint detec-

tion algorithm should consider noise produced by other common sources (fans, road

noise, etc). Sometimes non-stationary sounds may occur during the recording, such as a

door slam, a car horn, or even speech interference by a radio, TV or background conver-

sation.

The procedure that's followed in most endpoint detection algorithms is basically the

following: the speech waveform is firstly segmented into overlapping frames. The choice

of the frame length is extremely important. Usually, speech is segmented into 25.6ms

frames with 50% overlapping.

There are certain metrics that are normally used to identify a spoken utterance from

the background noise present in a recorded utterance. The first metrics is the logarithm of

the frame’s energy and the other one is the number of zero-crossings.

• Log-Energy

This metric calculates the log energy of each frame, as it is obvious by the next equa-

tion:






= ∑

=

N

1n

2
ii ]n[xlogLE

The logarithm function makes a non-linear compression to the amplitude of the signal

and the weak portions of the signal have the opportunity to reveal their details sufficiently

[12]. Sometimes, we can normalise the energy LEi by the maximum frame energy in the

speech segment.

It's very logical to say that the utterance will be represented by that contiguous set of

frames whose energy is above a set threshold ITU. However, research has shown that

using only this energy criterion for endpoint detection can omit unvoiced phonemes that

(3.1)
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usually appear in the beginning or at the end of a word. This can be compensated by us-

ing the zero-crossings rate.

• Zero Crossings

This metric calculates the number of times our signal crosses zero level (zero-

crossings rate) in each frame. The next equation gives the mathematical definition:

∑
=

−−=
N

1n
i |])1n[xsgn(])n[xsgn(|CX

Sometimes, we can normalise the zero-crossings rate CXi by the maximum frame rate

in the speech segment.

Actually, we use zero-crossings rate to correct the endpoints defined by the energy

criterion and correctly depict the unvoiced phonemes. The zero-crossings rate can be an

efficient tool for that operation, as we know that unvoiced phonemes feature greater high-

frequency terms.

 We are going to present two algorithms that employ the above metrics to define the

endpoints N1, N2 of an utterance. They are actually based on the same concept, The

choice for the ITU and IZCT thresholds is done by using successive tests. It depends

much on the noise level in the input speech waveforms.

 Algorithm 1 [10]

1. Segment the waveform into overlapping frames and calculate the log-energy and

the number of zero-crossings for each frame.

2. Start from the frame with the great log-energy and move left, until you find a

frame, whose energy is below the set-threshold ITU. This sets the left endpoint

N1. Perform the same procedure by moving right and define the right endpoint N2.

3. Perform a correction to both endpoints, by using zero-crossings. Move up to 25

from N1 and calculate the number of frames, whose number of zero-crossings ex-

ceeds the threshold IZCT. If they are less than three, no correction is performed,

otherwise N1 moves to the first frame that exceeds the threshold IZCT. The same

procedure is followed to update the right endpoint N2.

(3.2)
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The following figures illustrate the application of the above endpoint detection algo-

rithm. We can see that this algorithm performs accurate endpoint detection, preserving

the unvoiced parts in the beginning and at the end of the utterance.
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0 1000 2000 3000 4000 5000 6000

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Endpoint detection using the classic Rabiner-Sambur algorithm

Figure 3.1: Endpoint Detection using Algorithm 1

 Algorithm 2 [11]

This algorithm progresses in the same way as the previous one. Nonetheless, it uses

different criteria for endpoint definition. The next steps describe the left limit detection

procedure. Equally, we easily adapt this algorithm for right limit detection.

Left limit detection using Energy

1. Detect the frame containing the maximum energy (ba).

2. Set bi = ba and bcl = ba +2

3. if the log energy of the ba frame is greater than 0.4 then decrease ba by 1 and go to

step 3.

4. if bcl-ba ≥ 4 then set bcl=ba

5. Decrease ba by 1

6. if bi – ba ≥ 12 then go to step 8.

7. if log energy of ba is less than 0.7 then go to step 5, else set bcl=ba, decrease ba by

1 and go to step 3.
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8. Left limit is ba

Left limit correction using zero-crossing rate

1. Suppose ba represents the previous left limit estimate

2. if  the number of zero crossings in the ba frame is greater than the threshold IZCT,

then decrease ba by one and go to step 2.

3. Set bi = ba

4. Set bcpl = bi and NCX=0

5. Decrease ba by one, if the number of zero crossings in the ba frame is greater than

the threshold IZCT, increase NCX by 1, otherwise go to step 7.

6. if NCX ≥ 2, set bi = ba

7. if bcpl –ba <4, go to step 5

8. if NCX ≥ 2, go to step 4

9. Corrected left limit is ba.

The following figures illustrate the application of the above endpoint detection algo-

rithm. We can see that this algorithm performs relatively accurate endpoint detection,

leaving some extra silent parts.
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Figure 3.2: Endpoint Detection using Algorithm 2

Some other algorithms employ a combination of zero-crossings with an energy crite-

rion, named band crossings, in order to capture the unvoiced segments more efficiently.
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We can also improve the performance of an endpoint detection algorithm by preem-

phasising (chapter 3.4) the input signal before log-energy calculation [12]. This is related

to the physiology property of human hearing. Human ear is insensitive to low frequency

signals, but is good at capturing the active properties of speech signal. In the following

figure, we can see the validity of this statement on Algorithm 1.
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plus preemphasis for energy calculations

Figure 3.3: Improvement on Endpoint Detection Algorithm 1

However, we can see that the endpoint detection algorithms are mainly empirical in

the way they define endpoints and their performance is mainly based on the quality of the

input speech waveform.

3.3 Amplitude Normalisation

The amplitude normalisation is a very common technique used in many signal proc-

essing applications. When the application has to deal with signals coming from different

sources with different output signal levels, it would be very beneficial to have a pro-

gramme that will amplify or attenuate the input signal to a constant output level. The

whole concept matches that of an Automatic Gain Control (AGC) device.

Suppose we have the following discrete signal x[n] that has resolution of N bits and

therefore take values from 0 to 2N-1.



A graphical framewo

2N-1

    set

   top

   0

dif

Suppose we w

step will be to tr

calculate the max

those x[n]=top). T

value towards the

The whole nor

1. Find the m

(top)

2. Calculate s

3. Calculate d

4. For every s

If  x[n] ≥ 0

else
Figure 3.4: Amplitude Normalisation
rk for the evaluation of speaker verification 20

ant to normalise the signal to a% of the maximum resolution. The first

ace the maximum absolute value x[n] takes in this segment. Then, we

imum amplification (or attenuation) that will be added to the signal (for

he amplification get linearly smaller as x[n] values decrease in absolute

 2N-1-1 level.

malisation algorithm can be summed in the next simple steps:

aximum absolute value of x[n] in the corresponding speech segment

et = (1-a) (2N-1-1) ,  (suppose 0 ≤ a ≤ 1)

if = top-set

ample x[n] of the segment  do the following:

 then
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if x[n]> 2N-1-1 then x[n] = 2N-1-1

(3.3)

(3.4)
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The next figures show an example of amplitude normalisation.
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Figure 3.5: Amplitude Normalisation example

3.4 Preemphasis

In practical speech analysis applications, we will notice that speech waveforms are

usually preemphasised prior to extracting speech feature sets. That is to say that we apply

a filter that increases the relative energy of the high-frequency spectrum, i.e. a high pass

filter. We use a FIR HP filter, described by the following transfer function:

11)( −−= azzH spreemphasi

Normally, a takes values from 0.9 to 1.0. We can see the frequency response of this HP

filter for a=0.98 in the following figure:

Figure 3.6: Preemphasis Filter Frequency Response

(3.5)



A graphical framework for the evaluation of speaker verification 22

The preemphasis filter actually models the lip radiation characteristics, and introduces

a zero near w=0, and a 6-dB per octave shift on the speech spectrum. There are several

reasons for employing a preemphasis filter. First of all, the introduction of this filter tends

to cancel the glottal or lip radiation effects on speech production and we are more accu-

rate when we represent the whole speech production procedure with the vocal tract model

filter [1].

Another reason for pre-emphasis is to prevent numerical instability. If the speech sig-

nal is dominated by low frequencies, then this may result to an autocorrelation matrix that

its inversion will cause numerical instability. This can be prevented with a preemphasis

filter.

Moreover, some phonemes feature peaks in high frequencies, which can not be de-

tected by the LP algorithm (see also 4.5), because they contain low-frequency compo-

nents. A little boost in high-frequency components can facilitate the whole procedure.

This can have great application in case of voiced phonemes. We also note that such pre-

emphasis filters also raise frequencies above 5 KHz, a region in which the auditory sys-

tem becomes increasingly less sensitive. However, frequencies 5 KHz above are naturally

attenuated by the speech production system and normally are assigned a significantly

smaller weight in a typical speech recognition system [29].
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4.1 Introduction

After performing all the essential preprocessing in the user's input speech samples, the

next module in a speaker verification front-end will be the Feature Extraction module.

The basic role of this module is to use the input speech samples, so as to calculate certain

parameters (feature sets) that will be used to register the identity of the user. These fea-

ture sets should be able to depict certain metrics in human speech that will be effective in

the user's identification.

In this chapter, we will examine the methodology of extraction of some the most

commonly-used feature sets. We will also look into the segmentation and windowing of

the input speech samples.

4.2 Segmentation and Windowing

The Segmentation and Windowing of speech signals is a very common part in many

speech processing applications. According to this technique, the input signal is seg-

mented into frames of constant length M that overlap each other. Each of these frames is

then multiplied by a hamming window. This is much more preferable than using a rectan-

gular window, because the hamming window helps to smooth the abrupt discontinuity at

the frame boundaries [1]. Figure 4.1 illustrates the segmentation and overlapping proce-

dure.

The fact that can justify the segmentation of the speech signal is that during speech

production the vocal tract constantly changes. Hence, vocal tract modelling would only
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have meaning in certain speech segments where its parameters stay unchanged. There-

fore, the choice of the frame length is very important.

A long speech frame would normally cause errors in the estimation of feature sets, as

the vocal tract parameters will not remain the same. A short speech frame may not pro-

vide sufficient data for the feature extraction algorithms, leading to errors.

The overlapping of speech frames is used in order to increase the redundancy of the

input signal, so as to provide more speech data to the feature extraction algorithms.

Moreover, we can capture the changes in the vocal tract more accurately. A common

choice for overlapping is 50%, however, one could choose a smaller overlapping ratio.

After segmenting the input signal, the feature extraction algorithms manipulate each

frame in order to produce the corresponding feature sets.

Normally, this procedure is a part of the preprocessing module. Nonetheless, in our

front-end each feature extraction algorithms performs a separate segmentation and win-

dowing of the input signal. This is done mainly to facilitate experimentation, so that each

feature extraction algorithm can choose separate window length and overlapping ratio.

M samples…………
…………

Figure 4.1: Segmentation and Overlapping

Input Signal

Frame 1

Frame 2

Frame N
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4.3 Properties of a Speech Feature Set

Defining a set of speech parameters that can identify a person's identity is a very diffi-

cult task. The speech signal is a complex function of the speaker's certain physical char-

acteristics, such as the vocal source/tract dimensions, emotional state and recording envi-

ronment. Speech data collected from the same speaker at different times generally show

great variability. This illustrates the importance of measuring a proper acoustic feature set

in our speaker verification system.

Some basic properties, a speech feature set should possess are stated below [6]:

 Discriminate between speakers while being tolerant of intra-speaker variabilities.

 Be easily measurable from the speech signal

 Be stable over time

 Be less susceptible to impostors.

Classic speech signal metrics such as voice pitch, formant frequencies etc tend to be-

come less useful in a speaker verification application, as they are too difficult to measure

and vary significantly especially in noisy environments and by the user's sentimental

mood. We are going to look into some important feature sets such as the linear predic-

tive, mel-frequency cepstrum, and perceptual linear predictive coefficients.

4.4 Log – Energy

One of the first measurements (features) that can be extracted from a speech segment

is its energy. The energy spectrum of a speech signal describes the frequency content of

the signal over time. In many speaker verification systems, we take the logarithm of the

segment's energy. Suppose we have a speech segment x[n] of length L. Then, the log en-

ergy can be calculated from the following set:






= ∑

=

ω
L

1n

2j |)e(X|logE

, where X(ejω) is the DFT of the speech segment

(4.1)
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4.5 Linear Predictive Coefficients

 One of the most powerful speech analysis techniques is the method of linear predic-

tive analysis. This method has been one of the basic speech processing techniques over

the past years, used to estimate the basic speech parameters, e.g., pitch formants, spectra,

vocal tract area functions, as well in basic low bit-rate transmission algorithms. The im-

portance of this method lies basically on the accurate estimates of speech parameters and

its relative small processing time.

The basic concept behind linear predictive analysis is that a speech sample can be ap-

proximated by a linear combination of past speech samples [1,2,3,14]. In order words, we

can write that:

∑
=

−=−++−+−≈
p

1k
kp21 ]kn[xa]pn[xa......]2n[xa]1n[xa]n[x̂

, where ai are the LP coefficients, which are considered to be constant over the speech

frame. This estimator is actually a linear predictor, or in other words a FIR filter. We can

convert the above equation to an equality by including an excitation term Gu[n]. There-

fore,
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Taking the z-transform of the above equation we get that:

⇔−=⇒+= ∑∑
=

−

=

− )za1)(z(X)z(GUza)z(X)z(GU)z(X
p

1k

k
k

p

1k

k
k

)z(A
G

za1

G
)z(U
)z(X)z(H p

1k

k
k

=
−

==

∑
=

−

As we can see the speech signal is created after the excitation signal passes through an

all-pole filter H(z).

In many books, the whole human speech-production procedure is modelled by the

schematic in Figure 4.2.

(4.2)

(4.3)

(4.4)
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The actual excitation function for speech u[n] is either a quasi-periodic pulse train (for

voiced  speech sounds) or a random noise source (for unvoiced sounds).We can see that

the normalised excitation signal u[n] is chosen by a switch whose position is controlled

by the voiced-unvoiced character of the speech. Then, the appropriate gain G of the

source is estimated from the speech signal and finally the scaled input signal produces the

signal x[n] after passing through a time-varying digital filter (all-pole filter) H(z) con-

trolled by the human vocal tract parameters. We can see that the actual parameters of this

model are the voiced/unvoiced classification, pitch period for voiced sounds, the gain pa-

rameter and the coefficients of the digital filter. The characteristic of all these parameters

is that they vary slowly with time.

The basic characteristic of the linear prediction coefficients ai is that the frequency re-

sponse of the vocal tract filter H(z) outlines the actual frequency response of the speech

signal over that segment. Moreover, the peaks that appear in the frequency response of

the vocal tract filter H(z) depict the formant frequencies, in the case that the specified

speech segment contains a phoneme.

A very important issue is the choice of the linear prediction coefficients order p. It’s

very logical that for greater values of p, the frequency response of the vocal tract model

filter will outline the frequency response of the speech segment more accurately. On the

other hand, a big choice for the p will definitely increase the required processing time. A

common choice is p=12.

Impulse
Train

Generator

Random
Noise

Generator

Pitch
Period

Time-Varying
Digital
Filter

Vocal Tract
Parameters

G

x[n]

Voiced/
Unvoiced
Switch

u[n]

Figure 4.2: Simplified Model for speech production
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The basic problem of linear prediction analysis is to determine the set of predictor co-

efficients ak, directly from the speech signal so that the spectral properties of the digital

filter in the previous figure match those of the actual speech waveform. We can achieve

this, usually by trying to minimise the mean square difference between the true samples

x[n] and our estimates [n]x̂ , over a range of N samples. Hence, we are trying to minimise

the following expression:

∑
=

−=
N

1n

2])n[x̂]n[x(E

 We can even try to predict future samples of x[n], but then in order to calculate the er-

ror we will have to minimise the following expression:

2
p

1k
k

N

1n

N

1n

2 )]kn[xa]rn[x(])n[x̂]rn[x(E ∑∑∑
===

−−+=−+=

  The coefficients ak that can minimise the above equation are those that can set the par-

tial derivative of E to zero. More specifically, the equation we have to solve is the fol-

lowing:

0
a
E

k

=
∂
∂ , for k=1,…..,p

If we assume that x[n] is speech signal of length L then we can produce the following

set of equations, exploiting the partial derivative:

x[1+r] = a1x[0]+ a2x[-1]+…+ apx[1-p] (n=1)

…… = …… ……

x[p+r] = a1x[p-1]+ a2x[p-2]+…+ apx[0] (n=p)

…… = …… ……

x[L-1] = a1x[L-2-r]+ ……+ apx[L-1-r-p] (n=L-1-r)

…… = …… ……

x[L-1+p+r] = 0+ …+ apx[L-1] (n=L-1+p)

(4.5)

(4.6)

(4.7)
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,or equivalently:

⇒













































−

−−

−−

≈























++−

+

+

p

2

1

a
..
..

a
a

]1L[x.........0
...............

]0[x......]2p[x]1p[x
................

]p1[x......]1[x]0[x

]rp1L[x
...

]rp[x
...

]r1[x

Xax =

 When r=0 there are two methods of linear prediction, which are distinguished solely by

which equations are included in the error sum:

1. Autocorrelation method:

All possible equations from n=1 to n=L-1+p are included. Thus, if the extent of the in-

put date x[n] is finite 0 ≤ n ≤ L, the prediction distance is r, and the length of the pre-

dictor is p, there will be L-1+p equations. In some cases the predictor will be trying to

match 0,because x[L]=0, x[L+1]=0, ……, x[L-1+p+r]=0.

In order to solve the equations presented before, we are going to use the orthogonality

principle, which is stated below:

 “The linear predictor [n]x̂  of x[n], that minimises the mean square error, should al-

ways fulfill the following equation:

0]}kn[x])n[x̂]n[x{(E =−−  ,for k=1,….p "

Manipulating the above equation, we can get that:
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(4.8)

(4.9)

(4.10)
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  If we apply all possible values for k,i on this equation , we can form the following ma-

trices:
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,where R is a pxp Toeplitz matrix made up of values of the autocorrelation sequence for

x[n], a is a px1 vector of prediction coefficients, and r is a px1 vector of autocorrelation

values.

It is obvious that it would be necessary to invert the pxp R matrix, in order to calculate

the coefficients ak. Inverting a pxp matrix is a very difficult procedure (especially for

large values of p), and the traditional method of inverting a matrix can not be applied ef-

ficiently in our case.  However, R is a Toeplitz matrix and there are several recursive

methods that can facilitate the inversion, such as the Levinson-Durbin method.

In brief, the Levinson-Durbin method can be described by the following steps:
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The steps 2 to 5 are repeated recursively for i = 1,2,…..,p and the final solution is

given as:
)p(

jj aa =     , for 1 ≤ j ≤ p

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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Levinson-Durbin method is a very efficient way of solving simultaneous equations.

The resulting H(z) will always be stable, i.e. all of its pole will be inside the unit circle.

2.  Covariance method:

Only those equations for which all values of x[n] needed on both sides are present in

the data. This method uses fewer equations, only L-p-r, but does not predict past the end

of data.

Using the notation )k,i()ki(R nn φ=− , we can turn the equation [] into the follow-

ing:
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The resulting matrix is symmetric, as )i,j()j,i( nn φ=φ , but it is not Toeplitz and can

be only solved by Cholesky decomposition method. However, the transfer function found

from these coefficients may not be stable. Therefore, the covariance method is not used in

common speech processing applications.

The LPC coefficients generally feature great performance. However, there are several

points somebody should be aware when using the LPC coefficients [20].

 The frequency response of the all-pass filter is very sensitive to small changes

in ak (such as quantising errors in coding)

 There is no easy way to verify that the filter is stable

 Interpolating between the parameters that correspond to two different filters

will not vary the frequency response smoothly from one to the other: stability

is not even guaranteed.

(4.18)
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Although the linear prediction coefficients ak are often thought to be the fundamental

set used for linear predictive analysis, sometimes we need to transform this set of coeffi-

cients to a number of parameter sets, so as to get alternative representations of speech [3].

These alternative representations often are more convenient for certain applications of

linear predictive analysis. We will examine two other basic parameter sets that can be di-

rectly derived from LP coefficients.

4.6 Reflection Coefficients
The Reflection (PARCOR) coefficients can act as a replacement to the well-known LP

parameters [3,20].

We can calculate the reflection coefficients ri directly from the set of LP coefficients ai

using the following algorithm:

1.  Set  j
)p(

j aa =  , for 1 ≤ j ≤ p

2.  )i(
ii ak =

3. 2
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j k1
aaa

a
−
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= −−

4. Repeat step 3 for 1 ≤ j ≤ i-1

5. Repeat steps 2,3,4 for i=p to 1 with negative step

6.   ii kr −=

The reflection coefficients are bounded.

1  |r |  0 i ≤≤

This is an extremely useful result for storage and compression applications involving

LP models [29].

4.7 Cepstrum Coefficients
A transform that is commonly used in speech processing is called the cepstrum [3,20].

In fact, the cepstrum is the inverse fourier transform of the log spectrum and is calculated

by the following equation:

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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Another alternative set are the cepstrum coefficients, which in fact are the cepstrum of

the impulse response h[n]  of the overall LP system. We can calculate the cepstrum coef-

ficients cj directly from the set of LP coefficients ai using the following formula:
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j
1ac    ,for 1 ≤ j ≤ p

The use of a non-linear transform that follows the superposition property, such as the

logarithm, was introduced as it offered a methodology for separating the excitation signal

from the vocal tract shape [29].

4.8 Mel-Frequency Cepstral Coefficients (MFCC)

Many psychophysical studies have shown that human perception of the frequency

content of sounds, either for pure tones or for speech signals, does not follow a linear

scale [2]. This conclusion has led to the idea of introducing subjective pitch of pure tones,

therefore introducing a new frequency scale, known as the mel scale. In other words, for

each tone with an actual frequency f  (in Hz), a subjective pitch is measured on the mel

scale (in mels). As a reference point, the pitch of a 1 kHz tone, 40 dB above the percep-

tual threshold is defined as 1000 mels.

Figure 4.3 shows the relation between subjective pitch and frequency. The upper curve

shows the relationship of the subjective pitch to frequency on a linear scale; it shows that

subjective pitch in mels increases less and less rapidly as the stimulus frequency is in-

creased linearly. The lower curve, on the other hand, shows that the subjective pitch is es-

sentially linear with the logarithmic frequency. It shows that the subjective pitch is es-

sentially linear with the logarithmic frequency beyond about 1000 Hz.

(4.27)

(4.26)
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Figure 4.3: The Mel-scale

There have been many approximations of the mapping function between the perceived

frequency scale Fmel and the real frequency scale fHz. The most commonly used approxi-

mation is the one described by the following equation:






 +=

700
f1log2595F Hz

mel

Moreover, it has been found that the perception of a particular frequency by the audi-

tory system is influenced by the energy in a critical band around that frequency. In this

idea the mel-scale spectrum is simulated using a filter bank spaced uniformly on a mel

scale, where the output energy from each filter band approximates the modified spectrum.

The Mel-Frequency Cepstral Coefficients are produced by extracting information from

the mel-scale spectrum of the speaker's speech samples. In order to calculate MFCC,

first of all, we have to design a filter bank that will extract information from the mel-scale

spectrum and then perform a Discrete Cosine Transform to the log-outputs of the filter

bank. We will look into the whole procedure in detail.

(4.28)
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A filter bank [1,2,3] consists of a set of band-pass filters, used to extract information

from certain areas of the input signal's spectrum. In our case, the filter bank consists of a

set of triangular band-pass filters with their centre frequency uniformly distributed in the

mel-scale. Triangular filters are used in this design instead of rectangular filters so as to

avoid large changes in spectrum with small changes in frequency [21]. The following

figure shows a mel-scale filter bank consisting of mp filters.

The next figure shows the triangular mel-scale filter bank represented in the real fre-

quency domain.
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Figure 4.5: The previous filter bank represented on real axis.
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In practice, we design the mel-scale filter bank and then using the mapping function

between the mel and the real frequency, we transform it into a real frequency filter bank.

In order to calculate the MFCCs of a speech segment, we take the FFT of the segment

and then find the power spectrum by squaring the absolute value of the FFT, so as to per-

form the filtering in the power domain. Then, we pass the power spectrum through each

filter of the filter bank, calculating the output power of the filters in the filter bank.

Hence, we get a set of mp parameters Sk (mp is the number of filter-bank filters). Nor-

mally, we take the log of Sk.

The final step is to apply a sort of discrete cosine transform to log(Sk), using the fol-

lowing formula that will give us the MFCC.
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, where mp is the number of filter-bank filters and Ncep is the number of desired

MFCC.

This transform is identical to the common DCT, but we don't calculate the DC value

of the DCT, so as to make MFCC independent of signal level [20]. The introduction of

the DCT reduces correlation between coefficients and compressed information into low-

order coefficients (well-known property of the DCT).

 The application of MFC coefficients in modern speaker verification application is

more than widespread. The MFCC are maybe one of the most important speech feature

sets.

4.9 Delta and Delta-Delta MFCC Coefficients

A very important set of speech feature parameters are the delta-MFC coefficients

(ΔMFCC) and the delta-delta-MFC coefficients (Δ2MFCC) and can act as replacement to

the normal MFCC set.

In order to calculate the ΔMFCC and the Δ2MFCC, we have to calculate the MFCC of

the corresponding speech segment. The ΔMFCC set is the product of the derivative of the

MFCC set and the Δ2MFCC set is the product of the derivative of the ΔMFCC set.

(4.29)
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A very important issue is the calculation of the derivative of a discrete set of points

x[n]. One could use the definition of the derivative as an approximation. In other words,

we can say:

]1n[x]n[x])n[x(
dn
d −−≈

However, this approach is not very accurate and introduces much noise to the deriva-

tive. An alternative approach is by using polynomial fitting [20]. According to this tech-

nique, we are trying to fit a polynomial to a given set of points, or in other words to cal-

culate the coefficients of a polynomial that can pass from the given set of points. In our

case, we will try to fit a line around the T closest points from either side to the point we

are interested in calculating the derivative (2T+1 points in total)

 This line can

slope of that lin

analysis [20], w
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sult and then sca

(4.30)
Figure 4.6: Calculating the derivative of a discrete set of points
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 be a very good approximation of the tangent on that point, therefore the

e represent the derivative at that point. According to a mathematical

e can say that the derivative is given by the following formula:

∑

∑
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−=

−
= T
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k

]kn[kx
]n['x

rmula can be calculated much more easily (in MATLAB) by calculating

 between the input x[n] and the discrete signal with values –T, -(T-

,T . Of course, we have to discard the first and the last T points of the re-

le the result with the denominator of the equation above.

(4.31)



A graphical framewo

s

4.10 Perceptual Linear Predictive Coefficients

The perceptual linear predictive analysis is a relatively new technique for analysis of

speech [15]. In comparison with conventional linear predictive analysis (LP), PLP analy-

sis is more consistent with human hearing. This technique uses three concepts from the

psychophysics of hearing to derive the estimate of the auditory spectrum: (i) the critical-

band spectral selectivity, (ii) the equal-loudness curve and (iii) the intensity-loudness

power law. It also resembles the mel-frequency cepstrum analysis, as we will see further

on.

The PLP analysis calculates the coefficients of an all-pole model, as in the LP analy-

sis, according to the following steps:

The first two s

band pass filters, 

signed in this cas

edges and they ar

named the Bark s

tual” frequency sc
Figure 4.7: Perceptual Linear Predictive analysi
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teps of the above block diagram result in the design of a filter bank of

quite in the same nature as in the MFCC case. The bandpass filters de-

e are not triangular, but a short of rectangular windows with smooth

e warped around another scale that models human auditory perception,

cale. We can define a mapping of acoustic frequency, to the “percep-

ale (Bark scale), as follows [29]:
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The equation that describes the shape of each bandpass filter is given by the following

equation:
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 A filter bank consisting of 16 band pass filters is shown in the next figure:

Figure 4.8: Filter Bank used for PLP Calculation.

In order to calculate the PLP coefficients of a speech segment, we take FFT of the

segment and then find the power spectrum by squaring the absolute value of the FFT, so

as to perform the filtering in the power domain. Then, we pass the power spectrum

through each filter of the filter bank (like the one shown above), calculating the output

power of the filters in the filter bank. Hence, we get a set of mp parameters Sk (mp is the

number of filter-bank filters).

(4.32)

(4.33)
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The last operation prior to the all-pole modeling is the cubic-root amplitude compres-

sion, i.e. the intensity-loudness power-law:
33.0

kk SF =

This operation is an approximation to the power law of hearing and simulates the non-

linear relation between the intensity of sound and its perceived loudness.

The next step is to take real part of the inverse DFT of the Fk parameters and then use

the Levinson-Durbin algorithm in order to estimate the parameters of the all-pole model.

These parameters constitute the Perceptual Linear Prediction Coefficients.

The Mel scale cepstral analysis is very similar to perceptual linear predictive analysis

of speech, because they are both based on psychologically based spectral transformation.

However, in the MFCC the spectrum is warped according to the Mel scale, whereas in

PLP the spectrum is warped according to the Bark scale. The main difference between

Mel scale cepstral analysis and perceptual linear prediction is related to the output cep-

stral coefficients. The PLP model uses an all-pole model to smooth the modified power

spectrum. The output cepstral coefficients are then computed, based on this model. In

contrast, Mel scale cepstral analysis uses cepstral smoothing to smooth the modified

power spectrum. This is done by using a DCT on the log power spectrum.

4.11 Rasta – PLP Coefficients

The PLP speech analysis technique is based on the short-term spectrum of speech,

subsequently modified by several psychophysically based spectral transformations. How-

ever, the PLP technique (just like most other short-term spectrum based techniques) is

vulnerable when these short-term spectral values are modified by the frequency response

of the communication channel. The RelAtive SpecTrAl (RASTA) methodology makes PLP

(and possibly also some other short-term spectrum based techniques) less sensitive to lin-

ear spectral distortions [16].

(4.34)
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GGAAUUSSSSIIAANN  MMIIXXTTUURREE  MMOODDEELLSS  ((GGMMMM))

5.1 Introduction

The next step of a speaker verification system is to arrange the features data obtained

from the training speech samples into a reference template, so that any time the user re-

quires authorisation, we can refer to it and verify his identity.

In this chapter, we are going to examine the use of a mixture of gaussian distributions

for modelling the speaker's phonetic classes. We will look into the mathematical defini-

tion, the theoretical and practical interpretations of GMM, as well as some extensions to

the common GMM. Moreover, we will make an overview of other common reference

template building techniques used in speaker verification.

5.2 Definition

In this section, we are going to present and interpret the Gaussian Mixture Modelling

technique for speakers. More specifically, we are going to look into the mathematical

definition of GMM, as well as some considerations concerning their practical applica-

tions.

A Gaussian Mixture Model consists of M components [17]. The conditional probabil-

ity density function of the vector X = x, given the parameters of the model is given by the

following equation:

)x(bpλ)|xP(
M

1i
ii∑

=

= (5.1)
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,where pi are the weights for each component and bi(x) is the gaussian probability

function of a random vector x of size D, with mean  μi  and covariance matrix Ci.

Of course,
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In other words, a GMM can be represented only by the mean vectors, covariance ma-

trices and mixture weights from all component densities. Therefore, we can describe a

GMM using the following notation:

},,{ iii Cp µλ = for i = 1,….,M

In speaker verification, each speaker is represented by a separate GMM, described by

his/her model λ. Figure 5.1 graphically depicts the principle of a GMM, consisting of M

components.

The calculation of a covariance matrix requires a considerable great processing time.

As we can easily see the calculation of a great number of covariance matrices can consid-

erably increase the processing time of a practical speaker verification application. There-

Σ
p(x| λ)

x

b1( )

b2( )

bM( )
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P2

PM

μ1, C1
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μM, CM

Figure 5.1: Graphical Representation of a Gaussian Mixture Model

(5.3)

(5.4)

(5.5)
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fore, many approaches to the covariance matrix calculation have been proposed. In order

to reduce the number of calculations, a GMM can have several different forms depending

on the choice of covariance matrices:

1. Nodal covariance: each component of a GMM has its own covariance matrix.

2. Grand covariance: the components of each GMM have the same covariance

matrix

3. Global covariance: a single covariance matrix is used for all models.

Moreover, covariance matrices can be full or be regarded as diagonal. In other words,

we can assume that the elements of the random vector x (features) are uncorrelated,

which makes the covariance matrix diagonal. Unfortunately, this estimate can undermine

the performance of our system for certain feature sets, but it can reduce the total proc-

essing time of our system. For example, the cepstral vectors can be modelled by GMMs

with diagonal matrices without much deviation from reality [23].

However, we can decorrelate the input feature vectors, using a linear transform, and

therefore diagonalise non-diagonal covariance matrices. This procedure will be presented

further on.

Practically, you can use any combination of the above modes. An approximation,

which is very close to reality, is the use of nodal, diagonal covariance matrices. In other

words, each component of a GMM model has its own diagonal covariance matrix,

5.3 Gaussian Mixture Model Interpretations

Basically, there are two motivations behind the use of the Gaussian Mixture Density

modelling for speaker verification [17].  First of all, the individual-component Gaussians

in a speaker-dependent GMM are interpreted to represent some broad acoustic classes. It

is reasonable to assume the acoustic space corresponding to a speaker's voice can be

characterised by a set of acoustic classes representing some broad phonetic events, such

as vowels, nasals, or fricatives. These acoustic classes reflect some general speaker-

dependent vocal tract configurations that are very useful for modelling speaker identity.
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One can also look at gaussian mixtures as describing alternative pronunciations of a par-

ticular speech sound [20]. Moreover, the spectral shape of the ith acoustic class [17], for

example, can in turn be represented by the mean vector μi, and variation of the average

spectral shape can be represented by the covariance matrix Ci.

The second motivation for using GMM for speaker verification is the empirical obser-

vation that a linear combination of Gaussian basis function is capable of representing a

large class of sample distributions. One of the powerful attributes of the GMM is its abil-

ity to form smooth approximations to arbitrarily - shaped densities. Using a discrete set of

Gaussian functions, each with their own mean and covariance matrix, GMM allows a

more versatile modeling capability.

Moreover, because the component Gaussians are acting together to model the overall

pdf, full covariance matrices are not necessary even if the features are not statistically in-

dependent. The linear combination of diagonal covariance Gaussians is capable of mod-

eling the correlation between feature vector elements. The use of a set of M full covari-

ance Gaussians can be compensated by using a larger set of diagonal covariance Gaus-

sians.

5.4 Gaussian Mixture Model Training

Using training speech from a speaker, the goal of speaker model training procedure is

to estimate the parameters λ of the GMM that matches the distribution of the training

feature vectors.

There are several techniques for estimating the parameters of a GMM [17]. The most

popular, well-established and robust method is the Maximum Likelihood (ML) estimation.

This training procedure is described directly

5.4.1 Expectation-Maximisation algorithm (EM)

 Suppose we have a set of T training vectors X={x1,x2,x3…,xT). We would like to es-

timate the λ of our model, so that
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Unfortunately, this is a non-linear problem, therefore λ can not be directly calculated.

Therefore, we will use an iterative algorithm, called Expectation-Maximisation (EM) al-

gorithm, so as to estimate ML parameters. The EM algorithm consists of the following

steps:

EM algorithm

1. Choose an initial model λ

2. Find a new model λ' so that P(X|λ') > P(X|λ).

3. Repeat 2 until the difference P(X|λ')-P(X|λ) has reached a convergence

threshold, or you have reached the maximum number of iterations.

The EM algorithm resembles the Baum-Welch reestimation algorithm, used for esti-

mating HMM parameters [17,21].

On each EM iteration, there are certain reestimation formulas that can guarantee a

monotonic increase in the model's likelihood value. Using the GMM notation, we have

Mixture Weights:
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, where μi, xt, σι are arbitrary elements of the corresponding vectors.

The a posteriori probability for acoustic class i is given by the following formula:
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As it's well obvious, each Gaussian component has its own covariance matrix (nodal)

and we assume that it's a diagonal matrix.

A very useful hint in the EM algorithm is the use of log-probabilities instead of the

real values, while calculating the P(X|λ). The logarithm is a monotonous rising function

and therefore we can write :
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The transformation above helps us to calculate the convergence threshold much

easier and gives us a more illustrative form for the P(X|λ). If we look at the definition

of P(X|λ), we will see that it is a number with at least T decimal points, as it is the

product of  T probabilities, where T is the number of the training vectors. Using a

logarithm, we can process P(X|λ) much easier.

5.4.2 Practical Issues of the Training Algorithm

 Choice of M

Unfortunately, there is no good theoretical guide for selecting the proper number of

gaussian components for our speaker model. For speaker modelling the objective is to

choose the minimum number of components necessary to adequately model a speaker for

good speaker identification. Choosing too few mixture components can produce a

(5.10)

(5.11)
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speaker model, which does not accurately model the distinguishing characteristics of a

speaker's distribution. Choosing too many components can reduce performance, when

there are a large number of model parameters relative to the available training data and

can also result in excessive computational complexity and processing time both in train-

ing and classification.

 Algorithm Initialisation

A very important issue is the initialisation of the EM algorithm with some starting λ

values. The EM algorithm is guaranteed to find a local maximum likelihood model re-

gardless of the starting point. However, the likelihood equation for a GMM has several

local maxima and different starting models can lead to different local maxima [17]. There

have been several algorithms for initialisation of the EM algorithm. We are going to de-

scribe two basic methods.

The first method doesn't perform any special initialisation. It randomly selects M fea-

ture vectors from the speaker's training data (after silence removal) as starting values for

the initial model means and uses identity matrices for the initial covariance matrices. This

initialisation method is very simple and even though it is not very much sophisticated,

produces satisfactory results in terms of speaker verification performance.

The second method employs a K-means algorithm in order to perform a clustering of

the training data (speech feature vectors) into M acoustic classes [20]. After that, we cal-

culate the M initial estimates for the mixture means and covariance matrices. The K-

means algorithm applied in this case follows:

K-Means algorithm

1. Set the mean vectors μi to M randomly chosen training frames

2. Allocate each training frame to whichever μi it is nearest to.

3. Update each μi to the mean of all the frames that were allocated to it.

4. If no frames were allocated to μi, set it to a randomly chosen point from one of the

other distributions.
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5. Repeat steps 2,3,4, until convergence occurs

6. Set Ci  to the covariance of the frames allocated to μi.

Both initialisation methods finally converge to a local maximum, which indeed is dif-

ferent. Both methods feature very good performance.

 Variance Limiting

While training a nodal variance GMM, it has been observed that variance elements

can become very small in magnitude and therefore can degrade the performance of our

system. This is particularly true for a mixture model with a large number of component

densities. These small variances produce a singularity in the model's likelihood function

and can degrade identification performance by distorting speaker model scores used in

the maximum likelihood classifier. These singularities are likely to appear when there is

not enough data to train a component's variance vector sufficiently or when using noise-

corrupted data [17].

In order to avoid these effects, we can apply a variance limiting constraint. In other

words, we set a minimum variance value on elements of all variance vectors in a

speaker's model. More specifically,
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This constraint is applied to the variance estimates after each EM iteration, making the

EM algorithm more robust. Again, attention must be paid in the selection of the variance

threshold value. Setting the threshold very low may not eliminate the singularities in the

covariance matrices. On the other hand, setting the threshold very high, the component

variances are continuously masked to the same value and therefore totally distort the

model, thus deteriorating the performance of the speaker verification system. The thresh-

old should be empirically set according to the performance of the system.

(5.12)
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5.5 Speaker Verification using Gaussian Mixture Models

Suppose we have a group of S speakers {1,2,…,S}, represented by λ1,λ2,……,λS

GMMs and we have a set of speech data X={x1,x2,x3…,xN} from the claimed user. The

identity of this user should maximise the following probability.

{ }
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Assuming equally likely speakers, implies that P(λκ)=1/S. Moreover, P(X) is the same

for all speaker models, therefore P(X) = 1/S. The above equation can be modified as fol-

lowing:
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We can see that the probability P(λκ | Χ) can now be easily calculated using the equa-

tions derived so far. Now, for the reasons mentioned earlier, we are going to use log

probabilities. So, the expression that should be maximised by the claimed user's speech

data is the following.
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This procedure can be employed in two different versions of speaker recognition ap-

plications. The first application is called speaker identification, where we are going to

find the claimed user from its test data. In this case, the λκ that maximises the above ex-

pression denotes the identity of the user providing the test data. The other application is

speaker verification, where we are going to verify that the identity of the claimed user. In

other words, we have to verify that the λκ that maximises the above expression belongs to

(5.14)

(5.13)

(5.15)
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the claimed user. In that case, we accept the identity of the user. Otherwise we reject

authorisation. to the user.

5.6 Cohort normalisation on Speaker verification with GMM

A common technique used in speaker verification systems is cohort normalisation

[19,21], aiming to enhance the performance of our system. According to this technique,

we use a normalised score in order to decide whether to accept or reject the claimed

identity. The log-probability log( P(Χ | λκ ) ) of the claimed user is normalised to the log-

probabilities of  the cohort speakers. The term 'cohort speakers' refers to imposters imper-

sonating the true speaker [21]. This creates a normalised score Pnorm described by the

following equation:

∑
=

λ−λ=
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kinorm ))|X(Plog(

K
1))|X(Plog(P

The verification is performed by comparing Pnorm to a set threshold. If Pnorm exceeds

the threshold we accept or otherwise reject the user.

A very important issue here is determining the number K and the identity of the im-

postors. Logically, the impostors will identify themselves by producing great log-

probabilities log(P(Χ | λκ ) ). There are several proposals for the formation of the impostor

group. We can choose the K models with the greatest log-probability (optimum selection)

or even  K randomly selected models as impostors. It's more than obvious that the per-

formance of the optimum selected impostor group is much greater [19]. We can choose

the K/2 models with the greatest log-probability and the K/2 models with the smallest

log-probability, creating the near and far background set [24].

5.7 Using Orthogonal GMM (OGMM)

In the previous sections, we have described the operation and the theory behind Gaus-

sian Mixture Models. The basis of the GMM approach is to represent the distribution of

training vectors from each speaker with a weighted sum of several multivariate Gaussian

(5.16)
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functions. Each Gaussian function may have a full covariance matrix, however, in prac-

tice, the diagonal covariance matrix has been continuously used, employing more Gaus-

sian components for compensation. A consequence of using a large GMM is that its

training procedure is time-consuming and its response speed is very slow.

Generally, the elements of feature vectors extracted from a speech signal are corre-

lated. An alternative solution can be to use a linear transform so as to decorrelate the

elements of speech feature vectors [18].

Suppose we have a random vector x, with D elements. The mean and the covariance of

the random vector is given by the following equations:

{ }xE
x
=µ

{ }T
x xxEC =

The covariance matrix Cx is a DxD real symmetric matrix. If we want to diagonalise

this matrix, or in other words decorrelate the elements of the random vector, we have to

do the following linear transform to x:

xy Ω=

, where Ω is a DxD matrix whose rows are the eigenvectors ei of Cx. As Cx is a real

symmetric matrix, it is certain that Cx has D eigenvectors. Hence,
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Every eigenvector ei of the Cx matrix is connected to the corresponding eigenvalue

with the following equation:

iiix eeC λ=

Now, we are going to calculate the mean and the covariance of y.

{ } { } { } xyy mmxExEyEm Ω=⇒Ω=Ω==

{ } { } { } T
xy
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We can easily prove that the new covariance matrix Cy is a diagonal matrix. Note that

the eigenvectors are orthonormal vectors, implying that

(5.17)

(5.19)

(5.20)

(5.18)

(5.21)

(5.22)

(5.23)
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We have shown that by using this linear transform the final covariance matrix in the y-

plane is diagonal.

As it is quite evident here, the greatest problem concerning the practical application of

this technique is the calculation of the covariance matrix. Suppose we have a population

of M vectors, then the mean vector and the covariance matrix can be well approximated

by the following summations:

∑
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The procedure described above can be also found in the well-known Karhunen-Loeve

or Hotelling transform, used in signal or image compression.

5.8 Other reference template building techniques

Several methods have been developed, which deal with the building of the user's

model (reference template) from a group of input feature vectors. Most of these methods

(5.24)

(5.25)

(5.26)

(5.27)
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were borrowed from speech recognition, as speaker verification is a very special speech

recognition case.

One of the first approaches was Vector Quantisation (VQ). In vector quantisation ap-

proach to speaker verification, we can use a parameter template, which is called the

speaker's codebook [13]. The codebook is a series of vectors in Euclidean N-space (N is

the order of the feature vectors) that represent the phonetic clusters in the user's speech.

Template building in this case refers to training the codebook vectors. Feature vectors

used to train the codebook and they are known as training vectors. An iterative technique

is used to train the codebook, using about ten times as many training vectors as codebook

vector. In the verification procedure the feature vectors extracted from the test utterance,

are quantised to the closest codebook vector. The quantisation error can be used to verify

the speaker's identity.

Artificial Neural Networks can also be used in speaker verification. Rather than train

individual models to represent particular speakers, discriminative Neural Networks are

trained to model decision function which best discriminates speakers within a known set.

Several neural network topologies have recently been applied to speaker recognition

techniques, such as multi-layer perceptrons. Generally, neural networks require a smaller

number of parameters than independent speaker models [17]. The major drawback to

many of the NN techniques is that the complete network must be retained when a new

speaker is added to the system.

A very common approach is the use of Hidden Markov Models (HMM) [17,19,20,21].

According to this approach. There is an explicit or implicit segmentation of the speech

into phonetic sound classes prior to speaker model training. This segmentation is mainly

performed using the Viterbi alignment algorithm. Each cluster produced by this segmen-

tation is represented by a state in the Markov chain.  The Markov model employed here is

a left-to-right model. As we can see in this model, the states proceed from left to right as

time increases, and therefore is not an ergodic model. This Markov model is called Hid-

den, because the actual state sequence is not directly observable, but can be observed

only through another set of stochastic processes that produce the sequence of observa-

tions.
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The calculation of the transition probabilities is done via an iterative algorithm, called

the Baum-Welch Reestimation technique, using the segmentation performed earlier by the

Viterbi alignment algorithm.

There has been considerable research effort on HMM so far, and the greatest part of

the commercial speaker verification products are based on HMM recognisers. Therefore,

there have several versions of the classic HMM recogniser, such as the integration of a

HMM and a Multi-layer Perceptron (MLP) [22], in order to boost its performance.

Hidden Markov Models are based on the same concept as Gaussian Mixture Models:

the classification of the input feature vectors into phonetic/acoustic classes. The differ-

ence between the two models is that in HMM, the state transitions are Markovian,

whereas the state transition of GMM are not [23]. The close relationship between GMMs

and HMMs will allow speaker recognition systems developed using GMMs to take ad-

vantage of the considerable research efforts currently being undertaken the scientific

community.

                      a12                                a23                               a34                aN-1N

    State 1               State 2                State 3                           State N

a11                                a22                                 a33                                                    aNN

Figure 5.2: A left to right Hidden Markov Model
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CCHHAAPPTTEERR  66

GGRRAAPPHHIICCAALL  UUSSEERR  IINNTTEERRFFAACCEE  ((GGUUII))  DDEESSIIGGNN  FFOORR
AA  SSPPEEAAKKEERR  VVEERRIIFFIICCAATTIIOONN  SSYYSSTTEEMM

6.1 Basic Properties of a Graphical User Interface (GUI)

Formally, a Graphical User Interface (GUI) is a computer program that enables a per-

son to communicate with a computer through the use of symbols, visual metaphors, and

pointing devices. Some people consider the design of a GUI quite elementary in pro-

gramming and therefore of less importance. However, it is very important to build a GUI

that can facilitate the human-computer interaction in the application that runs beneath it.

There are three basic qualities of GUI design [4]:

 Simplicity

Simplicity in GUI design is the first goal. A GUI should feature a clean, elegant look

and a sense of unity. A GUI that puzzle the users with many dialog boxes and buttons ar-

ranged in a clumsy way can not be of great value. The programmer should arrange the

GUI layout so that the users can advance gradually and in simple steps towards the com-

pletion of the task.

 Consistency

The further users are from their base of experience, the more likely they are to feel

disoriented. Anything you can do to keep the user from feeling confused is extraordinar-

ily important.

 Familiarity

If the GUI that we create is in some sense familiar to its users, then they can generally

learn how to use it more quickly. This is value of basing the GUI on a good metaphor.
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They might not know how to do a given task, but the metaphor helps them make a good

guess [4].

We can not suggest a certain methodology in GUI design, as it is not a step-by-step rec-

ipe. However, it’s helpful to think about the GUI creation process as breaking into a de-

sign phase and an implementation phase. This concept is illustrated in the diagram below.

Figure 6.1:  A model GUI design technique [4].

Of course the design may change once we start coding, and there may well be design

decisions that we can’t properly make until we have written some code. The above dia-

gram simply proposes a logical order of steps in GUI design.

6.2 Building GUIs in MATLAB

GUI design in MATLAB follows the general principles, found in all object-oriented

programming languages with visual interface (Visual C++, Visual J++, etc). In MAT-

LAB, the GUI is implemented using the user interface (UI) controls [4,27]. One can also

use this approach in design oriented problems that require comparison of several different

techniques.

Building GUI applications has been considerably simplified in version 5. The addition

of Guide, a set of MATLAB tools designed to make building GUIs easier and faster, has

made GUI design almost as easy as program development using a Rapid Application De-

velopment RAD) package.

The five tools that together make up the Guide are
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(i) the Property Editor,

(ii) the Guide Control Panel,

(iii) the Callback Editor,

(iv) the Alignment Editor, and

(v) the Menu Editor.

 Each tool performs a distinct task and also is aware of and interacts with other tools.

 The Property Editor will basically allow one to change different properties of a fig-

ure. Each item (button, slider etc) is represented as an object like in many other visual

object-oriented languages. Each object has its own variables that represent certain prop-

erties of the object (such as the button’s colour, its position etc). Using the property edi-

tor, we can have a look and even change the properties of every object in every figure we

create. The objects are presented in hierarchical order according to the figure they belong

to.

Axes and uicontrols (e.g., list box, checkbox, slider, etc) can be added by selecting the

appropriate plate located on the button of the Guide Control Panel. There is a graphical

drag-and-drop interface where you can easily design the structure of your application

window (called ‘figure’ in MATLAB). We can easily position our buttons, sliders, pop-

up menus and plots on our figure window.  

The Alignment Tool will allow one to align selected objects using a collection of verti-

cal and horizontal alignment or distribution push buttons.

The Menu Editor will let the user customise the menus in the designed figures. We can

add, delete, create new options to the figure we design, according to the demands of the

figure.

On the other hand, the Callback Editor is a tool, where you can define the callbacks of

each object (element) of the figure. With the term callback, MATLAB refers to the ac-

tions (commands) connected with each object, i.e. the commands that are executed when

you press a button

In order to produce an interactive simulation program, we also need to write the neces-

sary MATLAB programmes that will produce the actual simulation results and then de-
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sign the interfaces. The interface portion usually consists of one (or more) plot area,

which displays the output, and several control objects, such as buttons, sliders, etc. that

are designed to change particular parameters.

6.3 Speaker Verification GUI

In the design of a speaker verification GUI, we have to take into account the structure

of a speaker verification system, as discussed analytically in previous chapters. First of

all, we have to decide the number of windows that are needed for our application and as-

sign a specific task to it.

As we already know, a speaker verification system performs two basic tasks: enrol a

new user to the system and verify the identity of a user. Moreover, the aim of this project

is to design a modular speaker verification system, implying that some parameters of the

system can be adjusted by the user, so as to encourage and help experimentation on the

use of different feature sets combinations into various speaker modelling algorithms.

Therefore, we can see that we obviously need three windows for these mentioned tasks:

enrolment, verification and system configuration. Indeed, we can design a main control

window that can co-ordinate the whole system and help users make their way through the

other three functions of the system.

To sum up, our speaker verification GUI design consists of the following windows:

 the Main Speaker Verification window,

 the Configuration window,

 the Enrollment window, and

 the Verification window

 Each of these windows performs a different specific task. In the next paragraphs, we

will analyse the role of each window in detail.
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6.3.1 The main Speaker Verification window

As we mentioned above, the main Speaker Verification window acts as a central menu

to the other three functions of the GUI. Therefore, as we can see, the whole window is

divided into three areas: enrolment, verification and configuration.

Figure 6.2: The main Speaker Verification window

We have said that GUI encourages the use of different configurations (feature sets,

speaker modelling) for the speaker verification system. However, it is evident that the

programme can not keep the same speaker database for different configurations. For each

different configuration, the GUI builds a new database. The configuration details are

stored in a text file with the extension .ftr, which is created by the configuration window.

This file (preset) keeps the parameters of the feature sets that will be used to create the

feature vector, as well as the method of speaker modelling.

We can see in the above figure that the enrolment and verification areas are inactive

for the time being. This is because we haven't specified which configuration we are going
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to use. In order to create a new configuration, we can press the 'Configure' button and

jump to the configuration window and construct ours. The GUI obliges the user to save

the configuration he is going to use as a preset (.ftr). It is also very important to save

every preset (configuration) in a different directory, as the programme builds the database

as well as other batch files in the directory of the preset file. This will be also beneficial

for the user, so as to keep distinct records of several experiments.

 If we have already saved our configuration, we can load it using the 'load preset' but-

ton. The name of the preset is now shown above the 'load preset' button and the other ar-

eas of the window are now active. If we had previously added some users to the system

using this configuration, they would appear in the pop-down menu in the verification

area. Otherwise this pop-down menu will be empty.

Figure 6.3: The main Speaker Verification window with loaded configuration

We can use the enrolment area to enrol new users to the system. We can type the name

in the corresponding window and press the 'Enroll' button. The GUI also ensures that you

provide a username before you proceed, otherwise you are prompted to do so. Then, it
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checks whether that name exists in the database and in that case you are prompted to

change the user name.  If all the username details are checked, the main window calls the

Enrolment window. After completing enrolment, the new username will appear in the

pop-down menu in the verification area of the main window.

We can use the verification area to verify the identity of a user. We can simply select a

username from the pop-down menu and press the 'Verify' button. The main window calls

the verification window, passing the username of the user, whose identity is to be veri-

fied.

6.3.2 The Configuration Window

The Configuration Window creates the configuration file that specifies the parameters

of the speaker verification system. Here, we can select the feature sets that will form the

feature vectors that will be extracted from the speaker's input speech samples, as well as

the algorithm that will be used to model each speaker.

In order to build the feature vector, we have to follow a set of steps. First of all, select

from the corresponding pop-down menu, the type of feature set we want to add to our

feature vector. We can select between LPC, reflection, complex cepstrum, mel-cepstrum,

delta mel-cepstrum, delta-delta mel-cepstrum, PLP coefficients. Underneath the pop-

down menu, we can enter the parameters for each feature set. First of all, we can specify

the window length and the overlap ratio that will used. We have mentioned in a previous

chapter, that for each feature set we can define separate segmentation of the input speech

data (see also 4.2). We can also define the order of the feature set, or in other words the

number of coefficients we want. In the case of mel-cepstrum coefficients, we can specify

the number of filters used to create the filterbank (see also 4.8). After filling in all the pa-

rameters, we can press the 'Add' button and add the feature set to the feature vector. We

can see all the feature sets we have added to the Feature Vector, in the form of MATLAB

commands, in the 'Feature Vector' pull-down menu. In case we are not happy with a fea-

ture set we can remove it from the feature vector by selecting it and pressing the 'Re-

move' button.
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Figure 6.4: The Configuration window

We can also select the method of modeling speaker's identity. We can choose between

Neural Networks, Vector Quantisation, HMM, GMM and Dynamic Time Warping.

However, in this version of the programme, we can only work with Gaussian Mixture

Models. We can also specify the number of Gaussian Mixtures that will be used to form

each model.

After building the Feature Vector and defining the speaker modelling technique, we

can save our configuration by pressing the 'Save Preset' button. The GUI saves our con-

figuration into the *.ftr file and simultaneously builds two MATLAB files in the directory

of the configuration file. One named 'Feat_Batch.m', which will be used in the Enroll-

ment window and the Verification window to perform all the essential feature extraction

to the input speech waveforms and one named 'Model_Batch.m' that would be used to

train the GMM. We have to say that in this callback, we have not taken into account the

case of a model other than GMM. If you select any other modelling technique, the GUI
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gives you an error message. Moreover, at this point GUI initiates an empty user list saved

in the text file 'Users'.

We can also load an already saved configuration file and make some changes in its

configuration. Then, we can easily save it using the procedure described above. However,

in this case all the users trained and all other data kept from previous sessions with that

preset will be lost.

On completion of our configuring session, we can press the 'Ok' button to get back to

the main Speaker Verification window

6.3.3 The Enrollment Window

In the Enrollment Window, the new user enrols himself to the system. In order to do

that the new user has to record five phrases written in the left part of the window. He can

record each of these phrases by pressing the corresponding 'Record' button on the right.

Once pressed, each of the 'Record' buttons calls the 'soundrec.m' function that records the

user's utterance from the microphone connected to the PC's soundcard. After that the

callback calls a MATLAB batch file, named 'preprocess.m', that performs the essential

preprocessing to the recorded waveform. This file can be edited by the user and add or

remove preprocessing functions.

In some cases, we can not have many speakers available to perform our experiments.

Therefore, we might as well use some of the standard speaker databases for speech proc-

essing applications that are available. These databases contain sets of speech samples of

many speakers that can be used as training and testing data to speaker verification sys-

tems. In that case, these speech samples will be in the form of a computer sound file.

Therefore, we have provided a set of 'From File' buttons that enables us to load the corre-

sponding phrase from a computer file. However, the GUI does not support every com-

puter sound format. Only Microsoft .wav mono files with 8 KHz sampling rate are sup-

ported. If we try to load a different type of file, the GUI will inform us that it can not

support that kind of sound format. Moreover, when we record or load a phrase, the corre-

sponding button changes colour. This to help us check the number of phrases we have re-

corded, and the method (record or load).
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Figure 6.5: The Enrolment Window

When we have recorded all the samples we only have to press the 'Finish' button. If we

haven't recorded all the phrases, the GUI will show an error message. At this time the

GUI connects all recorded and preprocessed waveforms to form a single waveform. After

that, it calls the 'Feat_Batch.m' and 'Model_Batch.m' functions, so as to extract the fea-

ture vectors and finally, to train the GMM for the user. When the systems completes all

this processing, it saves the parameters that represent a GMM (see chapter 5) in a binary

file that is named after the username of the user in the system. The structure of this file is

shown in the following matrix. Moreover, it adds the user's name into the username data-

base (Users file) and refresh the User pop-down menu in the main Speaker Verification

window, before returning to it.











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M21
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C......CC
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If at any time we want to cancel the enrolment procedure and return to the main

Speaker Verification window, we simply have to press the 'Cancel' button.

6.3.4 The Verification Window

In the Verification Window, a user can authenticate himself to the system. As in the

Enrollment window, the user is prompted to record a phrase so as to prove his identity.

Figure 6.6: The Verification window

For the same reasons mentioned before, we have provided the option of loading the

phrase from a speech file, so as to take advantage of the standard speaker databases. The

same sound format restrictions apply here. Only 8 KHz – mono – Microsoft wav files are

accepted again in this case. Moreover, we get the same type of colour indication, as a

confirmation of recording or loading the phrase. After that automatically, the callback

performs preprocessing, using 'preprocess.m'.

When we have recorded the sample phrase, we only have to press the 'Verify' button.

If we haven't recorded the phrase, the GUI will show an error message. Then it calls

'Feat_Batch.m', so as to extract the feature vectors from the recorded and preprocessed

waveform. Then, the programme calculates the logarithmic propabilities, described by
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the equation (5.15), for each user. In order to perform that task the programme loads the

model parameters stored for each user and calls the function 'GMM_verify.m', which cal-

culates the log-probability for each user, given the input feature vectors. After that, we

calculate the cohort-normalised probability of the claimed user, using the principles de-

scribed in chapter 5.5. If this probability (score) exceeds the set threshold, then the user is

given authorisation to the system, otherwise he is not. The cohort speakers are defined in

this application as the K users with the greatest probability (score). The number of cohort

speakers, the threshold as well as the whole normalisation procedure are set in the func-

tion 'cohort.m' and can be changed for experimentation by editing the corresponding file.

If we want to get the cohort-normalised score of a user after verification, we can type

in the MATLAB command window the command 'cohort_sc(result,index)'.

If at any time we want to cancel the enrolment procedure and return to the main

Speaker Verification window, we simply have to press the 'Cancel' button.
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CCHHAAPPTTEERR  77

IIMMPPLLEEMMEENNTTAATTIIOONN  AANNDD  TTEESSTT  RREESSUULLTTSS

7.1 Introduction

The Graphical User Interface for Speaker Verification is a very powerful tool for

evaluating Speaker Verification algorithms. One can choose between many different

combinations of parameters and therefore examine the way each parameter can actually

affect the performance of a speaker verification system.

In this chapter, we are going to present the implementation of a GMM speaker verifi-

cation system with many different configurations, using the GUI developed. Several per-

formance results for various GMM configurations are presented and analysed.

7.2 Speaker Database

In order to evaluate a speaker verification system, we need to create a database of

speakers. A set of sample phrases is recorded for each user, so as to be used for enrol-

ment and verification in the system.

In our case, we have used the TIMIT speaker database so as to acquire the essential

speech samples. This database offers a number of sample phrases of several American

men and women. Unfortunately, they are stored in the SPHERE/TIMIT format that is

actually used by the National Institute of Speech Technology (NIST). In order to facili-

tate programming, we have used the 'readsph.m' routine, provided by the VoiceBox, to

read these files in MATLAB and transform them to '.wav' files that can be easily ma-

nipulated by almost any Windows programme. We have saved them as Microsoft wave

mono files, using 8 KHz sampling rate and 8 bits/sample. This is a common choice, used

in many speech processing applications.
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For each speaker, we have used a set of five phrases with average duration of 4 secs

each.  This set is used in the user's enrolment to the system, providing the essential input

data for the system to train. One of the five phrases is then used for the verification of the

user's identity. Moreover, there is no need for endpoint detection, as these speech samples

are pre-recorded and therefore the removal of the silent parts is already done. However,

in the case that we want to make real time enrolment and verification of a user using the

'record' buttons provided in the GUI, we definitely need to add one of the two endpoint

implementations described earlier in the function 'preprocess.m'.

7.3 Experiment Configuration

In these series of experiments, we are going to evaluate the performance of the devel-

oped GMM verification system. We are going to use a set of eight (8) speakers, four fe-

male (F0, F1, F2, F3) and four male (M0, M1, M2, M3) as a database for our experi-

ments. We are going to use four cohort speakers in the cohort normalisation procedure.

Cohort speakers are considered the speakers that give the greatest probability (score) to

the presented input feature vectors.

We are going to segment our input signal using 50% overlapping frames of 256 sam-

ples. We are also going to build a GMM using 10 Gaussian Mixtures, so as to model each

user. In this series of experiments, we will look at the effect of using different feature

vectors on the system's performance. We will even try several combinations of feature

vectors on our system.  We will also look at the effect of varying the number of gaussian

mixtures used. We will look at the performance of the system, where the speakers are

only of the same sex. Finally, we will look at the performance of OGMM.

In order to measure the false rejection rate, we use the five recorded sample phrases

from each user, whereas in order to measure the false alarm rate, we use seven recorded

sample phrases one from each user of the system. This is done in order to capture the

score of each user to the user who claims identification.
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7.4 Test 1 (Using MFCC)

In the first series of experiments, we are going to construct our feature vectors using

12 mel-frequency cepstrum coefficients (MFCC) extracting from each input frame. The

next tables exhibit the system's performance for speakers F0, F1 and M0, M1. Some plots

of the False Alarm and False Rejection rate for these cases follow:

Average
Cohort Nor-

malised
Score  for F0

Cohort Nor-
malised

Scores for
F0

Cohort
Normalised

Scores for Im-
postors

Threshold FA
(7 max)

FR
(5 Max)

320.4076

342.7975
242.0395
458.4545
244.1264
314.6201

F1 155.0088
F2 126.3993
F3 126.3993
M0 132.6076
M1 112.4896
M2 168.2342
M3 152.7599

0
32.0407
64.0814
96.1221

128.1628
160.2035
192.2442
224.2849
256.3256
288.3663
320.4070

7
7
7
7
4
1
0
0
0
0
0

0
0
0
0
0
0
0
0
2
2
3

Average
Cohort Nor-

malised
Score  for F1

Cohort Nor-
malised

Scores for
F1

Cohort
Normalised

Scores for Im-
postors

Threshold FA FR

143.7403

259.4252
79.2164

158.1164
167.0854
54.8582

F0 27.7236
F2 5.0238

F3 34.8345
M0 -10.4946
M1 -5.2652
M2 40.7397
M3 10.5784

0
14.3740
28.7480
43.1220
57.4960
71.8700
86.2440

100.6180
114.9920
129.3660
143.7400

5
3
2
0
0
0
0
0
0
0
0

0
0
0
0
1
2
2
2
2
2
2
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Average
Cohort nor-

malised score
for M0

Cohort Nor-
malised

Scores for
M0

Cohort
Normalised

Scores for Im-
postors

Threshold FA FR

18.3770

84.0158
-2.5079
8.5141

30.8641
-29.0010

F0 -237.2457
F1 -382.6884
F2 -243.1720
F3 -203.0030
M1 -148.0065
M2 -123.7555
M3 -60.2785

0
1.8377
3.6754
5.5131
7.3508
9.1885

11.0262
12.8639
14.7016
16.5393
18.3770

0
0
0
0
0
0
0
0
0
0
0

2
2
2
2
2
3
3
3
3
3
3

Average
Cohort nor-

malised score
for M1

Cohort Nor-
malised

Scores for
M1

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

26.5078

72.6883
-14.2364
3.7305

11.1960
59.1608

F0 -220.0958
F1 -193.4146
F2 -227.7684
F3 -152.0800
M0 -133.6616
M2 -110.3620
M3 -160.8010

0
2.6508
5.3016
7.9523

10.6031
13.2539
15.9047
18.5555
21.2062
23.8570
26.5078

0
0
0
0
0
0
0
0
0
0
0

1
1
2
2
2
3
3
3
3
3
3

If we have a look at these tables and the figures in the next page, we can clearly see

that by using only 12 MFCC, we can have a speaker verification system that works effi-

ciently. We can see that each user is well discriminated from his imposters, giving a very

low EER (almost equal to zero). In other words, the difference between the score of the

claimed user is much higher than his imposter's score. We include even speakers of the

opposite sex as impostors, making the system more sophisticated.

However, we can clearly see the difference between the score levels of the users. We

can see that women tend to score much higher than men, making it difficult to set a

global threshold for the system.
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Figure 7.1: Using 12 MFCC coefficients
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7.5 Test 2 (Using ΔMFCC)

In the second series of experiments, we are going to construct our feature vectors using

12 delta mel-frequency cepstrum coefficients (ΔMFCC) extracting from each input

frame. The next tables exhibit the system's performance for speakers F0,F1 and M0,M1.

Some plots of the False Alarm and False Rejection rate for these cases follow:

Average
Cohort Nor-

malised Score
for F0

Cohort Nor-
malised

Scores for
F0

Cohort
Normalised
Scores for
Impostors

Threshold FA
(7 max)

FR
(5 Max)

204.688

234.4640
136.5894
349.8669
124.6306
177.8891

F1 -33.4396
F2 -94.4966
F3 12.1073

M0 -37.9261
M1 -25.0339
M2 90.0656
M3 2.8629

0
20.4688
40.9376
61.4064
81.8752

102.3440
122.8128
143.2816
163.7504
184.2192
204.6880

3
1
1
1
1
0
0
0
0
0
0

0
0
0
0
0
0
0
2
2
3
3

Average
Cohort Nor-

malised Score
for F1

Cohort Nor-
malised

Scores for
F1

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

64.5655

102.6068
42.2289
92.1263
83.5857
2.2796

F0 -30.4692
F2 -20.4188
F3 0.4219

M0 -37.2810
M1 -46.3205
M2 -35.5674
M3 -6.2051

0
6.4566

12.9131
19.3697
25.8262
32.2828
38.7393
45.1959
51.6524
58.1090
64.5655

1
0
0
0
0
0
0
0
0
0
0

0
1
1
1
1
1
1
2
2
2
2
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Average
Cohort Nor-

malised Score
for M0

Cohort Nor-
malised

Scores for
M0

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

27.9204

67.5347
15.3149
33.6769
46.9246
-23.8490

F0 -128.4336
F1 -120.0323
F2 -109.7734
F3  -61.8854
M1 –20.8861
M2 –54.5156
M3 –69.0369

0
2.7920
5.5841
8.3761

11.1682
13.9602
16.7522
19.5443
22.3363
25.1284
27.9204

0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
2
2
2
2
2

Average
Cohort Nor-

malised Score
for M1

Cohort
Normalised
Scores for

M1

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

78.3744

129.8293
66.3454
48.9340
64.1930
82.5703

F0  -40.8414
F1 -8.6079

F2  -78.9852
F3 –17.2950
M0 –40.3675
M2 –15.6735
M3 –44.6298

0
7.8374

15.6749
23.5123
31.3498
39.1872
47.0246
54.8621
62.6995
70.5370
78.3744

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1
3
3

If we have a look at these tables and the figures in the next page, we can clearly see

that by using only 12 ΔMFCC, we can have a speaker verification system that works effi-

ciently. We can see that each user is well discriminated from his imposters, giving a very

low EER. In other words, the difference between the score of the claimed user is much

higher than his imposter's score.

However, we can see that there is an improvement in the score levels of the users. We

can see that the distance between female and male scores is much less and therefore we

can easily set a very good threshold for the score. A global set threshold can cause only

very small errors.
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Figure 7.2: Using 12 ΔMFCC coefficients
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7.6 Test 3 (Using PLP)

In the second series of experiments, we are going to construct our feature vectors using

12 Perceptual Linear Predictive coefficients (PLP) extracting from each input frame. The

next tables exhibit the system's performance for speakers F0,F1 and M0,M1. Some plots

of the False Alarm and False Rejection rate for these cases follow:

Average
Cohort Nor-

malised Score
for F0

Cohort
Normalised
Scores for

F0

Cohort
Normalised
Scores for
Impostors

Threshold FA
(7 max)

FR
(5 Max)

68.5526

87.5915
43.7822
99.3773
45.8457
66.1664

F1 -6.8252
F2 –44.5732
F3  2.2219
M0 0.1234
M1 -4.3967
M2 -22.7332
M3 -36.0392

0
6.8553

13.7105
20.5658
27.4210
34.2763
41.1316
47.9868
54.8421
61.6973
68.5526

2
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
2
2
2
3

Average
Cohort Nor-

malised Score
for F1

Cohort
Normalised
Scores for

F1

Cohort
Normalised
Scores for
Impostors

Threshold FA
(7 max)

FR
(5 max)

56.9599

79.6295
35.8952
73.8769
74.3494
21.0484

F0 –13.5140
F2 –29.1973
F3 1.3042

M0 –46.8732
M1 –15.1412
M2 –35.3177
M3 -6.1054

0
5.6960

11.3920
17.0880
22.7840
28.4799
34.1759
39.8719
45.5679
51.2639
56.9599

1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
2
2
2
2
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Average
Cohort Nor-

malised Score
for M0

Cohort
Normalised
Scores for

M0

Cohort
Normalised
Scores for
Impostors

Threshold FA
(7 max)

FR
(5 max)

48.2603

89.3925
18.6698
35.3915
62.7609
35.0866

F0 –69.7298
F1 –80.8268
F2 –28.1286
F3 -5.7748

M1 –35.9042
M2 -49.1091
M3 -41.0306

0
4.8260
9.6521

14.4781
19.3041
24.1302
28.9562
33.7822
38.6082
43.4343
48.2603

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1
3
3
3

Average
Cohort Nor-

malised Score
for M1

Cohort
Normalised
Scores for

M1

Cohort
Normalised
Scores for
Impostors

Threshold FA
(7 max)

FR
(5 Max)

34.3387

44.6773
27.8135
40.2587
22.1097
36.8343

F0 –16.2601
F1 –27.0337
F2 –66.1427
F3 –26.9344
M0 -10.6571
M2 1.3436
M3 7.1980

0
3.4339
6.8677

10.3016
13.7355
17.1694
20.6032
24.0371
27.4710
30.9048
34.3387

2
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1
2
2

If we have a look at these tables and the figures in the next page, we can clearly see

that by using only 12 PLP, we can have a robust speaker verification system. We can see

that each user is well discriminated from his imposters, giving a very low EER (close to

zero). In other words, the difference between the score of the claimed use is much higher

than his imposter's score.

However, we can see that there is an improvement in the score levels of the users,

compared to other coefficients. We can see that female and male scores are indeed on the

same level and therefore we can easily set a very good threshold for the score. We can

see that we can easily choose many threshold values that can give zero EER.

Another important feature of PLP coefficients is that they feature almost zero correla-

tion, a very important property for GMM modeling.
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Figure 7.3: Using 12 PLP coefficients
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7.7 Test 4 (Using PLP and ΔMFCC)

In the fourth series of experiments, we are going to construct our feature vectors using

12 Perceptual Linear Predictive coefficients (PLP) and 12 delta mel-cepstrum coefficients

extracting from each input frame. The next tables exhibit the system's performance for

speakers F0,F1 and M0,M1. Some plots of the False Alarm and False Rejection rate for

these cases follow:

Average
Cohort Nor-

malised
Score for F0

Cohort
Normalised
Scores for

F0

Cohort
Normalised
Scores for
Impostors

Threshold FA
(7 max)

FR
(5 Max)

350.3836

384.5219
282.0019
564.0734
238.1528
283.1679

F1 86.3916
F2 40.2127

F3 -193.7869
M0 -5.7216

M1 –27.9095
M2 83.1976

M3 –32.8901

0
35.0384
70.0767

105.1151
140.1534
175.1918
210.2302
245.2685
280.3069
315.3452
350.3836

3
3
2
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1
3
3

Average
Cohort Nor-

malised
Score for F1

Cohort
Normalised
Scores for

F1

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

141.9896

236.5447
76.2235

210.3921
135.5856
51.2020

F0 -6.6128
F2 -0.4183

F3 -117.4875
M0 –107.7117
M1 -21.4172
M2 -21.1655
M3 -41.8083

0
14.1990
28.3979
42.5969
56.7958
70.9948
85.1938
99.3927

113.5917
127.7906
141.9896

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
1
2
2
2
3
4
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Average
Cohort Nor-

malised Score
for M0

Cohort
Normalised
Scores for

M0

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

100.8200

195.2111
57.2766
62.5647

168.3659
20.6818

F0 -233.4315
F1-299.0766
F2 -56.3673
F3 -45.0496
M1 -52.3311
M2 -80.2822
M3 -61.5213

0
10.0820
20.1640
30.2460
40.3280
50.4100
60.4920
70.5740
80.6560
90.7380

100.8200

0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
1
2
3
3
3
3

Average
Cohort Nor-

malised Score
for M1

Cohort
Normalised
Scores for

M1

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

127.5224

205.7477
65.7902

130.3971
95.0139

140.6633

F0 -153.7269
F1 -61.9602
F2 -81.8730

F3 -157.9676
M0 -92.6618
M2 -79.7210
M3 -68.1201

0
12.7522
25.5045
38.2567
51.0090
63.7612
76.5134
89.2657

102.0179
114.7702
127.5224

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
2
2
2

If we have a look at these tables and the figures in the next page, we can clearly see

that by using only 12 PLP and 12 ΔMFCC, we can have a robust speaker verification

system. We can see that each user is well discriminated from his imposters, giving a very

low EER (close to zero). In other words, the difference between the score of the claimed

user is much higher than his imposter's score.

However, we can see that again we have the introduction of difference in threshold

between male and female users and this is maybe due to the introduction of ΔMFCC.

However, we can still set a threshold that can guarantee low EER.
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Figure 7.4: Using 12 PLP and ΔMFCC coefficients
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7.8 Test 5 (Using MFCC and more Gaussian Mixtures)

In the fifth series of experiments, we are going to construct our feature vectors using

12 Mel-Frequency Cepstrum coefficients (MFCC) coefficients extracting from each input

frame. In this case, we are going to increase the number of Gaussian Mixtures (M=20)

and investigate its influence on the system. The next tables exhibit the system's perform-

ance for speakers F0, F1 and M0, M1. Some plots of the False Alarm and False Rejection

rate for these cases follow:

Average
Cohort Nor-

malised
Score for F0

Cohort
Normalised
Scores for

F0

Cohort
Normalised
Scores for
Impostors

Threshold FA
(7 max)

FR
(5 Max)

342.5401

387.6811
228.0665
472.7063
257.6353
366.6111

F1 146.9709
F2 81.7497
F3 99.7286
M0 98.1175

M1 102.7716
M2 167.8868
M3 131.1468

0
34.2540
68.5080

102.7620
137.0160
171.2701
205.5241
239.7781
274.0321
308.2861
342.5401

7
7
7
4
2
0
0
0
0
0
0

0
0
0
0
0
0
0
1
2
2
2

Average
Cohort Nor-

malised
Score for F1

Cohort
Normalised
Scores for

F1

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

175.8333

307.0346
115.3491
150.4034
215.0552
91.3242

F0 -8.4269
F2 -22.0588
F3 25.0010
M0 2.4398

M1 -11.9561
M2 -39.1441
M3 4.8098

0
17.5833
35.1667
52.7500
70.3333
87.9167

105.5000
123.0833
140.6666
158.2500
175.8333

3
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
2
2
3
3
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Average
Cohort Nor-

malised Score
for M0

Cohort
Normalised
Scores for

M0

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

76.94944

146.5605
41.9161
53.3392
96.3669
46.5645

F0 -273.3069
F1 -355.8456
F2 -178.5954
F3 -191.5491
M1 -156.7696
M2 -73.7540

M3 -120.4764

0
7.6949

15.3899
23.0848
30.7798
38.4747
46.1697
53.8646
61.5596
69.2545
76.9494

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
3
3
3
3

Average
Cohort Nor-

malised Score
for M1

Cohort
Normalised
Scores for

M1

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

40.77892

99.3159
-5.3707
9.5633

35.5354
64.8507

F0 -250.9470
F1 -228.3324
F2 -270.3649
F3 -171.3418
M0 -191.8554
M2 -112.8495
M3 -241.3352

0
4.0779
8.1558

12.2337
16.3116
20.3895
24.4674
28.5452
32.6231
36.7010
40.7789

0
0
0
0
0
0
0
0
0
0
0

1
1
1
2
2
2
2
2
2
3
3

If we compare the results presented here and the tables referring to Test 1, we can see

that there is a slight improvement to the system by using more Gaussian Mixtures. There

is also a chance that the system with more Gaussian Mixtures demands more training in-

put data and therefore we don't see a radical improvement.
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Figure 7.5: Using 12 MFCC coefficients and 20 Gaussian Mixtures
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7.9 Test 6 (Using more MFCC coefficients)

In the sixth series of experiments, we are going to construct our feature vectors using

20 Mel-Frequency Cepstrum coefficients (MFCC) coefficients extracting from each input

frame. In this case, we have increased the number of MFCC coefficients and investigate

its influence on the system. The next tables exhibit the system's performance for speakers

F0, F1 and M0, M1. Some plots of the False Alarm and False Rejection rate for these

cases follow:

Average
Cohort Nor-

malised
Score for F0

Cohort
Normalised
Scores for

F0

Cohort
Normalised
Scores for
Impostors

Threshold FA
(7 max)

FR
(5 Max)

677.6584

657.1187
554.0639
995.6068
505.6067
675.8961

F1 101.5020
F2 126.1821
F3 127.4300
M0 -0.4797
M1 54.1754
M2 91.9601
M3 44.9211

0
67.7658

135.5317
203.2975
271.0634
338.8292
406.5950
474.3609
542.1267
609.8926
677.6584

6
4
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
2
3

Average
Cohort Nor-

malised
Score for F1

Cohort
Normalised
Scores for

F1

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

301.7609

467.8506
206.3815
334.7282
367.8810
131.9632

F0 -210.6930
F2 -88.0537
F3 11.1710
M0 79.8697
M1 96.0981

M2 115.4771
M3 65.3944

0
30.1761
60.3522
90.5283

120.7044
150.8805
181.0565
211.2326
241.4087
271.5848
301.7609

5
4
4
2
0
0
0
0
0
0
0

0
0
0
0
0
1
1
2
2
2
2



A graphical framework for the evaluation of speaker verification 85

Average
Cohort Nor-

malised Score
for M0

Cohort
Normalised
Scores for

M0

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

59.5317

119.9461
52.0795
43.1246
74.1355
8.3728

F0 -657.7771
F1 -410.3113
F2 -523.7886
F3 -433.5923
M1 -208.0058
M2 -149.6053
M3 -138.0398

0
5.9532

11.9063
17.8595
23.8127
29.7659
35.7190
41.6722
47.6254
53.5785
59.5317

0
0
0
0
0
0
0
0
0
0
0

0
0
1
1
1
1
1
1
2
3
3

Average
Cohort Nor-

malised Score
for M1

Cohort
Normalised
Scores for

M1

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

27.27598

86.3189
66.2110
-3.1400

-45.6736
32.6636

F0 -555.9564
F1 -299.7352
F2 -619.4888
F3 -418.8712
M0 -88.1881
M2 -69.1476

M3 -188.9657

0
2.7276
5.4552
8.1828

10.9104
13.6380
16.3656
19.0932
21.8208
24.5484
27.2760

0
0
0
0
0
0
0
0
0
0
0

2
2
2
2
2
2
2
2
2
2
2

In this series of experiments, we can easily see that by employing more MFCC coeffi-

cients, there is a slight improvement in the system's performance.
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Test 6 for Speaker F0
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Figure 7.6: Using 20 MFCC coefficients
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7.10 Test 7 (Using only Male speakers)

In the seventh series of experiments, we are going to construct our feature vectors us-

ing 12 Mel-Frequency Cepstrum coefficients (MFCC) coefficients extracting from each

input frame. In this case, we are going to explore the effect of using a database of speak-

ers having the same sex. Our database consists of seven male speakers M0 to M6. The

next tables exhibit the system's performance for speakers M0, M1. Some plots of the

False Alarm and False Rejection rate for these cases follow:

Average
Cohort Nor-

malised
Score for M0

Cohort
Normalised
Scores for

M0

Cohort
Normalised
Scores for
Impostors

Threshold FA
(6 max)

FR
(5 Max)

145.7617

204.3041
109.3478
86.5073

215.3207
113.3284

M1 100.0428
M2 75.5022
M3 61.7807
M4 64.6873
M5 81.3638
M6 59.6305

0
14.5762
29.1523
43.7285
58.3047
72.8808
87.4570

102.0332
116.6094
131.1855
145.7617

6
6
6
6
6
4
1
0
0
0
0

0
0
0
0
0
0
0
1
3
3
3

Average
Cohort Nor-

malised
Score for M1

Cohort
Normalised
Scores for

M1

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

191.2873

254.5638
140.4670
268.3636
121.1841
171.8582

M0 42.4796
M2 67.4456
M3 -34.2930
M4 56.5593

M5 169.0151
M6 -84.1360

0
19.1287
38.2575
57.3862
76.5149
95.6436

114.7724
133.9011
153.0298
172.1586
191.2873

4
4
4
2
1
1
1
1
1
0
0

0
0
0
0
0
0
0
1
2
3
3
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Average
Cohort Nor-

malised Score
for M3

Cohort
Normalised
Scores for

M3

Cohort
Normalised
Scores for
Impostors

Threshold FA FR

92.54184

156.1221
53.7950

109.4784
76.0151
67.2986

M0 -164.1685
M1 -140.6598
M2 -169.4607
M4 -164.9297
M5 -237.2176
M6 50.2905

0
9.2542

18.5084
27.7626
37.0167
46.2709
55.5251
64.7793
74.0335
83.2877
92.5418

1
1
1
1
1
1
0
0
0
0
0

0
0
0
0
0
0
1
1
2
3
3

This series of experiments demonstrates the performance of the system in a more effi-

ciently. In the case of using male and female speakers, the term impostor is a bit exagger-

ated, as it is less possible to have a naturally speaking female as impostor to a man. How-

ever, in the opposite case, the considered impostors can really be impostors to a male or a

female.

We can see that the system now has a measurable EER of about 15%, using 12

MFCCs. Indeed, this is a very good performance for the system. Moreover, we can wit-

ness the difference between the score levels of each male user, generating a slight diffi-

culty in setting a global threshold.
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Test 5 for Speaker M0
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Figure 7.7: Using 12 MFCC coefficients and male only speakers
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7.11 Test 8 (Using MFCC and OGMM)

In the first series of experiments, we are going to construct our feature vectors using

12 mel-frequency cepstrum coefficients (MFCC) extracting from each input frame. How-

ever, in this case we are going to investigate the effect of using OGMM to the system.

The next tables exhibit the system's performance for speakers F0, F1 and M0, M1. Some

plots of the False Alarm and False Rejection rate for these cases follow:

Average
Cohort Nor-

malised
Score  for F0

Cohort Nor-
malised

Scores for
F0

Cohort
Normalised

Scores for Im-
postors

Threshold FA
(7 max)

FR
(5 Max)

276.6359

323.4577
184.3985
366.2036
222.4624
286.6575

F1 95.4314
F2 46.7526
F3 43.3030
M0 56.6342
M1  81.2328
M2 39.7502
M3 50.6812

0
27.6636
55.3272
82.9908

110.6544
138.3180
165.9815
193.6451
221.3087
248.9723
276.6359

7
7
3
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
1
2
2

Average
Cohort Nor-

malised
Score  for F1

Cohort Nor-
malised

Scores for
F1

Cohort
Normalised

Scores for Im-
postors

Threshold FA
(7 max)

FR
(5 Max)

215.7034

349.3045
121.4806
249.4051
232.9532
125.3735

F0 41.0159
F2  64.6283
F3 75.8681
M0 39.5745
M1 59.3024
M2  53.9489
M3 64.0044

0
21.5703
43.1407
64.7110
86.2814

107.8517
129.4220
 150.9924
172.5627
194.1331
215.7034

7
7
5
1
0
0
0
0
0
0
0

0
0
0
0
0
0
2
2
2
2
2
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Average
Cohort nor-

malised score
for M0

Cohort Nor-
malised

Scores for
M0

Cohort
Normalised

Scores for Im-
postors

Threshold FA
(7 Max)

FR
(5 Max)

2.85822

48.8897
-11.1191
13.9653
7.0340

-44.4788

F0 -296.8173
F1 -499.8620
F2  -272.1557
F3 -276.0006
M1 -217.5887
M2  -136.9311
M3 -211.9389

0
0.2858
0.5716
0.8575
1.1433
1.4291
1.7149
 2.0008
2.2866
2.5724
2.8582

0
0
0
0
0
0
0
0
0
0
0

2
2
2
2
2
2
2
2
2
2
2

Average
Cohort nor-

malised score
for M1

Cohort Nor-
malised

Scores for
M1

Cohort
Normalised

Scores for Im-
postors

Threshold FA
(7 Max)

FR
(5 Max)

56.1481

99.0288
24.0260
48.1572
48.4501
61.0784

F0 -194.1452
F1 -203.9644
F2  -143.7516
F3 -138.9906
M0 -83.7530
M2  -81.2212
M3 -181.1984

0
5.6148

11.2296
16.8444
22.4592
28.0741
33.6889
39.3037
44.9185
50.5333
56.1481

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
1
1
1
3
3

During the verification procedure, in order to calculate the log probability scores of

each user, it's very important to multiply the feature vectors extracted from the test speech

samples with the corresponding transform matrix of each user.

In the next figure, we can see that a OGMM system performs better than common

GMM. Even in the case of MFCC, we can see the difference between the score levels for

each user is much less, making it more facile to set a global threshold.
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Figure 7.8: Using 12 MFCC coefficients and OGMM operation
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7.12 Performance Evaluation

In order to study the performance of our system during the previous series of experi-

ments, we are going to employ a statistics tool, called Receiver Operator Characteristics

(ROC) curves. ROC curves are normally used to examine the performance of a diagnostic

test over all possible decision thresholds, or to compare many alternative diagnostic tests

so the best can be chosen. One basic field where ROC curves are used is clinical medi-

cine. However, as we can see ROC curves match exactly our case, where we need to ex-

amine the performance of the previously described speaker verification configurations

over all possible decision thresholds.

For our ROC curve analysis, we have processed the results gathered through the pre-

vious series of experiments in Microsoft Excel 97, using it to plot the corresponding ROC

curves.

First of all, we are going to compare the performance of our system using MFCC,

ΔMFCC and PLP coefficients. The figure 7.9 shows the ROC curve
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Figure 7.9: Comparing the performance of MFCC, ΔΜFCC and PLP coefficients.
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As we can see in the previous figure our system performs better with PLP coefficients

than with every other configuration. Moreover, ΔΜFCC coefficients are a better choice

than MFCCs as it is much evident in the previous figure. Of course, the results presented

can be more accurate, by adding more users to the system and taking more measures. The

following tables contain a comparison of the three methods.
Curve Area
MFCC 0.788
ΔMFCC 0.961

PLP 1.000

Contrast Difference
MFCC v ΔMFCC -0.173

MFCC v PLP -0.213
ΔMFCC v PLP -0.039

Figure 7.10 depicts the performance of a system that combines 2 kinds of feature sets,

i.e. 12 PLP coefficients and 12 ΔΜFCC coefficients. As we can see, the system performs

betters with that configuration than with only 12 ΔΜFCC. Nonetheless, a system with 12

PLP performs better. Therefore, we can see that the system combines some of the char-

acteristics of the two feature sets, finally improving the performance.
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Figure 7.10: Comparing the performance of 12 ΔΜFCC and a combination of 12 PLP
and 12 ΔΜFCC coefficients
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The next figure depicts the performance of the system with 12 ΜFCC and with 20

MFCC. If we have a look at Figure 7.11, we can clearly see that using more coefficients

of a feature set can enhance the performance of our system. This is mainly due to the fact

that by increasing the order of the coefficients, the vocal tract is modelled more effi-

ciently.  The relationship between the system's performance and the order of the feature

set can not be linear, implying that the performance of our system may not improve after

a certain number of coefficients.
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Figure 7.12: Comparing the performance of 12 ΜFCC and a system with 12 MFCC
and 20 Gaussian Mixtures.

In Figure 7.12, we can see the effect of using more Gaussian mixtures on a system

using MFCC coefficients. More specifically, we have used 20 Gaussian mixtures instead

of the 10 Gaussian mixtures used in the other experiments. We can see that there is great

improvement compared to the MFCC system. However, there is really no great im-

provement in the system's performance, after we exceed a certain number of Gaussian

Mixtures [17].

Figure 7.13 just exhibits the performance of the system using a database of 6 male us-

ers and 12 MFCC coefficients. This kind of experiments reflects the real performance as

the inter-gender tests sometimes mislead the verification system. It is more difficult for

the system to distinguish between users of the same sex, as they possess similar voice

characteristics. Moreover, the term impostor when referring to a naturally speaking mem-

ber of the opposite sex from the claimed user is a little bit ambiguous in real life.
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Figure 7.13: The performance of 12 ΜFCC coefficients using 6 male speakers

In Figure 7.14, we can see the performance of an OGMM system. We can clearly see

that the decorrelation of the input feature vectors, using a linear transform, boosts the per-

formance of the system. Practically, the introduction of decorrelation in the feature ex-

traction module adds a very small delay in the total processing time of the programme.
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Figure 7.14: The performance of OGMM-MFCC compared to MFCC
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However, this method requires storing the transform matrix for each user. This in-

creases the storage needed for every user, but the extra storage space needed is insignifi-

cant.

Curve Area
12 MFCC 0.788

MFCC +OGMM 0.825

In the table presented above, we can see the difference between the two methods. The

area covered by the MFCC-OGMM is greater than that of the MFCC case. Generally, by

using OGMM, we can achieve the same performance as a common GMM system that

employs more mixtures.
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8.1 Conclusion

In this chapter, we will try to summarise the basic accomplishments in this project and

point out some basic observations that we think were crucial for speaker verification sys-

tems development.

First of all, we have discussed several practical and social aspects of biometrics identi-

fication and pointed out that a speaker verification system can have a wide range of real

life application as well as very good performance, despite the great variability of human

voice. Moreover, we have discussed the structure of a speaker verification system both in

the enrolment and the verification operation:

Preprocessing → Feature Extraction → Speaker Modelling

 We have studied and implemented a series of algorithms that are used for preproc-

essing and Feature Extraction and finally, we investigated and implemented the Gaussian

Mixture Modelling technique giving a small reference to other common speaker model-

ling techniques. To facilitate the whole experimentation on speaker verification, we have

built a Graphical User Interface in MATLAB, where we can configure our speaker verifi-

cation system and then perform a series of experiments enrolling and verifying the iden-

tity of several users. Once setting up a configuration, the GUI resemble a commercial

Speaker verification system, granting or rejecting authorisation to users.

In order to evaluate the system, we have set up a series of eight experiments, using a

database of 8 people (4 male and 4 female) and several configurations. The speech sam-

ples were taken from the TIMIT database and each user uses 5 phrases to train the sys-

tem.  On the whole, we can say that the system works very efficiently, with small EER

rates, regardless of the configuration used. This is mainly due to the fact that we are using
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almost perfect recordings, belonging to a standards database. If we had used real life re-

cordings, i.e. in an office environment, with constant background noise, then the per-

formance of our system would have deteriorated.

However, we have seen that PLP coefficients have the best performance for a speaker

verification system. The score presented may be too ideal, but even in real life situation

they are bound to have a very good performance. We have seen that scores of the four us-

ers are in the same level and the system can easily apply a proper global threshold ac-

cording to which the system can detect the true user from his impostors. The good per-

formance of PLP coefficients is justified because they feature small correlation between

them. This is very important for Gaussian Mixture Modelling, where we suppose that the

covariance matrix of each Gaussian Muxture is diagonal.

The performance of MFCC and ΔΜFCC coefficients is equally very good, with a

drawback of MFCC giving different cohort score levels for each user, making it difficult

to set a global error-free threshold.

In test 4, we have seen that by using combinations of different feature sets, we can

combine their properties and improve the system's performance.

In test 6, we have seen that by increasing the order of a feature set, we can enhance the

system's performance. Using 20 MFCCs instead of 10 MFCCs, the system operates more

efficiently.

Increasing the number of Gaussian Mixtures can also improve the performance of the

system. However, after a certain number of Gaussian mixtures, the system tends to have

the same performance.

Moreover, we have seen the effective modelling performed by Gaussian Mixture

Models. By using very few mixtures and a relatively simple to understand and implement

training algorithm (compared to HMM), we can produce speaker models very quickly

and easily. We may need to increase the number of mixtures, when using with a bigger

speaker database.

We have also seen that by decorrelating the input feature vectors, we can improve the

performance of a common GMM system. OGMM systems introduce a little more proc-

essing to the modelling algorithm, in order to calculate the transform matrix, but the per-

formance of the system is much enhanced.
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One very important issue is the choice of the test words and phrases that will be used

to train and test the system. This is equally important in an almost text-independent sys-

tem like the one described in this thesis. Over these tests, we have seen that there are

certain speech files that tend to produce a low score, regardless of the type of coefficients

used. This implies that the choice for the phrase may not be very good. Generally,

phrases and words containing many voiced phonemes are much more preferable.

Finally, the development of a library of MATLAB routines as well as a Graphical

User Interface for testing and evaluating speaker verification algorithms was the outcome

of this project. Hoping that this infrastructure can be used as a starting point for further

research on speaker verification, we suggest some possible extensions of this project.

8.2 Proposals for Future Work

The design of a graphically configurable speaker verification system lights the way for

a wide range of possible tests and experiments that could not be conducted during the

short period of this project.

Using the already developed infrastructure one can conduct several series of experi-

ments in order to explore the effect of the following on the system's performance:

 The length of each frame.

 The overlapping ratio in segmentation.

 Combinations of several feature types, for example MFCC and Reflection Coeffi-

cients etc.

 Cohort size

One can also look into the extraction of RASTA-PLP coefficients from input speech

samples, as an extra feature set, that can be integrated in the speaker verification GUI

[16].

Moreover, more speaker modelling techniques, such as Vector Quantisation, Hidden

Markov Models, Neural Networks can be added to the GUI, so as to enable further ex-

perimentation.
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Furthermore, if we are to use a speaker verification system in a real life environment,

implying that we are not going to use sample speech recordings from a speech database,

then maybe we will have to deal with the possible background noise. Several speech en-

hancement techniques have been proposed for use in speaker verification systems, such

as using spectral subtraction techniques or even RASTA filtering [30] and one can ex-

periment with some of them.
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