
DISTRIBUTED COMPRESSION OF THE PLENOPTIC FUNCTION

Nicolas Gehrig and Pier Luigi Dragotti

Communications and Signal Processing Group, Electrical and Electronic Engineering Department
Imperial College, Exhibition Road, London SW7 2AZ, United Kingdom

e-mail: {nicolas.gehrig, p.dragotti}@imperial.ac.uk

ABSTRACT

In this paper, we consider the problem of distributed compres-
sion in camera sensor networks. Due to the spatial proximity of
the different cameras, acquired images can be highly dependent.
The correlation in the visual information retrieved is related to the
structure of the plenoptic function and can be estimated using geo-
metrical information such as the position of the cameras and some
bounds on the location of the objects.

We propose a distributed compression scheme that takes ad-
vantage of this geometrical information in order to reduce the over-
all transmission rate from the sensors to a common central receiver.
This new approach allows for a flexible repartition of the transmis-
sion bit-rates amongst the encoders and is optimal in many cases.
Moreover, we show that our coding scheme can be made resilient
to a fixed number of occlusions and that perfect reconstruction and
interpolation are possible at the receiver.

1. INTRODUCTION

The recent emergence of sensor network technology has an in-
evitable impact on the need for new distributed approaches in most
areas of signal processing. Problems such as sampling, approx-
imation, compression and reconstruction have been extensively
studied in the traditional centralized context, but theories resulting
from this research are usually not directly applicable to distributed
schemes. The idea of sensor network is to replace the common
centralized scenario by a new completely distributed approach for
acquiring and processing data. It consists of numbers of indepen-
dent sensors, densely deployed, having processing and communi-
cation capabilities. Our work focuses on camera sensor networks,
where each sensor is a self-powered wireless device containing a
digital camera and a processing unit. We assume that our sen-
sors are looking at a specific scene from different view-points and
transmit their information to a common central receiver.

Due to their spatial proximity, images acquired by two differ-
ent sensors can be highly dependent. Since the inter-sensor com-
munication can be extremely expensive in terms of power con-
sumption, we would like to achieve the best possible transmission
rate (from the sensors to the common receiver) by exploiting the
overall correlation without allowing the sensors to communicate
with each other. Thanks to results obtained by Slepian-Wolf [1]
and Wyner-Ziv [2], we know that in many cases, we can theoret-
ically achieve the compression rate of a joint-encoder using sepa-
rate encoders. However, this surprising result assumes that the cor-
relation structure of the sources is a priori known at each individ-
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ual encoder. Although the theoretical aspect of distributed source
coding has been known for about three decades, it is only re-
cently that practical coding approaches have been proposed. In [3],
Pradhan and Ramchandran proposed a coding technique inspired
from channel coding. Practical designs mainly based on turbo and
LDPC codes have since been presented in several other papers
(see [4, 5, 6] for example).

In this paper, we consider a simplified geometrical set-up and
show that the correlation structure of the source, which is given by
the plenoptic function [7], can be precisely estimated using some
a priori global geometrical information. For instance, the location
of the cameras might be known and some objects of interest might
be well localized in space. We then propose a distributed com-
pression algorithm that exploits this a priori knowledge. This new
scheme allows for a flexible repartition of the bit-rates amongst
the encoders and is optimal in many cases (i.e., it achieves the
Slepian and Wolf performance (see Proposition 1)). We then show
that our coding scheme can be made resilient to a fixed number of
occlusions (see Proposition 2) and that perfect reconstruction and
interpolation are possible at the receiver.

The paper is organized as follows: The next section introduces
the plenoptic function and gives a precise description of our prob-
lem statement. In Section 3, we present our distributed compres-
sion approach and we address the problem of occlusions. Simula-
tion results can be found in Section 4 and we conclude in Section 5.

2. THE PLENOPTIC FUNCTION AND OUR CAMERA
SENSOR NETWORK

The plenoptic function was first introduced by Adelson and Bergen
in 1991 [7]. It corresponds to the function representing the inten-
sity and chromaticity of the light observed from every position and
direction in the 3D space, and can therefore be parameterized as a
7D function: P7 = P (θ, φ, λ, t, Vx, Vy, Vz).

A camera sensor network is able to acquire a finite number of
different views of a scene at any given time and can thus be seen
as a sampling device for the plenoptic function. We choose the
following scenario for our work: Assume that we have N cameras
evenly placed on a horizontal line. Let α be the distance between
two consecutive cameras, and assume that they are all looking in
the same direction (perpendicular to the line of cameras). Assume
then that the observed scene is composed of simple objects such as
uniformly colored polygons parallel to the image plane and with
depths bound between the two values zmin and zmax as shown in
Figure 1. According to the epipolar geometry principles, which
are directly related to the structure of the plenoptic function (see
Figure 2), we know that the difference between the positions of a
specific object on the images obtained from two consecutive cam-
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Fig. 1. Our camera sensor network configuration.
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Fig. 2. 2D plenoptic function of two points. The t-axis cor-
responds to the camera position and v corresponds to the rela-
tive positions on the corresponding image. A point of the scene
is therefore represented by a line whose slope is directly related
to the point’s depth. The difference between the positions of
a given point on two different images thus satisfies the relation
(v − v′) = f(t−t′)

z
, where z is the point’s depth and f is the focal

length of the cameras.

eras will be equal to ∆ = αf
z

, where z is the depth of the object
and f is the focal length of the cameras. This disparity ∆ depends
only on the distance z of the point from the focal plane. If we know
a priori that there is a finite depth of field, that is z ∈ [zmin, zmax],
then there is a finite range of disparities to be coded, irrespective of
how complicated the scene is. This key insight is used in this paper
to develop new distributed compression algorithms as we show in
the next section.

Notice that a similar insight has been previously used by Chai
et al. to develop new schemes to sample the plenoptic function [8].

3. DISTRIBUTED COMPRESSION

3.1. Background

Consider a communication system where two discrete correlated
sources X and Y are to be encoded at rates RX and RY respec-
tively, and transmitted to a central receiver. If it were possible to
perform the coding jointly, a rate RX +RY ≥ H(X, Y ) would be
sufficient to perform noiseless coding. Now assume that these two
sources are physically separated and cannot communicate with one
another, Slepian and Wolf [1] showed that lossless compression of
X and Y is still achievable if RX ≥ H(X|Y ), RY ≥ H(Y |X)
and RX + RY ≥ H(X, Y ). This means that there is no loss in
terms of overall rate even though the encoders are separated (see
Figure 3).

In the next subsection, we propose a distributed coding scheme
for the configuration presented in Figure 1 with two cameras. Since
both encoders have some knowledge about the geometry of the
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Fig. 3. (a) Joint source coding. (b) Distributed source cod-
ing. The Slepian-Wolf theorem (1973) states that a combined
rate of H(X, Y ) remains sufficient even if the correlated signals
are encoded separately. The achievable rate region is given by:
RX ≥ H(X|Y ), RY ≥ H(Y |X) and RX + RY ≥ H(X, Y ).

scene, the correlation structure of the two sources can be easily re-
trieved. We then show that our coding technique can be used with
any pair of bit-rates contained in the achievable rate region defined
by Slepian and Wolf, and can therefore be optimal.

3.2. Asymmetric and Symmetric encoding with two cameras

Let X and Y be the horizontal positions of a specific object on the
images obtained from two consecutive cameras. Assume the im-
age width is made of 2R pixels. Due to the epipolar geometry and
the information we have about the scene, that is (α, f, zmin, zmax),
we know that Y ∈ [X + αf

zmax
, X + αf

zmin
] for a specific X . En-

coding X and Y independently would require a total of H(X) +
H(Y ) bits. However, using a coset approach, we can modulo
encode Y as Y ′ = Y mod dαf( 1

zmin
− 1

zmax
)e. The receiver

will then retrieve the correct Y corresponding to the received Y ′

such that Y ∈ [X + αf
zmax

, X + αf
zmin

]. The overall transmission
rate is therefore decreased to H(X) + H(Y ′) bits. If we assume
that the difference between X and Y is uniformly distributed in
[ αf
zmax

, αf
zmin

], we can claim that H(Y ′) = H(Y |X). We can
therefore see that our coding scheme using H(X) + H(Y ′) =
H(X) + H(Y |X) = H(X, Y ) bits is optimal.

This simple distributed coding technique is very powerful since
it takes full advantage of the geometrical information to minimize
the global transmission bit-rate. However, its asymmetric reparti-
tion of the bit-rates may be problematic for some practical applica-
tions. In the following, we will show that our coding approach can
be extended in a way such that any pair of bit-rates satisfying the
Slepian and Wolf conditions can be used. Looking at the follow-
ing relation: H(X, Y ) = H(X|Y ) + H(Y |X) + I(X, Y ), we
can see that the minimum information that must be sent from the
source X corresponds to the conditional entropy H(X|Y ). Simi-
larly, the information corresponding to H(Y |X) must be sent from
the source Y . The remaining information required at the receiver
in order to recover the values of X and Y perfectly is related to the
mutual information I(X, Y ) and is by definition available at both
sources. This information can therefore be obtained partially from
both sources in order to balance the transmission rates.

We know that the correlation structure between the two sources
is such that Y belongs to [X+ αf

zmax
, X+ αf

zmin
] for a given X . Let

Ỹ be defined as Ỹ = Y −d αf
zmax

e. This implies that the difference

(Ỹ − X) is contained in {0, 1, . . . , δ}, where δ = dαf( 1
zmin

−
1

zmax
)e. Looking at the binary representations of X and Ỹ , we

can say that the difference between them can be computed using
only their last Rmin bits where Rmin = dlog2(δ + 1)e. Let X1

530



and Ỹ1 correspond to the last Rmin bits of X and Ỹ respectively.
Let X2 = (X � Rmin) and Ỹ2 = (Ỹ � Rmin), where the “�”
operator corresponds to a binary shift to the right. We can thus say
that Ỹ2 = X2 if Ỹ1 ≥ X1 and that Ỹ2 = X2 + 1 if Ỹ1 < X1. As
presented in Figure 4, our coding strategy consists in sending X1

and Ỹ1 from the sources X and Y respectively and then, sending
only a subset of the bits for X2 and only the complementary one
for Ỹ2. At the receiver, X1 and Ỹ1 are then compared to deter-

X

Y

R  [bits]

Rmin  [bits]

~
X1

Y1
~

Fig. 4. Binary representation of the two correlated sources. The
last Rmin bits are sent from the two sources but only comple-
mentary subsets of the first (R − Rmin) bits are necessary at the
receiver for a perfect reconstruction of X and Y .

mine if Ỹ2 = X2 or if Ỹ2 = X2 + 1. Knowing this relation and
their partial binary representations, the decoder can now perfectly
recover the values of X and Ỹ .

Assume that zmin and zmax are such that (δ + 1) is a power
of 2. Since we assume that (Ỹ − X) is uniformly distributed, we
can state that H(Ỹ − X) = H(X|Y ) = H(Y |X) = Rmin.
Let S(X2) be a subset of the R−Rmin bits of X2 and let S̄(Ỹ2)

corresponds to the complementary subset of Ỹ2. If we assume
now that X is uniformly distributed in {0, 1, . . . , 2R − 1}, we
can say that H(S(X2)) + H(S̄(Ỹ2)) = H(S(X2), S̄(Ỹ2)) =
I(X, Y ). The total rate necessary for our scheme corresponds to
I(X, Y ) + 2Rmin = H(X, Y ) and is therefore optimal. We can
now summarize our results into the following proposition:

Proposition 1 Consider the configuration presented in Figure 1
with two cameras, and assume that no occlusion happens in the
two corresponding views. The following distributed coding strat-
egy is sufficient to allow for a perfect reconstruction of these two
views at the decoder. For each object’s position:

• Send the last Rmin bits from both sources, with Rmin =
dlog2(δ + 1)e and δ = dαf( 1

zmin
− 1

zmax
)e.

• Send complementary subsets for the first (R−Rmin) bits.

If we assume that X and (Y − X) are uniformly distributed and
that δ = 2Rmin−1, this coding strategy achieves the Slepian-Wolf
bounds and is therefore optimal.

3.3. Three cameras with one possible occlusion

In order to reconstruct the position of an object for any virtual cam-
era position, we need to know its correct position in at least two
different views. Using the epipolar geometry principles, we can
then easily retrieve its absolute position and depth. Unfortunately,
a specific object may not be visible from certain view points since
it might be hidden behind another object or might be out of field.
Nevertheless, using a configuration with more cameras will make
it more likely for any object to be visible in at least two views.

Assume we have three cameras in a configuration similar to
the one presented in Figure 1 and that each object of the scene can

be occluded in at most one of these three views. Our goal is to de-
sign a distributed coding scheme for these three correlated sources
such that the information provided by any pair of these sources
is sufficient to allow for a perfect reconstruction at the receiver.
Let X , Y and Z be the horizontal positions of a specific object
on the images obtained from camera 1, 2 and 3 respectively. We
know that Y belongs to [X + αf

zmax
, X + αf

zmin
] and Z belongs

to [X + 2 αf
zmax

, X + 2 αf
zmin

] for a given X . Moreover, we know
that any of these variables is deterministic given the two others
and follows the relation Z = 2Y −X . Let X̃ and Z̃ be defined as
X̃ = X + αf

zmean
and Z̃ = Z − αf

zmean
where zmean is defined

such that 1
zmean

= 1
2
( 1

zmin
+ 1

zmax
). It implies that the differ-

ences (Y − X̃) and (Z̃ − Y ) are equal and belong to [−δ/2, δ/2]

and that the difference (Z̃ − X̃) belongs thus to [−δ, δ], where δ
is defined as in Section 3.2.

Looking at the binary representation of X̃ , Y and Z̃ (at in-
teger precision), we can say that the difference between any pair
can be retrieved using only their last Rmin bits, where Rmin =

dlog2(2δ + 1)e. Let X̃1, Y1 and Z̃1 correspond to the last Rmin

bits of X̃ , Y and Z̃ respectively. Using a similar approach to that
presented in Section 3.2, we know that any complementary binary
subsets of X̃2, Y2 and Z̃2 are necessary at the receiver to allow
for a perfect reconstruction. Since one occlusion can happen, we
need to choose the binary subsets such that any pair of these sub-
sets contains at least one value for each of the (R − Rmin) bits.
A possible repartition is shown in Figure 5 (symmetric case). A
transmission rate of 2

3
r + Rmin for each source is necessary in

this case, where r = R−Rmin.

X

Y

R  [bits]
~

Z

Rmin  [bits]

~
Z1
~

X1
~

Y1

Fig. 5. Binary representation of the three correlated sources. The
last Rmin bits are sent from the three sources but only subsets of
the first (R−Rmin) bits are necessary at the receiver for a perfect
reconstruction of X , Y and Z even if one occlusion occurs.

On receiving the last Rmin bits from only two sources, the
decoder is able to retrieve the last Rmin bits of the third one, which
may be occluded. Therefore, the relationship between X̃2, Y2 and
Z̃2 can be obtained and only subsets of their binary representations
are necessary for a perfect reconstruction. Since an occlusion may
have occurred, each bit position has been sent from two different
sources, which implies a global transmission of 2r bits for the first
(R−Rmin) bits. It is therefore apparent that our total transmission
rate of 2

3
r + Rmin bits per sources was therefore optimal.

We can now generalize our result (see Figure 6) to any number
of cameras and occlusions with the following proposition:

Proposition 2 Consider a system with N cameras as depicted in
Figure 1. Assume that any object of the scene can be occluded
in at most M ≤ N − 2 views. The following distributed coding
strategy is sufficient to allow for a perfect reconstruction of these
N views at the decoder and to interpolate any new view:
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• Send the last Rmin bits of the objects’positions from only
the first (M +2) sources, with Rmin = dlog2((M +1)δ)e
and δ = dαf( 1

zmin
− 1

zmax
)e.

• For each of the N sources, send only a subset of its first
(R − Rmin) bits such that each particular bit position is
sent from exactly (M + 1) sources.
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Fig. 6. Binary representation of the N correlated sources. The
last Rmin bits are sent only from the (M + 2) first sources. Only
subsets of the first (R−Rmin) bits are sent from each source, such
that each bit position is sent exactly from (M + 1) sources.

Notice that our distributed coding strategy can be generalized
to any binary sources. We proposed a general extension based on
linear channel codes and syndrome encoding [9, 10].

4. SIMULATION RESULTS

We developed a simulation to illustrate the performance of our dis-
tributed compression scheme. We created an artificial scene com-
posed of simple objects such as polygons of different intensities
placed at different depths. Our system could then generate any
view of that scene for any specified camera position. In the ex-
ample presented in Figure 7, we generated three views of a simple
scene composed of three objects such that one of them is occluded
in the second view, and another one is out of field in the third
view. The three generated images have a resolution of 512 × 512

X1 X2 X3

Fig. 7. Three views of a simple synthetic scene obtained from
three aligned and evenly spaced cameras. Note that an occlusion
happens in X2 and that an object is out of field in X3.

pixels and are used as the inputs for the testing of our distributed
compression algorithm. Each encoder applies first a simple corner
detection to retrieve the vertex positions of their visible polygons.
Each vertex (x, y) is represented using 2R = 2 log2(512) = 18
bits. Each encoder knows the relative locations of the two other
cameras (α = 100) but does not know the location of the ob-
jects. It only knows that the depths of the objects are contained in

[1.95, 5.05] and that f = 1. Depending on its depth, an object will
thus move from 20 to 51 pixels between two consecutive views.
This means that the difference ∆ on two consecutive positions can
be described using Rmin = log2(51− 19) = 5 bits.

In order to be resilient to one occlusion, we applied the ap-
proach proposed in Section 3.3. The results showed that only 14
bits per vertex were necessary from each source (instead of 18)
to allow for a perfect reconstruction of the scene at the receiver.
When repeating the operation with three other views and assum-
ing that no occlusion was possible, only 8 bits per vertex were
necessary from each source.

5. CONCLUSIONS

We have proposed a new distributed compression scheme for cam-
era sensor networks. Our method uses some geometrical informa-
tion about the scene in order to estimate the plenoptic constraints
and retrieve a correlation structure for the sources. A solution to
the problem of occlusions has also been proposed. Ongoing re-
search is focusing on the extension to more general scenes, leading
to the development of efficient distributed compression algorithms
for camera sensor networks in natural scenes.
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