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ABSTRACT
In this paper, we propose a practical coding approach for the prob-
lem of distributed compression of multi-view images. Our cod-
ing technique is based on a tree structured compression algorithm
that guarantees an optimal rate-distortion behaviour for piecewise
polynomial signals. We model the different views using a piece-
wise polynomial function whose singularity positions are shifted
from one view to the others according to the constraints imposed
by the structure of the plenoptic function [1]. We show that, start-
ing from the optimal tree decompositions of the different views,
only partial information from each tree is necessary at the decoder
in order to reconstruct all the different approximations. We first
present our approach in the more intuitive 1D case and show that
it can be used with arbitrary bit-rate allocation. Then, we propose
a construction for the case ofN different views that satisfies a cer-
tain bit conservation principle. Finally, we show how our approach
can be extended to the 2D case.

1. INTRODUCTION

Separate lossless encoding of two correlated discrete sources can
be as efficient as joint encoding, assuming that the two compressed
signals can be jointly decoded. This surprising result is known as
the Slepian-Wolf theorem [2] and was proposed more than thirty
years ago. However, practical coding approaches based on this
(asymptotic and non-constructive) theoretical result have only been
proposed recently (see for instance [3, 4, 5, 6]).

We consider the problem of distributed compression in cam-
era sensor networks. Because of the proximity of the cameras, the
images obtained from different viewing positions can be highly
dependent. According to Slepian-Wolf, it should therefore be pos-
sible to develop distributed compression techniques that can ex-
ploit this correlation in order to reduce the overall amount of in-
formation that has to be transmitted from the sensors to a common
receiver, without requiring any collaboration between the different
encoders.

Distributed source coding schemes usually rely on the assump-
tion that the correlation of the source is known a-priori. In [7], we
showed how the correlation in the visual information, which is re-
lated to the structure of the plenoptic function [1], can be estimated
using simple geometrical constraints on the scene and on the posi-
tion of the cameras. We then proposed a coding approach that can
exploit this correlation in order to perform distributed compres-
sion of the different views. Nevertheless, our approach was based
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on an a-priory knowledge of the different object boundaries at the
encoders and was therefore not directly applicable to encode real
multi-view images. In this paper, we show how a particular im-
age coder based on tree structured algorithms [8] can be modified
to take advantage of our distributed coding approach. Notice that
several other distributed compression approach for multi-view im-
ages has been proposed (see [9, 10] for example). The main differ-
ence is that our approach tries to estimate the correlation structure
in the visual information using some geometrical information. The
main properties of our “DIFFERENT” scheme is that a) it allows
for an arbitrary partition of the rate between the encoders and b)
it satisfies a bit conservation principle. Namely, the reconstruction
fidelity at the decoder does not depend on the number of sensors
involved, but only on the total bit-budget R.

The paper is organized as follows: The next section introduces
the camera sensor network scenario we consider in our work and
gives a brief review of some of our previous results. In Section 3,
we first introduce the tree structured algorithm we consider in this
work and present our coding strategy focusing on the more intu-
itive 1D case. Then, we show that our approach allows arbitrary
bit-rate allocation and we highlight an exact bit conservation prin-
ciple for the case of more than two cameras. Finally, an extension
to the 2D case is highlighted. Section 4 presents the different sim-
ulation results and concluding remarks are given in Section 5.

2. OUR CAMERA SENSOR NETWORK SCENARIO AND
REVIEW OF OUR PREVIOUS RESULTS

The camera sensor network scenario we consider is illustrated in
Figure 1. We assume that N cameras are placed on a line and that
all the objects of the scene have a distance to the cameras that is
bounded between a minimum and a maximum values (zmin, zmax).
Assuming that the distance between two cameras is not larger than
a certain distance α, this scenario ensures that, regardless of the
complexity of the scene, any disparity ∆ will be contained in the
range: [ αf

zmax
; αf

zmin
] where f is the (common) focal length of the

cameras. Based on this observation, our distributed coding strat-
egy [7] consists in sending only partial information of the posi-
tions of the objects from the different encoders, as recalled in Sec-
tions 2.1 and 2.2.

2.1. Asymmetric Encoding

Assume X and Y are the (discrete) positions of a specific ob-
ject on the images obtained from two consecutive cameras. We
know that their difference (or disparity) is contained in the range
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Fig. 1. Our camera sensor network scenario

[ αf
zmax

; αf
zmin

]. Assume that X and Y are uniformly distributed
and that each of them can be perfectly encoded independently us-
ing R bits. In [7], we showed that sending the full information
(R bits) from one of the encoders and only the Rmin least sig-
nificant bits from the other one is sufficient to allow for a per-
fect reconstruction at the decoder (Rmin = �log2(δ + 1)�, where
δ = �αf( 1

zmin
− 1

zmax
)�).

2.2. Symmetric Encoding

The coding strategy presented in Section 2.1 can be extended to
allow for a more flexible allocation of the bit-rates amongst the
encoders. Our coding approach [7] suggests that each encoder
should send the last Rmin bits of the object’s positions along with
a certain subset of their first R − Rmin bits. The subsets should
be chosen such that they are complementary. This strategy can
theoretically achieve the Slepian-Wolf bound and gives us a pre-
cise intuition of how distributed compression should be applied to
multi-view images. However, it is not directly applicable to en-
code real multi-view images. In the next section, we show how
an existing image coder can be extended to take advantage of our
distributed coding approach.

3. DISTRIBUTED COMPRESSION USING TREE
STRUCTURED ALGORITHMS

Since the correlation model used by our distributed coding ap-
proach is related to the object’s positions on the different views,
we need to develop coding algorithms that can efficiently represent
these positions. Our approach consists in representing the different
views using a piecewise polynomial model. The main advantage
of such a representation is that it is well adapted to represent real
images and that it is able to precisely catch the discontinuities be-
tween objects. Two different views can therefore be modeled using
a piecewise polynomial signal where each discontinuity is shifted
according to the correlation model ∆i ∈ {∆min, ∆max}. More-
over, if we assume that the scene is composed of lambertian planar
surfaces only and that no occlusion occurs in the different views,
then we can claim that the polynomial pieces are similar for the
different views.1

1With non-lambertian surfaces, or with the presence of occlusions, the
polynomial pieces can differ for the different views. Our simple correlation
model should therefore be modified in this case. For the sake of simplicity,
we will however only consider this simple model to present our coding
approach.

3.1. The prune-join tree decomposition algorithm

In [8], Shukla et al. presented new coding algorithms based on
tree structured segmentation that achieve the correct asymptotic
rate-distortion (R-D) behaviour for piecewise polynomial signals.
Their method is based on a prune and join scheme that can be used
for 1D (using binary trees) or for 2D (using quadtrees) in a similar
way. We give here a sketch of their compression algorithm for
1D signals (Algorithm 1) and encourage the reader to refer to the
original work [8] for more details.

Algorithm 1 Prune-Join binary tree coding algorithm [8]
1: Segmentation of the signal using a binary tree decomposition
up to a tree depth Jmax.

2: Approximation of each node of the tree by a polynomial p(t)
of degree ≤ P .

3: Rate-Distortion curves generation for each node of the tree
(scalar quantization of the Legendre polynomial coefficients).

4: Optimal pruning of the tree for the given operating slope −λ
according to the following Lagrangian cost based criterion:
Prune the two children of a node if (DC1 +DC2)+λ(RC1 +
RC2) ≥ (Dp + λRp).

5: Joint coding of similar neighbouring leaves according to the
following Lagrangian cost based criterion: Join the two neigh-
bours if (Dn1 + λRn1) + (Dn2 + λRn2) ≥ (DnJoint +
λRnJoint).

6: Search for the desired R-D operating slope (update λ and go
back to point 4).

3.2. Our distributed coding strategy for 1D piecewise polyno-
mial functions

Let f1(t) be a piecewise polynomial signal defined over [0; T ] con-
sisting of S+1 polynomial pieces of maximum degreeP each, and
bounded in amplitude in [0; A]. Let {t1i}S

i=1 represent the S dis-
tinct discontinuity locations of f1(t). We define f2(t) as another
piecewise polynomial function over [0; T ] having the same poly-
nomial pieces than f1(t), but whose set of discontinuity locations
{t2i}S

i=1 is chosen such that: ∆min ≤ t2i − t1i ≤ ∆max, ∀i ∈
{1, . . . , S}. The relationship between f1(t) and f2(t) is therefore
given by the range of possible disparities [∆min; ∆max] which
corresponds to the plenoptic constraints we consider in our cam-
era sensor network scenario.

Assume that these two signals are independently encoded us-
ing the algorithm presented in the previous subsection for a given
distortion target. The total information necessary to describe each
of them can be divided in 3 parts: RTree is the number of bits nec-
essary to code the pruned tree and is equal to the number of nodes
in the tree. RLeafJointCoding is the number of bits necessary to
code the joining information and is equal to the number of leaves
in the tree. Finally, RLeaves is the total number of bits necessary
to code the set of polynomial approximations.

Figure 2 presents the prune-join tree decompositions of two
piecewise constant signals, having the same set of amplitudes and
having their sets of discontinuities satisfying our plenoptic con-
straints. Because of these constraints, we can observe that the
structure of the two pruned binary trees present some similari-
ties. Our distributed compression algorithm uses these similarities
in order to transmit only the necessary information to allow for
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a complete reconstruction at the decoder. It can be described as
follows (asymmetric encoding):

• Send the full description of signal 1 from encoder 1. (R1 =
RTree1 + RLeafJointCoding1 + RLeaves1 )

• Send only the subtrees of signal 2 having a root node at
level J∆ along with the joining information from encoder 2,
where J∆ = �log2(

T
∆max−∆min+1

)�. (R2 = (RTree2 −
R∆2) + RLeafJointCoding2 where R∆ corresponds to the
number of nodes in the pruned tree with a depth smaller
than J∆.)
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Fig. 2. Prune-Join binary tree decomposition of two piecewise
constant signals satisfying our correlation model.

At the decoder, the original position of the subtrees received
from encoder 2 can be recovered using the plenoptic constraints
(i.e. ∆ ∈ [ αf

zmax
; αf

zmin
]) and the side information provided by

encoder 1. The full tree can then be recovered and the second sig-
nal can thus be reconstructed using the set of amplitudes received
from encoder 1.

3.3. Arbitrary bit-rate allocation

The construction proposed in the previous subsection is asymmet-
ric since encoder 1 has to transmit its whole information whereas
encoder 2 only transmits missing information from its pruned tree
structure and its joining information. In order to allow for an arbi-
trary bit-rate allocation between the two encoders, we propose the
following strategy:

• Send all the subtrees having a root node at level J∆ from
both encoders, along with their joining information.

• Send complementary parts of the two upper trees (depth
< J∆).

• Send complementary subsets of the polynomial approxima-
tions.

This coding approach presents the same total rate-distortion be-
haviour than the asymmetric approach, but allows for an arbitrary
bit-rate allocation (see Figure 3 and Table 1 for simulation results).

3.4. An exact bit conservation principle

Our distributed compression approach can be extended to more
than two cameras. We consider the multi-camera scenario pre-
sented in Figure 1 with N cameras. If we consider that there is no
occlusion in these different views, knowing the discontinuity loca-
tions from only two cameras is sufficient to reconstruct any view
in between. Assume that we have a total bit budget of Rtot bits to
allocate between the different encoders and that only the two most
distant cameras are transmitting information to the decoder. In this

case, we know that each encoder should first compute a represen-
tation of its input signal usingR = RTree +RLeafJointCoding +
RLeaves bits such that (RTree − 1

2
R∆) + RLeafJointCoding +

1
2
RLeaves = 1

2
Rtot (symmetric encoding). At the decoder, the

two views can be reconstructed and any new view in between can
be interpolated with a certain fidelity.

Assume now that we want to transmit some information from
other cameras as well. We can show that, as long as the subtrees
(depth ≥ J∆) are transmitted from the two extreme cameras, the
rest of the information can be obtained totally arbitrarily from any
set of cameras. In particular, since the polynomial pieces are sim-
ilar for each view, they can be transmitted from any camera, all
this without impairing reconstruction quality. This result gives us
an exact bit conservation principle (see Figure 4 and Table 2 for
simulation results).

3.5. Extension to 2D using quadtree decompositions

The prune-join binary tree decomposition used in our approach has
an intuitive extension to the 2D case, where the binary tree seg-
mentation is replaced by the quadtree segmentation and the poly-
nomial model is replaced by a 2D geometrical model. Although
our approach becomes more involved in the 2D case, the intuitions
remain the same. The geometrical model used in 2D corresponds
to two 2D polynomials separated by a 1D polynomial boundary.
Notice that the quadtree compression algorithm proposed in [8]
outperforms Jpeg2000. For this reason, we are confident that its
use in the multi-view context will lead to good simulation results.
This is, however, part of our ongoing work.

4. NUMERICAL RESULTS

4.1. Piecewise polynomial signals

We have applied our distributed compression approach to differ-
ent sets of piecewise polynomial signals in order to highlight the
arbitrary bit-rate allocation and the bit conservation principle pre-
sented in the previous section. In Table 1, we show that an inde-
pendent encoding of the two signals presented in Figure 3 requires
a total bit-rate of .304 bpp to achieve a distortion target (SNR) of
26 dB. Using our distributed compression approach, we can see
that a quarter of the total bit-rate can be saved for an identical re-
construction fidelity. Moreover, this result remains constant for
any choice of bit-rate allocation (SW asym. or SW sym.). Notice
that a similar reduction of bit-rate with an independent encoding
strategy would see the total SNR drop of about 10 dB.

Table 1. Arbitrary bit-rate allocation.
Coding R1 R2 Rtot Dtot (SNR)
Strategy (bpp) (bpp) (bpp) (dB)
Independent .307 .301 .304 26.01
SW asym. 1 .307 .148 .228 26.01
SW asym. 2 .154 .301 .228 26.01
SW sym. .227 .227 .227 26.01

In Table 2, we highlight our bit conservation principle, by ap-
plying our compression approach to the three views shown in Fig-
ure 4. We know that the two extreme views represent sufficient in-
formation to allow the reconstruction of any view in between with
a comparable fidelity. Applying our SW approach to these two ex-
treme views, a total of 235 bits is necessary to achieve a distortion

3



0 100 200 300 400 500

−8

−6

−4

−2

0
Prune−Join tree decomposition of Signal 1

0 100 200 300 400 500
0

100

200

R = 0.307bpp ,   SNR = 26.69dB

0 100 200 300 400 500

−8

−6

−4

−2

0
Prune−Join tree decomposition of Signal 2

0 100 200 300 400 500
0

100

200

R = 0.301bpp ,   SNR = 25.3dB

Fig. 3. Join-Prune tree decomposition of two piecewise polyno-
mial signals with shifted discontinuities for a given distortion tar-
get (26 dB).

(SNR) of about 26 dB for the three reconstructed views. A similar
global rate-distortion behaviour holds when part of the information
is transmitted from the central view.2 This result highlights our bit
conservation principle. In other words, if we assume that the sen-
sors transmit their compressed data to the central decoder using a
multi-access channel, the fidelity of the reconstructed views only
depends on the global capacity of this channel and not on the num-
ber of sensors used!

Table 2. An exact bit conservation principle.
Coding R1 R2 R3 Rtot Dtot (SNR)
Strategy (bits) (bits) (bits) (bits) (dB)
Independent 157 124 157 438 26.13
SW - 2 views 117 0 118 235 25.68
SW - 3 views 82 71 82 235 26.13
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Fig. 4. Join-Prune tree decomposition of three piecewise polyno-
mial signals for a given distortion target (26 dB).

4.2. Results on scan lines of stereo images

In order to justify the correlation model we use in our distributed
compression scheme, we tried to apply it to a set of scan lines of
real multi-view images. We present a simulation on scan lines of a
pair of stereo images (Figure 5) using a piecewise linear model and
a symmetric encoding strategy. The reconstructed signals present
a good level of accuracy for the discontinuity locations. However,
since the assumption of lambertian surfaces does not hold for this
scene, the polynomial pieces can sometime be slightly different
from one view to the other. A solution to this problem is to include
it in our correlation model.

2The small variations in the SNR values are only due to different quan-
tization errors.
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Fig. 5. (left) Stereo images of a real scene where the objects are
located between a minimum and a maximum distance from the
cameras. (right) Reconstructed scan lines using a piecewise lin-
ear model for the binary tree decomposition and a symmetric dis-
tributed compression.

5. CONCLUSIONS AND ONGOING RESEARCH

We have shown how our distributed compression approach pro-
posed in [7] can be used with a real image coder using tree struc-
tured algorithms. We have shown that our approach allows for an
arbitrary bit-rate allocation, and we have highlighted an exact bit
conservation principle. Ongoing research focuses on an efficient
implementation of our distributed compression approach for the
2D case with more complex correlation models.
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