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Abstract

The task of enhancing the perception of a scene by combining information captured
by different sensors is usually known as image fusion. The pyramid decomposition
and the Dual-Tree Wavelet Transform have been thoroughly applied in image fusion
as analysis and synthesis tools. Using a number of pixel-based and region-based
fusion rules, one can combine the important features of the input images in the
transform domain to compose an enhanced image. In this paper, the authors test
the efficiency of a transform constructed using Independent Component Analysis
(ICA) and Topographic Independent Component Analysis bases in image fusion.
The bases are obtained by offline training with images of similar context to the
observed scene. The images are fused in the transform domain using novel pixel-
based or region-based rules. The proposed schemes feature improved performance
compared to traditional wavelet approaches with slightly increased computational
complexity.

Key words: image fusion, image segmentation, Independent Component Analysis,
topographic ICA.
PACS:

1 Introduction

Let I1(x, y), I2(x, y), . . . , IT (x, y) represent T images of size M1 ×M2 captur-
ing the same scene. Each image has been acquired using different instrument
modalities or capture techniques, allowing each image to have different char-
acteristics, such as degradation, thermal and visual characteristics.

In this scenario, we usually employ multiple sensors that are placed relatively
close and are observing the same scene. The images acquired by these sen-
sors, although they should be similar, are bound to have some translational
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motion, i.e. miscorrespondence between several points of the observed scene.
Image registration is the process of establishing point-by-point correspondence
between a number of images, describing the same scene. In this study, we will
assume that the input images Ii(x, y) have negligible registration problems,
which implies that the objects in all images are geometrically aligned [5].

The process of combining the important features from these T images to form
a single enhanced image If (x, y) is usually referred to as image fusion. Fusion
techniques can be divided into spatial domain and transform domain tech-
niques [6]. In spatial domain techniques, the input images are fused in the
spatial domain, i.e. using localised spatial features. Assuming that g(·) repre-
sents the “fusion rule”, i.e. the method that combines features from the input
images, the spatial domain techniques can be summarised, as follows:

If (x, y) = g(I1(x, y), . . . , IT (x, y)) (1)

The main motivation behind moving to a transform domain is to work in a
framework, where the image’s salient features are more clearly depicted than
in the spatial domain. Hence, the choice of the transform is very important.
Let T {·} represent a transform operator and g(·) the applied fusion rule.
Transform-domain fusion techniques can then be outlined, as follows:

If (x, y) = T −1{g(T {I1(x, y)}, . . . , T {IT (x, y)})} (2)

The fusion operator g(·) describes the merging of information from the differ-
ent input images. Many fusion rules have been proposed in literature [14–16].
These rules can be categorised, as follows:

• Pixel-based rules: the information fusion is performed in a pixel-by-pixel
basis either in the transform or spatial domain. Each pixel (x, y) of the T
input images is combined with various rules to form the corresponding pixel
(x, y) in the “fused” image IT . Several basic transform-domain schemes were
proposed [14], such as:
· fusion by averaging: fuse by averaging the corresponding coefficients in

each image (“mean” rule).

T {If (x, y)}) =
1

T

T∑

i=1

T {Ii(x, y)} (3)

· fusion by absolute maximum: fuse by selecting the greatest in absolute
value of the corresponding coefficients in each image (“max-abs” rule)

T {If (x, y)}) = sgn(T {Ii(x, y)}) max
i
|T {Ii(x, y)}| (4)
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· fusion by denoising (hard/soft thresholding): perform simultaneous fusion
and denoising by thresholding the transform’s coefficients (sparse code
shrinkage [10]).

· high/low fusion, i.e. combining the “high-frequency” parts of some images
with the “low-frequency” parts of some other images.
The different properties of these fusion schemes will be explained later on.

For a more complete review on pixel-based methods, one can have always
refer to Piella [15], Nikolov et al [14] and Rockinger et al [16].

• Region-based fusion rules: these schemes group image pixels to form con-
tiguous regions, e.g. objects and impose different fusion rules to each image
region. In [13], Li et al created a binary decision map to choose between
the coefficients using a majority filter, measuring activity in small patches
around each pixel. In [15], Piella proposed several activity level measures,
such as the absolute value, the median or the contrast to neighbours. Conse-
quently, she proposed a region-based scheme using a local correlation mea-
surement to performs fusion of each region. In [12], Lewis et al produced
a joint-segmentation map out of the input images. To perform fusion, they
measured priority using energy, variance, or entropy of the wavelet coeffi-
cients to impose weighting on each region in the fusion process along with
other heuristic rules.

In this paper, the authors examine the application of Independent Component
Analysis (ICA) and Topographic Independent Component Analysis bases as
an analysis tool for image fusion in both noisy and noiseless environments.
The performance of the proposed transform in image fusion is compared to
traditional fusion analysis tools, such as the wavelet transform. Common pixel-
based fusion rules are tested together with a proposed “weighted-combination”
scheme, based on the L1-norm. Finally, a region-based approach that segments
and fuses active and non-active areas of the image is introduced.

The paper is structured, as follows. In section 2, we introduce the basics of
the Independent Component Analysis technique and how it can be used to
generate analysis/synthesis bases for image fusion. In section 3, we describe
the general method for performing image fusion using ICA bases. In section
4, we present the proposed pixel-based weighted combination scheme and a
combinatory region-based scheme. In section 5, we benchmark the proposed
transform and fusion schemes, using common fusion testbed. Finally, in sec-
tion 6, we outline the advantages and disadvantages of the proposed schemes
together with some suggestions about future work.
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Fig. 1. Selecting an image patch Iw around pixel (x0, y0) and the lexicographic
ordering.

2 ICA and Topographic ICA bases

Assume an image I(x, y) of size M1 × M2 and a window W of size N × N ,
centered around the pixel (x0, y0). An “image patch” is defined as the product
between a N×N neighbourhood centered around pixel (x0, y0) and the window
W .

Iw(k, l) = W (k, l)I(x0 − bN/2c+ k, y0 − bN/2c+ l), ∀ k, l ∈ [0, N ](5)

where b·c represents the lower integer part and N is odd. For the subsequent
analysis, we will assume a rectangular window, i.e.

W (k, l) = 1, ∀ k, l ∈ [0, N − 1] (6)

2.1 Definition of bases

In order to uncover the underlying structure of an image, it is common practice
in image analysis to express an image as the synthesis of several other basis
images. These bases are chosen according to the image properties we aim
to highlight with this analysis. A number of bases have been proposed in
literature so far, such as cosine bases, complex cosine bases, Hadamard bases
and wavelet bases. In this case, the bases are well defined in order to serve
some specific analysis tasks. However, one can estimate arbitrary bases by
training with a population of similar content images. The bases are estimated
after optimising a cost function that defines the bases’ desired properties.
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The N ×N image patch Iw(k, l) can be expressed as a linear combination of
a set of K basis images bj(k, l), i.e.

Iw(k, l) =
K∑

j=1

ujbj(k, l) (7)

where uj are scalar constants. The two-dimensional (2D) representation can
be simplified to an one-dimensional (1D) representation, by employing lexico-
graphic ordering, in order to facilitate the analysis. In other words, the image
patch Iw(k, l) is arranged into a vector Iw, taking all elements from matrix
Iw in a row-wise fashion. Assume that we have a population of patches Iw,
acquired randomly from the original image I(x, y). These image patches can
then be expressed in lexicographic ordering, as follows:

Iw(t) =
K∑

j=1

uj(t)bj = [b1 b2 . . . bK ]




u1(t)

u2(t)

. . .

uK(t)




(8)

where t represents the t-th image patch selected from the original image.
The whole procedure of image patch selection and lexicographic ordering is
depicted in figure 1. Let B = [b1 b2 . . . bK ] and u(t) = [u1(t) u2(t) . . . uK(t)]T .
Then, equation (8) can be simplified, as follows:

Iw(t) = Bu(t) (9)

u(t) = B−1Iw(t) = AIw(t) (10)

In this case, A = B−1 = [a1 a2 . . . aK ]T represents the analysis kernel and B
the synthesis kernel. This “transform” projects the observed signal Iw(t) on a
set of basis vectors bj. The aim is to estimate a finite set of basis vectors that
will be capable of capturing most of the signal’s structure (energy). Essentially,
we need N2 bases for a complete representation of the N2-dimensional signals
Iw(t). However, with some energy compaction mechanism, we can have effi-
cient overcomplete representations of the original signals using K < N2 bases.

The estimation of these K vectors is performed using a population of train-
ing image patches Iw(t) and a criterion (cost function), which is going to be
optimised in order to select the basis vectors. In the next paragraphs, we will
estimate bases from image patches using several criteria.
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2.1.1 Principal Component Analysis (PCA) bases

One of the transform’s targets might be to analyse the image patches into
uncorrelated components. Principal Component Analysis (PCA) can identify
uncorrelated vector bases [8], assuming a linear generative model, like the
one in (9). In addition, PCA can be used for dimensionality reduction to
identify the K most important basis vectors. This is performed by eigenvalue
decomposition of the data correlation matrix C = E{IwIT

w}. Assume that
H is a matrix containing all the eigenvectors of C and D a diagonal matrix
containing the eigenvalues of C. The eigenvalue at the i-th diagonal element
should correspond to the eigenvector at the i-th column of H. Then, the rows
of the following matrix V provide an orthonormal set of uncorrelated bases,
which are called PCA bases.

V = D−0.5HT (11)

The above set forms a complete set of bases, i.e. we have as many basis as
the dimensionality of the problem (N2). As PCA has good energy compaction
properties, one can form a reduced (overcomplete) set of bases, based on the
original ones. The eigenvalues can illustrate the significance of their corre-
sponding eigenvector (basis vector). We can order the eigenvalues in the diag-
onal matrix D, in terms of decreasing absolute value. The eigenvector matrix
H should be arranged accordingly. Then, we can select the first K < N2

eigenvectors that correspond to the K most important eigenvalues and form
reduced versions of D̂ and Ĥ. The reduced K × N2 PCA matrix V̂ is calcu-
lated using (11) for D̂ and Ĥ. The input data can be mapped to the PCA
domain via the transformation:

z(t) = V̂ Iw(t) (12)

The number of bases K of the overcomplete set is chosen so that the com-
putational load of a complete representation can be reduced. However, the
overcomplete set should be able to provide an almost lossless representation
of the original image. Therefore, the choice of K is usually a trade-off between
computational complexity and image quality.

2.1.2 Independent Component Analysis (ICA) bases

A more strict criterion than uncorrelatedness is to assume that the basis vec-
tors or equivalently the transform coefficients are statistically independent.
Independent Component Analysis (ICA) can identify statistically independent
basis vectors in a linear generative model [11]. A number of different ap-
proaches have been proposed to analyse the generative model in (9), assuming
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statistical independence between the coefficients ui in the transform domain.
Statistical independence can be closely linked with the nonGaussianity. The
Central Limit Theorem states that the sum of several independent random
variables tends towards a Gaussian distribution. The same principal holds
for any linear combination Iw of these independent random variables ui. The
Central Limit Theorem also implies that if we can find a combination of the
observed signals in Iw with minimal Gaussian properties, then that signal will
be one of the independent signals. Therefore, statistical independence and
nonGaussianity can be interchangeable terms.

We can briefly outline some of the different techniques that can be used to
estimate independent coefficients ui. Some approaches estimate ui by minimis-
ing the Kullback-Leibler (KL) divergence between the estimated coefficients ui

and several probabilistic priors on the coefficients. Other approaches minimise
the mutual information conveyed by the estimated coefficients or perform ap-
proximate diagonalisation of a cumulant tensor of Iw. Finally, some methods
estimate ui by estimating the directions of the most nonGaussian components
using kurtosis or negentropy, as nonGaussianity measures. For more on these
techniques, one can refer to tutorial books on ICA, such as [1,11].

In this study, we will use an approach that optimises negentropy, as a non-
Gaussianity measurement to identify the independent components ui. This is
also known as FastICA and was proposed by Hyvärinen and Oja [7]. In this
technique, PCA is used as a preprocessing step to select the K most important
vectors and orthonormalise the data using (12). Consequently, the statistical
independent components can be identified using orthogonal projections aT

i z. In
order to estimate the projecting vectors ai, we have to minimise the following
non-quadratic approximation of negentropy:

JG(ai) =
(
E{G(aT

i z)} − E{G(v)}
)2

(13)

where E{·} denotes the expectation operator, v is a Gaussian variable of zero
mean and unit variance and G(·) is practically any non-quadratic function. A
couple of possible functions were proposed in [9]. In our analysis, we will use:

G(x) =
1

α
log cosh αx (14)

where α is a constant that usually is bounded to 1 ≤ α ≤ 2. Hyvärinen
and Oja produced a fixed-point method, optimising the above definition of
negentropy, which is also known as the FastICA algorithm.

a+
i ← E{aiφ(aT

i z)} − E{φ′(aT
i z)}ai, 1 ≤ i ≤ K (15)

A ← A(AT A)−0.5 (16)
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where φ(x) = −∂G(x)/∂x. We randomly initialise the update rule in (15) for
each projecting vector ai. The new updates are then orthogonalised, using the
symmetric like orthogonalisation scheme in (16). These two steps are iterated,
until ai have converged.

2.1.3 Topographical Independent Component Analysis (TopoICA) bases

In practical applications, one can very often observe clear violations of the
independence assumption. It is possible to find couples of estimated compo-
nents such that they are clearly dependent on each other. This dependence
structure, however, is very informative and it would be useful to somehow
estimate it [9].

Hyvärinen et al [9] used the residual dependency of the “independent” com-
ponents, i.e. dependencies that could not be cancelled by ICA, to define a
topographic order between the components. Therefore, they modified the orig-
inal ICA model to include a topographic order between the components, so
that components that are near to each other in the topographic representation
are relatively strongly dependent in the sense of higher-order correlations or
mutual information. The proposed model is usually known as the Topographic
ICA model. The topography is introduced using a neighbourhood function
h(i, k), which expresses the proximity between the i-th and the k-th compo-
nent. A simple neighbourhood model can be the following:

h(i, k) =





1, if |i− k| ≤ L

0, otherwise
(17)

where L defines the width of the neighbourhood. Consequently, the estimated
coefficients ui are no longer assumed independent, but can be modelled by
some generative random variables dk, fi that are controlled by the neighbour-
hood function and shaped by a nonlinearity φ(·) (similar to the one in the
FastICA algorithm). The topographic source model, proposed by Hyvärinen
et al [9], is the following:

ui = φ

(
K∑

k=1

h(i, k)dk

)
fi (18)

Assuming a fixed-width neighbourhood L×L and that the input data are pre-
processed by PCA, Hyvärinen et al performed Maximum Likelihood estima-
tion of the synthesis kernel B using the linear model in (9) and the topographic
source model in (18), making several assumptions for the generative random
variables dk and fi. Optimising an approximation of the derived log-likelihood,
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they formed the following gradient-based Topographic ICA rule:

a+
i ← ai + ηE{z(aT

i z)ri}, 1 ≤ i ≤ K (19)

A ← A(AT A)−0.5 (20)

where η defines the learning rate of the gradient optimisation scheme and

ri =
K∑

k=1

h(i, k)φ




K∑

j=1

h(j, k)(aT
i z)2


 (21)

As previously, we randomly initialise the update rule in (19) for each projecting
vector ai. The new updates are then orthogonalised and the whole procedure
is iterated, until ai have converged. For more details on the definition and
derivation of the Topographic ICA model, one can always refer to the original
work by Hyvärinen et al [9].

2.2 Training ICA bases

In this paragraph, we describe the training procedure of the ICA and topo-
graphic ICA bases more thoroughly. We have to stress that the training pro-
cedure needs to be completed only once. After we have successfully trained
the desired bases, the estimated transform can be used for fusion of similar
content images.

We select a set of images with similar content to the ones that will be used
for image fusion. A number of N ×N patches (usually ∼ 10000) are randomly
selected from the training images. We apply lexicographic ordering to the se-
lected images patches. We perform PCA on the selected patches and select the
K < N2 most important bases, according to the eigenvalues corresponding the
bases. It is always possible to keep the complete set of bases. Then, we iterate
the ICA update rule in (15) or the topographical ICA rule in (19) for a chosen
L× L neighbourhood until convergence. Each iteration, we orthogonalise the
bases using the scheme in (16).

Some examples from trained ICA and topographic ICA bases are depicted in
figure 2. We randomly selected 10000 16× 16 patches from natural landscape
images. Using PCA, we selected the 160 most important bases out of the
256 bases available. In figure 2(a), we can see the ICA bases estimated using
FastICA (15). In figure 2(b), we can the set of the estimated Topographic
ICA bases using the rule in (19) and assuming a 3× 3 neighbourhood for the
topographic model.
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(a) ICA bases

(b) Topographic ICA bases

Fig. 2. Comparison between ICA and the topographical ICA bases trained on the
same set of image patches. We can observe the local correlation of the bases induced
by the “topography”.

2.3 Properties of the ICA bases

Let us explore some of the properties of the ICA and the Topographical ICA
bases and the transforms they constitute. Both transforms are invertible, i.e.
they guarantee perfect reconstruction. Using the symmetric orthogonalisation
step A ← A(AT A)−0.5, the bases remain orthogonal, i.e. the transform is
orthogonal.

We can examine the estimated example set of ICA and Topographical ICA
bases in figure 2. The ICA and topographical ICA basis vectors seem to be
closely related to wavelets and Gabor functions, as they represent similar fea-
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tures in different scales. However, these bases have more degrees of freedom
than wavelets [9]. The Discrete Wavelet transform has only two orientations
and the Dual-Tree wavelet transform can give six distinct sub-bands at each
level with orientation ±15o,±45o,±75o. The ICA bases can get arbitrary ori-
entations to fit the training patches.

One basic drawback of these transforms is that they are not shift invariant.
This property is generally mentioned to be very important for image fusion
in literature [14]. Piella [15] states that the fusion result will depend on the
location or orientation of objects in the input sources in the case of misregis-
tration problems or when used for image sequence fusion. As we assume that
the observed images are all registered, the lack of shift invariance should not
necessarily be a problem. In addition, Hyvarinen et al proposed to approxi-
mate shift invariance in these ICA schemes, by employing a sliding window
approach [10]. This implies that the input images are not divided into distinct
patches, but instead every possible N×N patch in the image is analysed. This
is similar to the spin cycling method, proposed by Coifman and Donoho [2].
This will also increase the computational complexity of the proposed frame-
work. We have to stress that the sliding window approach is only necessary
for the fusion part and not for the estimation of bases.

The basic difference between ICA and topographic ICA bases is the “topog-
raphy”, as introduced in the latter bases. The introduction of some local cor-
relation in the ICA model enables the algorithm to uncover some connections
between the independent components. In other words, topographic bases pro-
vide an ordered representation of the data, compared to the unordered repre-
sentation of the ICA bases. In an image fusion framework, “topography” can
identify groups of features that can characterise certain objects in the image.
One can observe the ideas comparing figures 2(a) and 2(b). Topographic ICA
seems to offer a more comprehensive representation compared to the general
ICA model.

Another advantage of the ICA bases is that the estimated transform can be
tailored to the needs of the application. Several image fusion applications work
with specific types of images. For example, military applications work with im-
ages of airplanes, tanks, ships etc. Biomedical applications employ Computed
Tomography (CT), Positron Emission Tomography (PET), ultra-sound scan
images etc. Consequently, one can train bases for specific application areas.
These bases should be able to analyse the trained data types more efficiently
than a generic transform.
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Fig. 3. The proposed fusion system using ICA / Topographical ICA bases.

3 Image fusion using ICA bases

In this section, we describe the whole procedure of performing image fusion
using ICA or Topographical ICA bases, which is summarised in figure 3. We
assume that a ICA or Topographic ICA transform T {·} is already estimated,
as described in a previous section. Also, we assume that we have T M1 ×
M2 registered sensor images Ik(x, y) that need to be fused. From each image
we isolate every possible N × N patch and using lexicographic ordering, we
transform it to a vector Ik(t). The patches’ size N should be the same as
the one used in the transform estimation. Therefore, each image Ik(x, y) is
now represented by a population of (M1 − N)(M2 − N) vectors Ik(t),∀ t ∈
[1, (M1 −N)(M2 −N)]. Each of these representations Ik(t) is transformed to
the ICA or Topographic ICA domain representation uk(t). Assuming that A
is the estimated analysis kernel, we have:

uk(t) = T {Ik(t)} = AIk(t) (22)

Once the image representations are in the ICA domain, one can apply a
“hard” threshold on the coefficients and perform optional denoising (sparse
code shrinkage), as proposed by Hyvärinen et al [10]. Then, one can perform
image fusion in the ICA or Topographic ICA domain in the same manner that
is performed in the wavelet or dual-tree wavelet domain. The corresponding
coefficients uk(t) from each image are combined in the ICA domain to con-
struct a new image uf (t). The method g(·) that combines the coefficients in
the ICA domain is called “fusion rule”:

uf (t) = g (u1(t), . . . , uk(t), . . . , uT (t)) (23)
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We can use one of the many proposed rules for fusion, as they were analysed
in the introduction section and in literature [15,14]. Therefore, the “max-abs”
and the “mean” rules can be two very common options. However, one can
use more efficient fusion rules, as we will see in the next section. Once the
composite image uf (t) is constructed in the ICA domain, we can move back
to the spatial domain, using the synthesis kernel B, and synthesise the image
If (x, y) by averaging the image patches If (t) in the same order they were
selected during the analysis step. The whole procedure can be summarised as
follows:

(1) Segment all input images Ik(x, y) into every possible N ×N image patch
and transform them to vectors Ik(t) via lexicographic ordering.

(2) Move the input vectors to the ICA / Topographic ICA domain, and get
the corresponding representation uk(t).

(3) Perform optional thresholding of uk(t) for denoising.
(4) Fuse the corresponding coefficient using a fusion rule and form the com-

posite representation uf (t).
(5) Move uf (t) to the spatial domain and reconstruct the image If (x, y) by

averaging the overlapping image patches.

4 Pixel-based and Region-based fusion rules using ICA bases

In this section, we describe two proposed fusion rules for ICA bases. The first
one is an extension of the “max-abs” pixel-based rule, which we will refer to
as the Weight Combination (WC) rule. The second one is a combination of
the WC and the “mean” rule in a region-based scenario.

4.1 A Weight Combination (WC) pixel-based method

An alternative to common fusion methods, is to use a “weighted combination”
of the transform coefficients, i.e.

T {If (t)} =
T∑

k=1

wk(t)T {Ik(t)} (24)

There are several parameters that can be employed in the estimation of the
contribution wk(t) of each image to the “fused” one. In [15], Piella proposed
several activity measures. Following the general ideas proposed in [15], we
propose the following scheme. As we process each image in N × N patches,
we can use the mean absolute value (L1-norm) of each patch (arranged in a
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vector) in the transform domain, as an activity indicator in each patch.

Ek(t) = ||uk(t)||1 k = 1, . . . , T (25)

The weights wk(t) should emphasise sources that feature more intense activity,
as represented by Ek(t). Consequently, the weights wk(t) for each patch t can
be estimated by the contribution of the k-th source image uk(t) over the total
contribution of all the T source images at patch t, in terms of activity. Hence,
we can choose:

wk(t) = Ek(t)/
T∑

k=1

Ek(t) (26)

There might be some cases, where
∑T

k=1 Ek(t) is very small, denoting small
energy activity in the corresponding patch. As this can cause numerical insta-
bility, we can use the “max-abs” or “mean” fusion rule for those patches.

4.2 Region-based Image fusion using ICA bases

In this section, we will use the analysis of the input images in the estimated
ICA domain to perform some regional segmentation and then we will fuse these
regions using different rules, i.e. perform region-based image fusion. During,
the proposed analysis methodology, we have already divided the image in
small N × N patches (i.e. regions). Using the splitting/merging philosophy
of region-based segmentation [17], we can find a criterion to merge the pixels
corresponding to each patch in order to form contiguous areas of interest.

One could use the energy activity measurement, as introduced by (25), to infer
the existence of edges in the corresponding frame. As the ICA bases tend to fo-
cus on the edge information, it is clear that great values for Ek(t), correspond
to great activity in the frame, i.e. the existence of edges. In contrast, small
values for Ek(t) denote the existence of almost constant background in the
frame. Using this idea, we can segment the image in two regions: i) “active”
regions containing details and ii) “non-active” regions containing background
information. The threshold that will be used to characterise a region as “ac-
tive” or “non-active” can be set heuristically to 2meant{Ek(t)}. Since we are
not interested in creating the most accurate edge-detector, we can allow some
tolerance around the real edges of the image. As a result, we form the following
segmentation map mk(t) from each input image:

mk(t) =





1, if Ek(t) > 2meant{Ek(t)}
0, otherwise

(27)
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The segmentation map of each input image is combined to form a single seg-
mentation map, using the logical OR operator. As mentioned earlier, we are
not interested in forming a very accurate edge detection map, but instead we
have to ensure that our segmentation map contains all the edge information.

m(t) = OR{m1(t),m2(t), . . . ,mT (t)} (28)

Now that we have segmented the image into “active” and “non-active” regions,
we can fuse these regions using different pixel-based fusion schemes. For the
“active” region, we can use a fusion scheme that preserves the edges, i.e.
the “max-abs” scheme or the weighted combination scheme and for the “non-
active” region, we can use a scheme that preserves the background information,
i.e. the “mean” or “median” scheme. Consequently, this could form a more
accurate fusion scheme, that pays attention to the structure of the image itself,
rather than fuse information generically.

5 Experiments

In this section, we test the performance of the proposed image fusion schemes
based on ICA bases. It is not our intention to provide an exhaustive com-
parison of the many different transforms and fusion schemes that exist in
literature. Instead, a comparison with fusion schemes using wavelet packets
analysis and the Dual-Tree (Complex) Wavelet Transform are performed. In
these examples we will test the “fusion by absolute maximum” (maxabs), the
“fusion by averaging” (mean), the Weighted Combination (weighted) and the
Region-based (Regional) fusion, where applicable.

We present three experiments, using both artificial and real image data sets. In
the first experiment, we have the Ground Truth image Igt(x, y), which enable
us to perform numerical evaluation of the fusion schemes. We assume that the
input images Ii(x, y) are processed by the fusion schemes to create the “fused”
image If (x, y). To evaluate the scheme’s performance, we can use the following
Signal-to-Noise Ratio (SNR) expression to compare the ground truth image
with the fused image.

SNR(dB) = 10 log10

∑
x

∑
y Igt(x, y)2

∑
x

∑
y(Igt(x, y)− If (x, y))2

(29)

As traditionally employed by the fusion community, we can also use the Image
Quality Index Q0, as a performance measure [19]. Assume that mI represents
the mean of the image I(x, y) and all images are of size M1 ×M2. As −1 ≤
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Q0 ≤ 1, the value of Q0 that is closer to 1, indicates better fusion performance.

Q0 =
4σIgtIf

mIgtmIf

(m2
Igt

+ m2
If

)(σ2
Igt

+ σ2
If

)
(30)

where

σ2
I =

1

M1M2 − 1

M1∑

x=1

M2∑

y=1

(I(x, y)−mI)
2 (31)

σIJ =
1

M1M2 − 1

M1∑

x=1

M2∑

y=1

(I(x, y)−mI)(J(x, y)−mJ) (32)

We trained the ICA and the topographic ICA bases using 10000 8× 8 image
patches selected randomly from 10 images of similar content to the ground
truth or the observed scene. We used 40 out of the 64 possible bases to perform
the transformation in either case. We compared the performance of the ICA
and topographic ICA transforms (topoICA) with a Wavelet Packet decomposi-
tion 1 and the Dual-Tree Wavelet Transform 2 . For the Wavelet Packet decom-
position (WP), we used Symmlet-7 (Sym7) bases, with 5 level-decomposition
using Coifman-Wickerhauser entropy. For the Dual-Tree Wavelet Transform
(DTWT), we used 4 levels of decomposition and the filters included in the
package. In the next pages, we will present some of the resulting fusion im-
ages. However, the visual differences between the fused images may not be very
clear in the printed version of the paper, due to limitation in space. Conse-
quently, the reader is prompted to acquire the whole set either by download 3

or via email to us.

5.1 Experiment 1: Artificially distorted images

In the first experiment, we have created three images of an “airplane” using
different localised artificial distortions. The introduced distortions can model
several different types of degradation that may occur in visual sensor imaging,
such as motion blur, out-of-focus blur and finally pixelate or shape distortion,
due to low bit-rate transmission or channel errors. This synthetic example can
be a good starting point for evaluation, as there are no registration errors

1 We used WaveLab v8.02, as available at http://www-
stat.stanford.edu/∼wavelab/.
2 Code available online by the Polytechnic University of Brooklyn, NY at
http://taco.poly.edu/WaveletSoftware/
3 http://www.commsp.ee.ic.ac.uk/∼nikolao/ElsevierImages.zip
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between the input images and we can perform numerical evaluation, as we
have the ground truth image. We applied all possible combinations of trans-
forms and the fusion rules (the “Weighted” and “Regional” fusion rules can
not be applied in the described form for the WP and DTWT transforms).
Some results are depicted in figure 5, whereas the full numerical evaluation is
presented in table 1.

We can see that using the ICA and the TopoICA bases, we can get better fusion
results both in visual quality and metric quality (PSNR, Q0). We observe
the ICA bases provide an improvement of ∼ 1.5 − 2dB, compared to the
wavelet transforms, using the “maxabs” rule. The topoICA bases seem to score
slightly better than the normal ICA bases, mainly due to better adaptation
to local features. In terms of the various fusion schemes, the “max-abs” rule
seems to give very low performance in this example using visual sensors. This
can be explained, due to the fact that this scheme seems to highlight the
important features of the images, however, it tends to lose some constant
background information. On the other hand, the “mean” rule gives the best
performance (especially for the wavelet coefficient), as it seems to balance the
high detail with the low-detail information. However, the “fused” image in
this case seems quite “blurry”, as the fusion rule has oversmoothed the image
details. Therefore, the high SNR has to be cross-checked with the actual visual
quality and image perception, where we can clearly that the salient features
have been filtered. The “weighted combination” rule seems to balance the
pros and cons of the two previous approaches, as the results feature high
PSNR and Q0 (inferior to the “mean” rule), but the “fused” images seem
sharper with correct constant background information. In figure 4, we can see
the segmentation map created by (18) and (19). The proposed region-based
scheme manages to capture most of the salient areas of the input images. It
performs reasonably well as an edge detector, however, it produces thicker
edges, as the objective is to identify areas around the edges, not the edges
themselves. The region-based fusion scheme produces similar results to the
“Weighted” fusion scheme. However, it seems to produce better visual quality
in constant background areas, as the “mean” rule is more suitable for the
“non-active”regions.

Table 1
Performance comparison of several combinations of transforms and fusion rules in
terms of PSNR (dB)/Q0 using the “airplane” example.

WP (Sym7) DT-WT ICA TopoICA

Max-abs 13.66/0.8247 13.44/0.8178 14.48/0.8609 14.80/0.8739

Mean 22.79/0.9853 22.79/0.9853 17.41/0.9565 17.70/0.9580

Weighted - - 17.56/0.9531 17.70/0.9547

Regional - - 17.56/0.9533 17.69/0.9549
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Fig. 4. Region mask created for the region-based image fusion scheme. The white
areas represent “active” segments and the black areas “non-active” segments.

5.2 Experiment 2: The “Toys” dataset

In the second experiment, we use the “Toys” example, which is a real visual
sensor example provided by Lehigh Image Fusion group [4]. In this example,
we have three registered images with different focus points, observing the same
scene of toys. In the first image, we have focused on left part, in the second
on the center part and in the third image on the right part of the image. The
ground truth image is not available, which is very common in many multi
focus examples. Therefore, SNR-type measurements are not available in this
case.

Here, we can see that the ICA and TopoICA bases perform slightly better than
wavelet-based approaches. Also, we can see that the “maxabs” rule performs
slightly better than any other approach, with almost similar performance from
the “Weighted” scheme. The reason might be that the three images have
the same colour information, however, most parts of each image are blurred.
Therefore, the “maxabs” that identifies the greatest activity seems more suit-
able for a multi-focus example.

5.3 Experiment 3: Multi-modal image fusion

In the third example, we explore the performance in multi-modal image fusion.
In this case, the input images are acquired from different modality sensors
to unveil different components in the observed scene. We have used some
surveillance images from TNO Human Factors, provided by L. Toet [18]. More
of these can be found in the Image Fusion Server [3]. The images are acquired
by three kayaks approaching the viewing location from far away. As a result,
their corresponding image size varies from less than 1 pixel to almost the
entire field of view, i.e. they are minimal registration errors. The first sensor
(AMB) is a Radiance HS IR camera (Raytheon), the second (AIM) is an
AIM 256 microLW camera and the third is a Philips LTC500 CCD camera.
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Consequently, we get three different modality inputs for the same observed
scene. However, the concept of ground truth is not really meaningful in this
case and therefore, we can not have any numerical performance evaluation for
this example.

In this example, we can witness some effects of misregistration in the fused
image. We can see that all four transforms seem to have included most salient
information from the input sensor images, especially in the “maxabs” and
“weighted” schemes. However, it seems that the fused image created using the
ICA and the TopoICA bases looks sharper and less blurry.

6 Conclusion

In this paper, the authors have introduced the use of ICA and Topograph-
ical ICA bases for image fusion applications. These bases seem to construct
very efficient tools, which can compliment common techniques used in image
fusion, such as the Dual-Tree Wavelet Transform. The proposed method can
outperform wavelet approaches. The Topographical ICA bases offer more ac-
curate directional selectivity, thus capturing the salient features of the image
more accurately. A weighted combination image fusion rule seemed to improve
the fusion quality over traditional fusion rules in several cases. In addition,
a region-based approach was introduced. At first, segmentation into “active”
and “non-active” areas is performed. The “active” areas are fused using the
pixel-based weighted combination rule and the “non-active” areas are fused
using the pixel-based “mean” rule.

The proposed schemes seem to increase the computational complexity of the
image fusion framework. The extra computational cost is not necessarily in-
troduced by the estimation of the ICA bases, as this task is performed only
once. The bases can be trained offline using selected image samples and then
employed constantly by the fusion applications. The increase in complexity
comes from the “sliding window” technique that is introduced to achieve shift
invariance. Implementing this fusion scheme in a more computationally effi-
cient framework than MATLAB will decrease the time needed for the image
analysis and synthesis part of the algorithm.

For future work, the authors would be looking at evolving to a more au-
tonomous fusion system. The fusion system should be able to select the essen-
tial coefficients automatically, by optimizing several criteria, such as activity
measures and region information. In addition, the authors would like to ex-
plore the nature of “topography”, as introduced by Hyvärinen et al, and form
more efficient activity detectors, based on topographic information.
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(a) Airplane 1 (b) Airplane 2 (c) Airplane 3

(d) Ground Truth (e) WP-maxabs (f) DTWT-maxabs

(g) ICA-maxabs (h) TopoICA-maxabs (i) TopoICA-mean

(j) TopoICA-Weighted (k) TopoICA-regional

Fig. 5. Three artificially-distorted input images and various fusion results using
various transforms and fusion rules.
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(a) Toys 1 (b) Toys 2 (c) Toys 3

(d) WP-maxabs (e) DTWT-maxabs (f) ICA-maxabs

(g) TopoICA-maxabs (h) TopoICA-mean (i) TopoICA-Weighted

(j) TopoICA-regional

Fig. 6. The “Toys” data-set demonstrating several out-of-focus examples and various
fusion results with various transforms and fusion rules.
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(a) AMB (b) AIM (c) CCD

(d) WP-maxabs (e) DTWT-maxabs (f) ICA-maxabs

(g) TopoICA-maxabs (h) TopoICA-mean (i) TopoICA-Weighted

(j) TopoICA-regional

Fig. 7. Multi-modal image fusion: Three images acquired through different modality
sensors and various fusion results with various transforms and fusion rules.
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